留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁场诱导对磁性石墨烯改性水泥净浆抗压强度的影响研究

郑城 王迎豪 张逸舟 苏俊儒 张惠一 胡兵兵 袁小亚

郑城, 王迎豪, 张逸舟, 等. 磁场诱导对磁性石墨烯改性水泥净浆抗压强度的影响研究[J]. 复合材料学报, 2024, 42(0): 1-11.
引用本文: 郑城, 王迎豪, 张逸舟, 等. 磁场诱导对磁性石墨烯改性水泥净浆抗压强度的影响研究[J]. 复合材料学报, 2024, 42(0): 1-11.
ZHENG Cheng, WANG Yinghao, ZHANG Yizhou, et al. Study on the effect of magnetic field induction on the compressive strength of magnetic graphene-modified cement paste[J]. Acta Materiae Compositae Sinica.
Citation: ZHENG Cheng, WANG Yinghao, ZHANG Yizhou, et al. Study on the effect of magnetic field induction on the compressive strength of magnetic graphene-modified cement paste[J]. Acta Materiae Compositae Sinica.

磁场诱导对磁性石墨烯改性水泥净浆抗压强度的影响研究

基金项目: 国家自然科学基金项目(51402030);重庆市技术创新与应用发展专项重点项目(CSTB2022TIAD-KPX0031);重庆市级引导区县科技发展专项资金(JSYY2023010);重庆市研究生导师团队建设项目(JDDSTD2022006);重庆交通大学校企合作项目(cqjt-2022-036);重庆诺奖二维材料研究院科技项目(C2DMI-RD-230616-01)
详细信息
    通讯作者:

    袁小亚,博士,教授,博士生导师,研究方向为纳米复合材料、建筑功能材料、高性能水泥混凝土等领域 E-mail: yanxy@cqjtu.edu.cn

  • 中图分类号: TB333;TU528

Study on the effect of magnetic field induction on the compressive strength of magnetic graphene-modified cement paste

Funds: National Natural Science Foundation of China (51402030); Chongqing Municipal Technology Innovation and Application Development Special Key Projects (CSTB2022TIAD-KPX0031); Special Funds for Guiding Science and Technology Development of Districts and Counties in Chongqing Municipality (JSYY2023010); Chongqing Postgraduate Tutor Team Building Project (JDDSTD2022006); Chongqing Jiaotong University School-Enterprise Co-operation Project (cqjt-2022-036); Chongqing Nobel Prize 2D Materials Research Institute Science and Technology Project (C2DMI-RD-230616-01)
  • 摘要: 二维石墨烯(G)纳米片对水泥基材料有显著的增强效果,但通常情况下G是杂乱无章地分布在水泥基材料中。为了更好地发挥G的强化作用,本研究通过一步共沉淀法将Fe3O4纳米颗粒附着热还原氧化石墨烯(RGO)纳米片上制备了磁性纳米复合材料 Fe3O4@ RGO(MGO),通过施加外磁场(MF)使不同掺量的MGO纳米片在水泥净浆(CP)中沿一定方向排列,分别通过测试垂直和平行于磁场方向上的硬化水泥净浆的抗压强度。研究结果表明经磁场诱导后掺入不同量MGO的水泥净浆平行于磁场方向的截面抗压强度均大于垂直于磁场方向的截面抗压强度;当MGO掺量为0.1%时,在平行于磁场方向的截面抗压强度比垂直于磁场方向的截面抗压强度高12.20%。说明MGO纳米片经磁场诱导后发生了定向排列,水泥水化产物更多的在平行于磁场方向上规整排列生长。本研究通过外部磁场诱导调控石墨烯纳米片定向排布,为特定用途下实现更高强度的水泥基材料提供了一种有效途径。

     

  • 图  1  磁场诱导的MGO水泥净浆制备流程

    Figure  1.  Magnetic field induced preparation process of MGO-cement paste

    图  2  GO和MGO的拉曼光谱图

    Figure  2.  Raman spectra of GO and MGO

    图  3  (a) GO、MGO的XPS全谱图 (b) GO、MGO的XPS C 1s谱图 (c) MGO的XPS Fe 2p轨道分峰图和 (d) MGO的XPS O 1s 谱图

    Figure  3.  (a)XPS survey spectra of GO and MGO(b)XPS C 1s spectra of GO and MGO (c) XPS Fe 2p spectrum of MGO and (d) XPS O 1s spectrum of MGO

    图  4  MGO在不同倍率下的SEM图像

    Figure  4.  SEM images of MGO at different magnification

    图  5  (a),(b),(c) MGO在不同倍率下的TEM图像;(d) MGO的EDS分布图

    Figure  5.  (a), (b), (c) TEM images of MGO at different magnification; (d) elemental mappings of MGO

    图  6  MGO分散液的(a、b)稳定性、(c)磁响应

    Figure  6.  (a、b) stability and (c) magnetic response of MGO aqueous dispersion

    图  7  不同 MGO掺量对水泥净浆流动度的影响

    Figure  7.  Effect of different MGO contents on cement paste fluidity

    图  8  同一掺量MGO在平行于磁场方向截面较垂直于磁场方向截面的抗压强度增长率

    Figure  8.  Growth rate of compressive strength of the same contents of MGO in the cross section parallel compared to perpendicular to the magnetic field direction

    图  9  不同 MGO掺量下28 d水泥净浆XRD 图谱

    Figure  9.  XRD pattern of cement paste at 28 days with different MGO content

    图  10  MGO调控水泥水化产物的机制分析图

    Figure  10.  Schematic diagram of the functional role of MGO in cement paste

    表  1  水泥的化学成分

    Table  1.   Chemical composition of cement

    MineralAl2O3SiO2Fe2O3CaOMgOSO3NaOf-CaO
    Content / wt%4.4721.503.3765.843.180.300.490.78
    Note: f-CaO−Free calcium oxide.
    下载: 导出CSV

    表  2  不同MGO掺量的水泥净浆配合比

    Table  2.   Mix ratios of cement paste with different contents of MGO

    Sample Cement/g PCE/g water/g MGO/wt%
    0 wt%MGO/CP
    0.05 wt%MGO/CPab
    0.07 wt%MGO/CPab
    0.09 wt%MGO/CPab
    0.10 wt%MGO/CPab
    0.30 wt%MGO/CPab
    0.50 wt%MGO/CPab
    470
    470
    470
    470
    470
    470
    470
    0.5
    0.5
    0.5
    0.5
    0.5
    0.5
    0.5
    149.2
    149.2
    149.2
    149.2
    149.2
    149.2
    149.2
    /
    0.05
    0.07
    0.09
    0.10
    0.30
    0.50
    Notes:①X wt% MGO/CP denotes a cement paste specimen with a content of X% MGO;CP stands for cement paste; The subscript a indicates parallel to the direction of the magnetic field, and b indicates perpendicular to the direction of the magnetic field.②PCE is polycarboxylic acid water reducing agent;MGO is Fe3O4@ RGO.③Content of MGO is its mass ratio to Cement.
    下载: 导出CSV

    表  3  不同掺量的MGO对水泥净浆抗压强度的影响

    Table  3.   Effect of different MGO contents on compressive strength of cement paste


    Sample
    Compressive strength(MPa)/growth rate(%)
    Perpendicular to the magnetic field
    Compressive strength(MPa)/growth rate(%)
    Parallel to the magnetic field
    7 d 28 d 7 d 28 d
    0wt%MGO/CP
    0.05wt%MGO/CP
    0.07wt%MGO/CP
    0.09wt%MGO/CP
    0.10wt%MGO/CP
    0.30wt%MGO/CP
    0.50wt%MGO/CP
    39.1/0
    40.0/2.30
    42.1/7.67
    45.3/15.86
    46.8/19.69
    44.1/12.79
    42.4/8.44
    53.1/0
    54.9/3.39
    55.8/5.08
    57.4/8.10
    58.2/9.60
    56.1/5.65
    55.1/3.77
    39.1/0
    41.1/5.12
    44.5/13.81
    48.2/23.27
    50.7/29.67
    45.0/15.09
    42.2/7.93
    53.1/0
    56.8/6.97
    59.6/12.24
    62.4/17.51
    65.3/22.98
    64.1/20.72
    62.6/17.89
    下载: 导出CSV
  • [1] 桂尊曜, 蒲云东, 张惠一, 等. 石墨烯量子点对水泥砂浆流动度、强度和耐盐腐蚀性的影响[J]. 复合材料学报, 2024, 41(04): 2043-2054.

    GUI Zunyao, PU Yundong, ZHANG Huiyi, et al. Effect of graphene quantum dots on fluidity, strength and salt corrosion resistance of cement mortar[J] . Acta Materiae Compositae Sinica, 2024, 41(04): 20432054. (in Chinese).
    [2] 程志海, 杨森, 袁小亚. 石墨烯及其衍生物掺配水泥基材料研究进展[J]. 复合材料学报, 2021, 38(2): 339-360.

    CHENG Zhi-Hai, YANG Sen, YUAN Xiao-Ya. Research progress of cement-based materials blended with graphene and its derivatives[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 339-360(in Chinese).
    [3] KAKISAWA H, SUMITOMO T. The toughening mechanism of nacre and structural materials inspired by nacre[J/OL]. Science and Technology of Advanced Materials, 2011, 12(6): 064710. doi: 10.1088/1468-6996/12/6/064710
    [4] 吕生华, 马宇娟, 邱超超, 等. 氧化石墨烯对水泥石微观结构及性能的影响[J]. 混凝土, 2013, (8): 51-54. doi: 10.3969/j.issn.1002-3550.2013.08.014

    LV Shenghua, MA Yujuan, QIU Chaochao, et al. Effects of graphene oxide on microstructure of hardened cement paste and its properties[J]. Concrete, 2013, (8): 51-54(in Chinese). doi: 10.3969/j.issn.1002-3550.2013.08.014
    [5] 曹蔚琦, 魏致强, 刘川, 等. 氧化石墨烯/热还原氧化石墨烯改性砂浆的力学/电学性能研究[J]. 功能材料, 2024, 55(1): 1111-1116.

    CAO Weiqi, WEI Zhiqiang, LIU Chuan, et al. Study on mechanical/electrical properties of cement mortar modified by graphene oxide/thermal reduction graphene oxide[J]. Journal of Functional Materials, 2024, 55(1): 1111-1116(in Chinese).
    [6] 罗素蓉, 姚佳敏, 周恩泉, 等. 氧化石墨烯改性纤维增强水泥基材料的拉伸性能[J]. 建筑材料学报, 2024, 27(5): 400-407. doi: 10.3969/j.issn.1007-9629.2024.05.003

    LUO Surong, YAO Jiamin, ZhOU Enquan, et al. Tensile Properties of Fibers Reinforced[J]. Journal of Building Materials, 2024, 27(5): 400-407(in Chinese). doi: 10.3969/j.issn.1007-9629.2024.05.003
    [7] 齐孟, 蒲云东, 杨森, 等. 氧化石墨烯对水泥基渗透结晶型防水材料抗渗性能的影响[J]. 复合材料学报, 2023, 40(03): 1598-1610.

    QI Meng, PU Yundong, YANG Sen, et al. Effect of graphene oxide on the impermeability of ce mentitious capillary crystalline waterproofing[J]. Acta Materiae Compositae Sinica, 2023, 40(03): 15981610. (in Chinese).
    [8] 袁小亚, 曾俊杰, 高军, 等. 氧化石墨烯与石墨烯复掺对水泥砂浆性能影响研究[J]. 重庆交通大学学报(自然科学版), 2019, 38(9): 45-50.

    YUAN Xiaoya, ZENG Junjie, GAO Jun, et al. Effect of Addition of Graphene Oxide and Graphene on Properties of Cement Mortar[J]. Journal Of Chongqing Jiaotong University (Natural Science), 2019, 38(9): 45-50(in Chinese).
    [9] 吕生华, 张佳, 殷海荣, 等. 氧化石墨烯调控水化产物增强增韧水泥基复合材料的研究进展[J/OL]. 陕西科技大学学报, 2019, 37(3): 136-145. doi: 10.3969/j.issn.1000-5811.2019.03.022

    LV S H, ZhANG J, YIN H R, et al. Research progress of graphene oxide reinforced and toughened cement-bas- sed composite[J/OL]. Journal of Shaanxi University of Science & Technology, 2019, 37(3): 136-145(in Chinese). doi: 10.3969/j.issn.1000-5811.2019.03.022
    [10] 苟鸿翔, 朱洪波, 周海云, 等. 定向分布钢纤维对超高性能混凝土的增强作用[J]. 硅酸盐学报, 2020, 48(11): 17561764.

    GOU H. X. , ZhU H. B. , ZHOU H. Y. , et al. Reinforcement of Directionally Distributed Steel Fibers on Ultrahigh Performance Concrete[J]. Journal Of The Chinese Ceramic Society, 2020, 48(11): 17561764. (in Chinese).
    [11] MU R, LI H, QING L, et al. Aligning steel fibers in cement mortar using electro-magnetic field[J/OL]. Construction and Building Materials, 2017, 131: 309-316. doi: 10.1016/j.conbuildmat.2016.11.081
    [12] GENG J, MEN Y, LIU C, et al. Preparation of rGO@Fe3O4 nanocomposite and its application to enhance the thermal conductivity of epoxy resin[J/OL]. RSC Advances, 2021, 11(27): 16592-16599. doi: 10.1039/D1RA02254G
    [13] ZHANG H, WU W, CAO J, et al. Magnetic induced wet-spinning of graphene oxide sheets grafted with ferroferric oxide and the ultra-strain and elasticity of sensing fiber[J/OL]. Composites Part B: Engineering, 2019, 170: 1-10. doi: 10.1016/j.compositesb.2019.04.018
    [14] 邓富泉, 张丽, 杨松, 等. 氧化石墨烯有序排列对碳纤维增强环氧树脂复合材料低温性能影响[J]. 高分子材料科学与工程, 2017, 33(07): 38-44.

    DENG FQ, ZHANG L, YANG S, et al. Effects of Grahene Oxide Alligned in Matrix on Mechanical Properties of Carbon Fiber Reinforced Epoxy Composites at Cryogenic Temperature[J]. Polymer Materials Science And Engineering, 2017, 33(07): 3844. (in Chinese).
    [15] LIU S, CHEN Y, LI X, et al. Development of bio-inspired cement-based material by magnetically aligning graphene oxide nanosheets in cement paste[J/OL]. Construction and Building Materials, 2023, 369: 130545. doi: 10.1016/j.conbuildmat.2023.130545
    [16] YAN Y, TIAN L, ZHAO W, et al. Dielectric and mechanical properties of cement pastes incorporated with magnetically aligned reduced graphene oxide[J/OL]. Developments in the Built Environment, 2024, 18: 100471. doi: 10.1016/j.dibe.2024.100471
    [17] 中国国家标准化管理委员会. 水泥胶砂强度检验方法(ISO法): GB/T 17671−2021[S]. 北京: 中国标准出版社, 2021

    China National Standardization Management Committee. Strength test method of cement mortar (ISO method): GB/T 17671−2021[S]. Beijing: China Standards Press, 2021(in Chinese).
    [18] 中国国家标准化管理委员会. 水泥胶砂流动度测定方法: GB/T 2419−2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People's Republic of China. Method for determining the flowability of cement mortar: GB/T 2419-2005[S]. Beijing: China Standards Press, 2005(in Chinese)
    [19] LIU Y, LU M, WU K, et al. Anisotropic thermal conductivity and electromagnetic interference shielding of epoxy nanocomposites based on magnetic driving reduced graphene oxide@Fe3O4[J/OL]. Composites Science and Technology, 2019, 174: 1-10. doi: 10.1016/j.compscitech.2019.02.005
    [20] 姜晓琳, 李君, 刘臻, 等. 石墨烯炭材料的结构表征方法[J]. 洁净煤技术, 2023, 29(12): 75-82.

    JIANG Xiaolin, LI Jun, LIU Zhen, et al. Research on the characterization methods of graphene carbon materials[J]. Clean Coal Technology, 2023, 29(12): 7582. (in Chinese).
    [21] STANKOVICH S, DIKIN D A, PINER R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J/OL]. Carbon, 2007, 45(7): 1558-1565. doi: 10.1016/j.carbon.2007.02.034
    [22] 袁小亚, 杨雅玲, 周超, 等. 氧化石墨烯改性水泥砂浆力学性能及微观机制研究[J]. 重庆交通大学学报(自然科学版), 2017, 36(12): 36-42.

    YUAN Xiaoya, YANG Yaling, ZHOU Chao, et al. Mechanical Properties and Microcosmic Mechanism of Cement Mortar Modified by Graphene Oxide[J]. Journal Of Chongqing Jiaotong University (Natural Science), 2017, 36(12): 36-42(in Chinese).
    [23] 桂尊曜, 蒲云东, 张惠一, 等. 水中可分散型石墨烯对水泥净浆导电、发热及热电性能的影响[J/OL]. 复合材料学报, 2023, 40(11): 63366350.

    GUI Zunyao, PU Yundong, ZHANG Huiyi, et al. Effects of dispersible graphene in water on the electrical conductivity, heat generation and thermoelectric properties of cement slurry[J/OL]. Acta Materiae Compositae Sinica, 2023, 40(11): 63366350(in Chinese).
    [24] PU Y. Synergistic effect of graphene oxide and hydroxylated graphene on the enhanced properties of cement composites[J/OL]. RSC Advances, 2022.
    [25] NAIR S D, FERRON R D. Set-on-demand concrete[J/OL]. Cement and Concrete Research, 2014, 57: 13-27. doi: 10.1016/j.cemconres.2013.12.001
    [26] WU N, XU D, WANG Z, et al. Achieving superior electromagnetic wave absorbers through the novel metal-organic frameworks derived magnetic porous carbon nanorods[J/OL]. Carbon, 2019, 145: 433-444. doi: 10.1016/j.carbon.2019.01.028
    [27] 袁小亚, 张维福, 曹潘磊, 等. 复掺石墨烯/氧化石墨烯改性砂浆电学与融雪化冰性能研究[J]. 功能材料, 2021, 52(12): 12100-12110.

    YUAN Xiaoya, ZHANG Weifu, CAO Panlei, et al. Study on performace of wollastonite reinforced fly ash-basedgeopolymer. (in Chinese).
    [28] 吕生华, 孙婷, 刘晶晶, 等. 氧化石墨烯纳米片层对水泥基复合材料的增韧效果及作用机制[J/OL]. 复合材料学报, 2014, 31(3): 644-652.

    LV S H, SUN T, LIU J J, et al. Toughening effect and mechanism of graphene oxide nanosheets on cement matrix composites[J/OL]. Acta Materiae Compositae Sinica, 2014, 31(3): 644652. (in Chinese).
    [29] 袁小亚, 蒲云东, 桂尊曜, 等. 羟基化石墨烯对粉煤灰-水泥基复合材料性能的影响[J]. 材料导报, 2024, 38(11): 148-155.

    YUAN Xiaoya, PU Yundong, GUI Zunyao, et al. Effect of Hydroxylated Graphene on Properties of Fly Ash-Cement Matrix Composites[J]. Materials Reports, 2024, 38(11): 148-155(in Chinese).
    [30] 张惠一, 桂尊曜, 蒲云东, 等. 羟基化石墨烯对水泥基渗透结晶型防水材料力学性能的影响[J]. 硅酸盐通报, 2023, 42(5): 15691577+1588-1577+1588.

    ZHANG Hui-Yi, GUI Zun-Yao, PU Yun-Dong, et al. Effect of Hydroxylated Graphene on Mechanical Properties of Cement-Based Permeable Crystalline Waterproof Materials[J]. Bulletin Of The Chinese Ceramic Society, 2023, 42(5): 15691577+1588-1577+1588(in Chinese).
  • 加载中
计量
  • 文章访问数:  25
  • HTML全文浏览量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-10
  • 修回日期:  2024-08-24
  • 录用日期:  2024-09-03
  • 网络出版日期:  2024-09-16

目录

    /

    返回文章
    返回