留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

涤纶表面Se@TiO2纳米结构构筑及其光催化和抗菌性能

赵紫瑶 栾睿 莫慧琳 聂昊 任煜 李美贤

赵紫瑶, 栾睿, 莫慧琳, 等. 涤纶表面Se@TiO2纳米结构构筑及其光催化和抗菌性能[J]. 复合材料学报, 2024, 41(11): 5883-5892.
引用本文: 赵紫瑶, 栾睿, 莫慧琳, 等. 涤纶表面Se@TiO2纳米结构构筑及其光催化和抗菌性能[J]. 复合材料学报, 2024, 41(11): 5883-5892.
ZHAO Ziyao, LUAN Rui, MO Huilin, et al. Construction of Se@TiO2 nanostructures on polyester surface and investigation of the photocatalytic and antibacterial properties[J]. Acta Materiae Compositae Sinica, 2024, 41(11): 5883-5892.
Citation: ZHAO Ziyao, LUAN Rui, MO Huilin, et al. Construction of Se@TiO2 nanostructures on polyester surface and investigation of the photocatalytic and antibacterial properties[J]. Acta Materiae Compositae Sinica, 2024, 41(11): 5883-5892.

涤纶表面Se@TiO2纳米结构构筑及其光催化和抗菌性能

基金项目: 江苏省自然科学基金(BK20220613), 南通市科技项目(JC12022080)
详细信息
    通讯作者:

    任 煜,博士,教授,硕士生导师,研究方向为纤维材料的功能化改性 E-mail: ren.y@ntu.edu.cn

  • 中图分类号: TB333

Construction of Se@TiO2 nanostructures on polyester surface and investigation of the photocatalytic and antibacterial properties

Funds: Jiangsu Natural Science Foundation Youth Fund (BK20220613), Nantong Science and Technology Project (JC12022080)
  • 摘要: 采用等离子体技术对涤纶织物进行表面预处理,在涤纶织物表面负载纳米TiO2,然后通过分子组装法在TiO2/聚对苯二甲酸乙二醇酯(PET)表面生长Se纳米球(SeNPs)和Se纳米线(SeNWs),在涤纶织物表面构筑Se@TiO2二元复合结构(SeNPs@TiO2/PET和SeNWs@TiO2/PET)。通过扫描电镜(SEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)、紫外-可见吸收光谱(UV-vis)、光致发光光谱(PL)及光催化和抗菌实验对材料的晶体结构、表面形态、化学组成、光催化性能及抗菌性能等进行表征。通过接触角测试对复合光催化材料的表面润湿性能进行表征。光催化降解实验表明SeNWs@TiO2/PET在模拟太阳光下具有更高的降解率,其对模型污染物亚甲基蓝降解90 min后,降解率达到98.3%。PL光谱表明SeNWs@TiO2/PET电子-空穴对的分离率高于SeNPs@TiO2/PET。UV-vis光谱表明SeNPs@TiO2/PET和SeNWs@TiO2/PET的相对禁带宽度分别为2.8 eV和2.7 eV。两种复合材料对金黄色葡萄球菌和大肠杆菌的抑菌率分别可达到99%和90%以上。

     

  • 图  1  材料扫描电镜图片

    (a)Se纳米球(SeNPs)@TiO2/聚对苯二甲酸乙二醇酯(PET); (b) Se纳米线(SeNWs)@TiO2/PET; (c)SeNPs; (d)SeNWs

    Figure  1.  Scanning electron microscopy images of materials

    (a) Se nanospheres (SeNPs)@TiO2/ Polyethylene terephthalate (PET); (b) Se nanowires (SeNWs)@TiO2/PET; (c)SeNPs; (d)SeNWs

    图  2  材料表面各元素分布图

    Figure  2.  Distribution map of various elements on the material surface

    图  3  PET、SeNPs@TiO2/PET和SeNWs@TiO2/PET的X 射线衍射图

    Figure  3.  X-ray diffraction patterns of PET、SeNPs@TiO2/PET and SeNWs@TiO2/PET

    图  4  Se@TiO2/PET的XPS图

    Figure  4.  XPS image of Se@TiO2/PET (a) Se@TiO2/PET wide spectrum; (b) C1 s spectrum (c) Ti2 P spectrum; (d) O1 s spectrum ; (e) Se3 d spectrum

    图  5  PET、SeNPs@TiO2/PET和SeNWs@TiO2/PET的光致发光光谱图

    Figure  5.  Photoluminescence spectra of PET、SeNPs@TiO2/PET and SeNWs@TiO2/PET

    图  6  PET、SeNPs@TiO2/PET和SeNWs@TiO2/PET的紫外-可见吸收光谱

    Figure  6.  UV-Vis absorption spectra of PET、 SeNPs@TiO2/PET and SeNWs@TiO2/PET

    图  7  PET、SeNPs@TiO2/PET和SeNWs@TiO2/PET的接触角图

    Figure  7.  Contact angle diagrams of PET、SeNPs@TiO2/PET and SeNWs@TiO2/PET

    图  8  模拟太阳光下SeNPs@TiO2/PET和SeNWs@TiO2/PET对亚甲基蓝的降解曲线

    Figure  8.  Simulated degradation curves of methylene blue by SeNPs@TiO2/PET and SeNWs@TiO2/PET under visible light

    图  9  模拟太阳光下SeNPs@TiO2/PET和SeNWs@TiO2/PET对亚甲基蓝的重复降解率

    Figure  9.  Simulates the repeated degradation rate of methylene blue by SeNPs@TiO2/PET and SeNWs@TiO2/PET under visible light

    图  10  SeNPs@TiO2/PET和SeNWs@TiO2/PET对大肠杆菌和金黄色葡萄球菌的抑菌图

    Figure  10.  Antibacterial activity of SeNPs@TiO2/PET and SeNWs@TiO2/PET against E.coli and S.aureus

    表  1  材料表面各元素的相对含量

    Table  1.   Relative content of elements on the surface of materials

    Sample Relative content of element/
    wt%
    C O Ti Se
    PET 67.79 32.21 - -
    SeNPs@TiO2/PET 60.83 37.47 0.69 1.01
    SeNWs@TiO2/PET 61.44 34.82 2.83 0.91
    下载: 导出CSV

    表  2  材料的接触角及吸水时间

    Table  2.   Contact angle and water absorption time of materials

    Sample Contact angle Water
    absorption time
    PET 126.4° n/a
    SeNPs@TiO2/PET >1 s
    SeNWs@TiO2/PET >1 s
    下载: 导出CSV

    表  3  SeNPs@TiO2/PET和SeNWs@TiO2/PET对大肠杆菌和金黄色葡萄球菌的抑菌率

    Table  3.   Antibacterial rates of SeNPs@TiO2/PET and SeNWs@TiO2/PET against E.coli and S.aureus

    Sample E. coli colony/
    (CFU·mL−1)
    Bacteriostatic rate S. aureus colony/(CFU·mL−1) Bacteriostatic
    rate
    Blank 1.73×106 n/a 0.95×106 n/a
    TiO2/PET 7.06×105 59.19% 0.84×105 91.16%
    SeNPs@TiO2/PET 1.38×105 92.03% 1 99.99%
    SeNWs@TiO2/PET 0.92×105 94.68% 1 99.99%
    下载: 导出CSV
  • [1] 邓佳雯, 郭颖, 徐利云, 等. 低气压等离子体工艺参数对制备超疏水涤纶织物的影响[J]. 上海纺织科技, 2019, 47(10): 51-66.

    DENG Jiawen, GUO Yin, XV Liyun, et al. Prepration of super-hydrophobic polyester fabric by low pressure plasma[J]. Shanghai Textile Science and Technology, 2019, 47(10): 51-66(in Chinese).
    [2] 邵灵达, 申晓, 金肖克, 等. 涤纶纤维表面复合改性对其亲水性的影响[J]. 丝绸, 2020, 57(02): 19-24.

    SHAO Linda, SHEN Xiao, JIN Xiaoke, et al, Effect of surface modification of polyester fiber on its properties. Silk, 2020, 57(02): 19-24. (in Chinese)
    [3] RASHID M M, SIMONCIC B, TOMSIC B. Recent advances in TiO2-functionalized textile surfaces[J]. Surf Interfaces, 2021, 22.
    [4] 朱文怡. 纳米N/TiO2负载涤纶非织造材料的制备及其降解甲醛的研究 [D]. 江南大学, 2021.

    ZHU Wenyi. Study on the polyester nonwovens Supported N-doped Nano-TiO, Compositing Material And Degradation of formaldehyde[D]. Jiangnan University, 2021. (in Chinese)
    [5] 梁慧, 张光先, 张凤秀, 等. 紫外线纳米二氧化钛改性高亲水涤纶织物的制备[J]. 纺织学报, 2013, 34(03): 82-86.

    LIANG Hui, ZHANG Guangguang, ZHANG Fengxiu, et al, Prepration of highly hydrophilic polyester fabrics via UV irradiation/nano-TiO2 modification. Journal of Textile Research, 2013, 34(03): 82-86. (in Chinese)
    [6] GAO Y, CRANSTON R. Recent advances in antimicrobial treatments of textiles[J]. Text Res J, 2008, 78(1): 60-72. doi: 10.1177/0040517507082332
    [7] MIHAILOVIC D, SAPONJIC Z, RADOICIC M, et al. Functionalization of polyester fabrics with alginates and TiO2 nanoparticles[J]. Carbohydr Polym, 2010, 79(3): 526-532. doi: 10.1016/j.carbpol.2009.08.036
    [8] FUJISHIMA A, RAO T N. Recent advances in heterogeneous TiO2 photocatalysis[J]. J Chem Sci, 1997, 109(6): 471-486. doi: 10.1007/BF02869207
    [9] SáNCHEZ-RODRíGUEZ D, MEDRANO M G M, REMITA H, et al. Photocatalytic properties of BiOCl-TiO2 composites for phenol photodegradation[J]. J Environ Chem Eng, 2018, 6(2).
    [10] 王建强, 黄菊梅, 马玉龙, 等. 改性二氧化钛光催化技术在水污染治理中的研究进展[J]. 现代盐化工, 2021, 48(06): 9-11. doi: 10.3969/j.issn.1005-880X.2021.06.005

    WANG Jianqiang, HUANG Jumei, MA Yulong, et al. Research progress of modified titanium dioxide photocatalytic technology in water pollution control[J]. Modern Salt and Chemical Industry, 2021, 48(06): 9-11(in Chinese). doi: 10.3969/j.issn.1005-880X.2021.06.005
    [11] MU J, LUO D, MIAO H, et al. Synergistic wide spectrum response and directional carrier transportation characteristics of Se/SnSe2/TiO2 multiple heterojunction for efficient photoelectrochemical simultaneous degradation of Cr (VI) and RhB[J]. Appl Surf Sci, 2021, 542.
    [12] LIU W W, GOLSHAN N H, DENG X L, et al. Selenium nanoparticles incorporated into titania nanotubes inhibit bacterial growth and macrophage proliferation[J]. Nanoscale, 2016, 8(34): 15783-15794. doi: 10.1039/C6NR04461A
    [13] WANG T T, LI L H, YIN Z L, et al. Selenium-sensitized TiO2 p-n heterojunction thin films with high resistance to oxidation and moisture for self-driven visible-light photodetection[J]. Thin Solid Films, 2023, 774.
    [14] 张建花. 不同形貌和粒度纳米硒的制备及其相变热力学性质的研究 [D]; 太原理工大学, 2018.

    ZHANG Jianhua. Researches into preparation of nano-Se with different morphologies and sizes and its thermodynamics properties of phase transitions[D]. Taiyuan University of Technology, 2018(in Chinese)
    [15] 徐林, 任煜, 张红阳, 等. 涤纶织物表面TiO2/氟硅烷超疏水层构筑及其性能[J]. 纺织学报, 2019, 40(12): 86-92.

    XU Lin, REN Yu, ZHANG Hongyang, et al. Construction and properties of superhydrophobic layer of titania/fluorosilane on polyester fabric surface[J]. Journal of Textile Research, 2019, 40(12): 86-92.
    [16] D'AMATO C A, GIOVANNETTI R, ZANNOTTI M, et al. Band Gap Implications on Nano-TiO2 Surface Modification with Ascorbic Acid for Visible Light-Active Polypropylene Coated Photocatalyst[J]. Nanomaterials, 2018, 8(8):
    [17] 喻波. 纳米硒的形貌调控、功能化及其抗肿瘤活性研究 [D]; 暨南大学, 2011.

    YU Bo. Morphological modulation, functionalization and anticancer activities of selenium nanoparticles[D]. Jinan University, 2011(in Chinese)
    [18] 赵渺. 硒纳米/微米材料的制备及研究 [D]; 广东工业大学, 2011.

    ZHAO Miao. Research and Preparation of selenium nano/micro materials[D]. Guangdong University of Technology, 2011(in Chinese)
    [19] WU C Y, CORRIGAN N, LIM C H, et al. Guiding the Design of Organic Photocatalyst for PET-RAFT Polymerization: Halogenated Xanthene Dyes[J]. Macromolecules, 2019, 52(1): 236-248. doi: 10.1021/acs.macromol.8b02517
    [20] WU S X, MA Z, QIN Y N, et al. XPS study of copper doping TiO2 photocatalyst[J]. Acta Phys Chim Sin, 2003, 19(10): 967-969. doi: 10.3866/PKU.WHXB20031017
    [21] 王法国. Cu-TiO2基光催化材料的设计、制备及光催化性能研究 [D]; 北京科技大学, 2023.

    WANG Faguo. Design, Synthesis and Photocatalytic properties of Cu-TiO2 based Photocatalysts[D]. University of Science and Technology Beijing, 2021(in Chinese)
    [22] ROCKAFELLOW E M, HAYWOOD J M, WITTE T, et al. Selenium-Modified TiO2 and Its Impact on Photocatalysis[J]. Langmuir, 2010, 26(24): 19052-19059. doi: 10.1021/la1026569
    [23] ZHANG Y, ZHANG C, GUO Y, et al. Selenium vacancy-rich CoSe2 ultrathin nanomeshes with abundant active sites for electrocatalytic oxygen evolution[J]. J Mater Chem A, 2019, 7(6): 2536-2540. doi: 10.1039/C8TA11407B
    [24] ZHANG H Y, YU H, DAI J D, et al. Microstructure, photoluminescence and photocatalytic activity of ZnO-MoS2-TiO2 composite[J]. Chin J Phys, 2018, 56(6): 3053-3061. doi: 10.1016/j.cjph.2018.10.015
    [25] KANSAL S K, LAMBA R, MEHTA S K, et al. Photocatalytic degradation of Alizarin Red S using simply synthesized ZnO nanoparticles[J]. Mater Lett, 2013, 106(385-389).
    [26] KIBOMBO H S, WEBER A S, WU C-M, et al. Effectively dispersed europium oxide dopants in TiO2 aerogel supports for enhanced photocatalytic pollutant degradation[J]. J Photochem Photobiol, A, 2013, 269(49-58).
    [27] RAO Z P, SHI G S, WANG Z, et al. Photocatalytic degradation of gaseous VOCs over Tm3+-TiO2: Revealing the activity enhancement mechanism and different reaction paths[J]. Chem Eng J, 2020, 395.
    [28] MURUGESAN R, SIVAKUMAR S, KARTHIK K, et al. Structural, optical and magnetic behaviors of Fe/Mn-doped and co-doped CdS thin films prepared by spray pyrolysis method[J]. Appl Phys A, 2019, 125(4): 281. doi: 10.1007/s00339-019-2577-x
    [29] CHIOU Y-D, HSU Y-J. Room-temperature synthesis of single-crystalline Se nanorods with remarkable photocatalytic properties[J]. Applied Catalysis B-Environmental, 2011, 105(1-2): 211-219. doi: 10.1016/j.apcatb.2011.04.019
    [30] YUN H J, LEE H, JOO J B, et al. Influence of Aspect Ratio of TiO2 Nanorods on the Photocatalytic Decomposition of Formic Acid[J]. The Journal of Physical Chemistry C, 2009, 113(8): 3050-3055. doi: 10.1021/jp808604t
    [31] HENRIKSEN-LACEY M, CARREGAL-ROMERO S, LIZ-MARZáN L M. Current Challenges toward In Vitro Cellular Validation of Inorganic Nanoparticles[J]. Bioconjugate Chem, 2017, 28(1): 212-221. doi: 10.1021/acs.bioconjchem.6b00514
    [32] HORIE M, SUGINO S, KATO H, et al. Does photocatalytic activity of TiO2 nanoparticles correspond to photo-cytotoxicity? Cellular uptake of TiO2 nanoparticles is important in their photo-cytotoxicity[J]. Toxicol Mech Methods, 2016, 26(4): 284-294. doi: 10.1080/15376516.2016.1175530
    [33] BILEK O, FOHLEROVA Z, HUBALEK J. Enhanced antibacterial and anticancer properties of Se-NPs decorated TiO2 nanotube film[J]. PLoS One, 2019, 14(3).
    [34] GUISBIERS G, WANG Q, KHACHATRYAN E, et al. Inhibition of E. coli and S. aureus with selenium nanoparticles synthesized by pulsed laser ablation in deionized water[J]. Int J Nanomed, 2016, 11(3731-3736).
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  176
  • HTML全文浏览量:  129
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-08
  • 修回日期:  2024-01-03
  • 录用日期:  2024-01-05
  • 网络出版日期:  2024-01-29
  • 刊出日期:  2024-11-15

目录

    /

    返回文章
    返回