留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光诱导石墨烯的纳米银颗粒原位修饰及其导电性能调控

王文波 宋彦平 李年 王振洋

王文波, 宋彦平, 李年, 等. 激光诱导石墨烯的纳米银颗粒原位修饰及其导电性能调控[J]. 复合材料学报, 2024, 41(8): 4116-4125. doi: 10.13801/j.cnki.fhclxb.20231220.003
引用本文: 王文波, 宋彦平, 李年, 等. 激光诱导石墨烯的纳米银颗粒原位修饰及其导电性能调控[J]. 复合材料学报, 2024, 41(8): 4116-4125. doi: 10.13801/j.cnki.fhclxb.20231220.003
WANG Wenbo, SONG Yanping, LI Nian, et al. In-situ modification of laser-induced graphene with silver nanoparticles and its electronic conductivity modulation[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 4116-4125. doi: 10.13801/j.cnki.fhclxb.20231220.003
Citation: WANG Wenbo, SONG Yanping, LI Nian, et al. In-situ modification of laser-induced graphene with silver nanoparticles and its electronic conductivity modulation[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 4116-4125. doi: 10.13801/j.cnki.fhclxb.20231220.003

激光诱导石墨烯的纳米银颗粒原位修饰及其导电性能调控

doi: 10.13801/j.cnki.fhclxb.20231220.003
基金项目: 安徽省科技重大专项 (202103a05020013)
详细信息
    通讯作者:

    宋彦平,硕士,研究方向为功能石墨烯复合材料 E-mail: 18381307506@163.com

    王振洋,博士,研究员,博士生导师,研究方向为功能石墨烯复合材料 E-mail: zywang@iim.ac.cn

  • 中图分类号: TB332

In-situ modification of laser-induced graphene with silver nanoparticles and its electronic conductivity modulation

Funds: Major Scientic and Technological Special Project of Anhui Province (202103a05020013)
  • 摘要: 随着高频通信技术的快速发展,由电磁波造成的电磁干扰问题日益严重,亟需开发针对5G频段的电磁屏蔽材料。以两次激光诱导法直接在固体材料上快速制备了银纳米颗粒/多孔石墨烯柔性复合薄膜:首次激光制备的亲水性激光诱导石墨烯(LIG)能够高效吸附AgNO3溶液,二次激光照射实现了银纳米粒子在多孔石墨烯上的原位生成和均匀负载。进一步研究了不同AgNO3浓度对所制得Ag/LIG材料的微观形貌、结构性质和导电特性的影响。结果表明:当AgNO3浓度为0.5 mol/L时,复合薄膜中银纳米颗粒保持小尺寸的同时分散性最好,其展现出2788 S/m的高电导率;同时,材料屏蔽效能从LIG的18~26 dB增加到复合材料的36~40 dB。在26 GHz频段处,Ag/LIG的屏蔽效能达到38 dB,经200次弯曲循环后效能保有率在90%以上。

     

  • 图  1  (a) Ag/激光诱导石墨烯(LIG)薄膜制备过程;(b) Ag/LIG复合材料的微观结构和电磁屏蔽(EMI)机制示意图

    EMW—Electromagnetic wave

    Figure  1.  (a) Preparation process of Ag/laser-induced graphene (LIG) film; (b) Schematic diagram of microstructure and electromagnetic interference (EMI) shielding mechanism of Ag/LIG composite

    图  2  不同激光聚焦条件下获得LIG的SEM图像:((a), (b))激光聚焦在样品表面;((c), (d))激光虚焦(插图为截面SEM图像)

    PI—Polyimide

    Figure  2.  SEM images of LIG obtained at different laser focusing conditions: ((a), (b)) Laser focusing on the surface of the sample; ((c), (d)) Laser defocusing (The inset is a cross-sectional view)

    图  3  不同激光聚焦条件下获得LIG的水接触角:(a)激光聚焦;(b)激光虚焦

    Figure  3.  Water contact angles of LIG obtained at different laser conditions: (a) Laser focusing; (b) Laser defocusing

    图  4  不同浓度AgNO3溶液滴加后经激光还原的Ag/LIG 的SEM图像:((a), (d)) 0.2 mol/L;((b), (e)) 0.5 mol/L;((c), (f)) 0.8 mol/L

    Figure  4.  SEM images of Ag/LIG with different AgNO3 concentrations after laser reduction: ((a), (d)) 0.2 mol/L; ((b), (e)) 0.5 mol/L; ((c), (f)) 0.8 mol/L

    图  5  ((a), (b))不同LIG、Ag/LIG样品的Raman图谱;(c)不同样品拉曼图谱的D峰与G峰强度比(ID/IG)、2D峰与G峰强度比(I2D/IG)

    LIG-1, LIG-2—Hydrophobic LIG and hydrophilic LIG, respectively; Ag/LIG-0.2, Ag/LIG-0.5 and Ag/LIG-0.8 are samples prepared with Ag+ solutions of 0.2, 0.5 and 0.8 mol/L, respectively

    Figure  5.  ((a), (b)) Raman spectra of LIG and Ag/LIG samples; (c) Intensity ratio of D peak to G peak (ID/IG) and 2D peak to G peak (I2D/IG) in Raman spectra of different samples

    图  6  Ag/LIG的TEM图像(a)和HRTEM图像(b)

    D—Diameter of particle

    Figure  6.  TEM image (a) and HRTEM image (b) of Ag/LIG

    图  7  LIG和Ag/LIG材料的XRD图谱

    Figure  7.  XRD patterns of LIG and Ag/LIG

    图  8  Ag/LIG-0.5的XPS图谱:(a) 总谱;((b), (c)) C1s和Ag3d的高分辨XPS图谱

    Figure  8.  XPS spectrum of Ag/LIG-0.5: (a) Overview; ((b), (c)) High-resolution XPS spectra of C1s and Ag3d

    图  9  LIG和Ag/LIG的面电阻、电导率及其载流子相关测试结果

    Figure  9.  Sheet resistance, electrical conductivity and carriers related characterization results of LIG and Ag/LIG

    图  10  (a)不同AgNO3浓度制备的Ag/LIG复合材料及商用屏蔽膜的总屏蔽效能(EMI SET);(b) LIG和Ag/LIG-0.5样品的吸收和反射屏蔽效能(SEA和SER)对比;不同AgNO3浓度制备的Ag/LIG复合材料在26 GHz频段的SET、SEA和SER (c)及反射、吸收和透射系数(RAT) (d);(e) Ag/LIG-0.5复合薄膜在反复弯曲和超声处理后26 GHz处的屏蔽效能;(f)二次激光照射前后LIG和Ag/LIG-0.5的实物图及薄膜的柔性展示(插图为Ag/LIG的水接触角)

    Figure  10.  (a) Total EMI shielding efficicency (EMI SET) of Ag/LIG prepared with different AgNO3 concentrations and commercial film; (b) Comparison of shielding efficiency from absorption and reflection (SEA and SER) of LIG and Ag/LIG-0.5 samples; SET, SEA and SER (c), reflection, absorption and transmission coefficients (R, A, and T) coefficients (d) of Ag/LIG with different AgNO3 concentrations at the 26 GHz frequency band; (e) EMI SE of Ag/LIG-0.5 composite film at 26 GHz after bending or ultrasound; (f) Digital photograph of LIG and Ag/LIG-0.5 before and after secondary laser irradiation, as well as the flexibility of the film (The inset shows the water contact angle of Ag/LIG)

  • [1] WANG B, JI Y, MU C, et al. Well-controlled core-shell structures based on Fe3O4 nanospheres coated by polyaniline for highly efficient microwave absorption[J]. Applied Surface Science, 2022, 591: 153176. doi: 10.1016/j.apsusc.2022.153176
    [2] YU J, GU W, ZHAO H, et al. Lightweight, flexible and freestanding PVA/PEDOT∶PSS/Ag NWs film for high-performance electromagnetic interference shielding[J]. Science China Materials, 2021, 64(7): 1723-1732. doi: 10.1007/s40843-020-1557-3
    [3] GUO D, HUO Y, MU C, et al. Flexible aramid nanofiber/Ag nanowires/graphene nanosheets composite films with sandwich structure for high-performance electromagnetic interference shielding and Joule heating[J]. Journal of Alloys and Compounds, 2022, 923: 166401. doi: 10.1016/j.jallcom.2022.166401
    [4] 瞿明城, 张礼颖, 周剑锋, 等. 碳纳米管改性CF/PEEK复合材料的力学与电磁屏蔽性能[J]. 复合材料学报, 2022, 39(7): 3251-3261.

    QU Mingcheng, ZHANG Liying, ZHOU Jianfeng, et al. Effect of carbon nanotube reinforcement on the mechanical and EMI shielding properties of CF/PEEK composites[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3251-3261(in Chinese).
    [5] 张明伟, 曲冠达, 庞梦瑶, 等. 电磁屏蔽机理及涂敷/结构型吸波复合材料研究进展[J]. 材料导报, 2021, 35(Z1): 62-70.

    ZHANG Mingwei, QU Guanda, PANG Mengyao, et al. Research progress of electromagnetic shielding mechanism and coated/structural absorbing composite materials[J]. Materials Reports, 2021, 35(Z1): 62-70(in Chinese).
    [6] AMARO A, SUAREZ A, TAMBURRANO A, et al. EMI shielding effectiveness study for innovative carbon nanotube materials in the 5G frequency region[J]. IEEE Transactions on Electromagnetic Compatibility, 2023, 65(1): 177-185. doi: 10.1109/TEMC.2022.3209708
    [7] HAN G, MA Z, ZHOU B, et al. Cellulose-based Ni-decorated graphene magnetic film for electromagnetic interference shielding[J]. Journal of Colloid and Interface Science, 2021, 583: 571-578. doi: 10.1016/j.jcis.2020.09.072
    [8] JAN R, HABIB A, AKRAM M A, et al. Flexible, thin films of graphene-polymer composites for EMI shielding[J]. Materials Research Express, 2017, 4(3): 035605. doi: 10.1088/2053-1591/aa6351
    [9] JUNG M, LEE Y S, HONG S G, et al. Carbon nanotubes (CNTs) in ultra-high performance concrete (UHPC): Dispersion, mechanical properties, and electromagnetic interference (EMI) shielding effectiveness (SE)[J]. Cement and Concrete Research, 2020, 131: 106017. doi: 10.1016/j.cemconres.2020.106017
    [10] ESWARAIAH V, SANKARANARAYANAN V, RAMAPRABHU S. Functionalized graphene-PVDF foam composites for EMI shielding[J]. Macromolecular Materials and Engineering, 2011, 296(10): 894-898. doi: 10.1002/mame.201100035
    [11] RAJAVEL K, HU Y, ZHU P, et al. MXene/metal oxides-Ag ternary nanostructures for electromagnetic interference shielding[J]. Chemical Engineering Journal, 2020, 399: 125791. doi: 10.1016/j.cej.2020.125791
    [12] 丁雪, 王建才, 叶志国, 等. 高性能石墨烯电磁屏蔽材料的研究进展[J]. 功能材料, 2023, 54(10): 10069-10076, 10088.

    DING Xue, WANG Jiancai, YE Zhiguo, et al. Research progress of high-performance graphene electromagnetic shielding materials[J]. Journal of Functional Material, 2023, 54(10): 10069-10076, 10088(in Chinese).
    [13] YIN C, TAO C A, CAI F, et al. Effects of activation temperature on the deoxygenation, specific surface area and supercapacitor performance of graphene[J]. Carbon, 2016, 109: 558-565. doi: 10.1016/j.carbon.2016.08.053
    [14] SHEN B, ZHAI W, ZHENG W. Ultrathin flexible graphene film: An excellent thermal conducting material with efficient EMI shielding[J]. Advanced Functional Materials, 2014, 24(28): 4542-4548. doi: 10.1002/adfm.201400079
    [15] SRIVASTAVA S K, MANNA K. Recent advancements in the electromagnetic interference shielding performance of nanostructured materials and their nanocomposites: A review[J]. Journal of Materials Chemistry A, 2022, 10(14): 7431-7496. doi: 10.1039/D1TA09522F
    [16] WANG M, TANG X H, CAI J H, et al. Construction, mechanism and prospective of conductive polymer composites with multiple interfaces for electromagnetic interference shielding: A review[J]. Carbon, 2021, 177: 377-402. doi: 10.1016/j.carbon.2021.02.047
    [17] YE R, JAMES D K, TOUR J M. Laser-induced graphene: From discovery to translation[J]. Advanced Materials, 2019, 31(1): 1803621. doi: 10.1002/adma.201803621
    [18] SONG Y, LI N, HAN S, et al. Macro-sized all-graphene 3D structures via layer-by-layer covalent growth for micro-to-macro inheritable electrical performances[J]. Advanced Functional Materials, 2023, 33: 2305191.
    [19] XU Y, FEI Q, PAGE M, et al. Laser-induced graphene for bioelectronics and soft actuators[J]. Nano Research, 2021, 14: 3033-3050. doi: 10.1007/s12274-021-3441-9
    [20] SHEN Y, LIN Z, WEI J, et al. Facile synthesis of ultra-lightweight silver/reduced graphene oxide (rGO) coated carbonized-melamine foams with high electromagnetic interference shielding effectiveness and high absorption coefficient[J]. Carbon, 2022, 186: 9-18. doi: 10.1016/j.carbon.2021.09.068
    [21] CHEN L, LI N, YU X, et al. A general way to manipulate electrical conductivity of graphene[J]. Chemical Engineering Journal, 2023, 462: 142139. doi: 10.1016/j.cej.2023.142139
    [22] PENG M, QIN F. Clarification of basic concepts for electromagnetic interference shielding effectiveness[J]. Journal of Applied Physics, 2021, 130: 225108. doi: 10.1063/5.0075019
    [23] DONG Y, RISMILLER S C, LIN J. Molecular dynamic simulation of layered graphene clusters formation from polyimides under extreme conditions[J]. Carbon, 2016, 104: 47-55. doi: 10.1016/j.carbon.2016.03.050
    [24] LIN J, PENG Z, LIU Y, et al. Laser-induced porous graphene films from commercial polymers[J]. Nature Communications, 2014, 5(1): 5714. doi: 10.1038/ncomms6714
    [25] DUY L X, PENG Z, LI Y, et al. Laser-induced graphene fibers[J]. Carbon, 2018, 126: 472-479. doi: 10.1016/j.carbon.2017.10.036
    [26] NASSER J, LIN J, ZHANG L, et al. Laser induced graphene printing of spatially controlled super-hydrophobic/hydrophilic surfaces[J]. Carbon, 2020, 162: 570-578. doi: 10.1016/j.carbon.2020.03.002
    [27] WANG Y, WANG G, HE M, et al. Multifunctional laser-induced graphene papers with combined defocusing and grafting processes for patternable and continuously tunable wettability from superlyophilicity to superlyophobicity[J]. Small, 2021, 17(42): 2103322. doi: 10.1002/smll.202103322
    [28] SONG W L, CAO M S, QIAO B B, et al. Nano-scale and micron-scale manganese dioxide vs corresponding paraffin composites for electromagnetic interference shielding and microwave absorption[J]. Materials Research Bulletin, 2014, 51: 277-286. doi: 10.1016/j.materresbull.2013.12.042
    [29] ZHAO G, WANG F, ZHANG Y, et al. High-performance hydrogen peroxide micro-sensors based on laser-induced fabrication of graphene@Ag electrodes[J]. Applied Surface Science, 2021, 565(1): 150565.
    [30] 崔梦雅, 黄婷, 肖荣诗. 基于纳米颗粒热效应的飞秒激光高效直写金属铜微结构[J]. 中国激光, 2022, 8(49): 0802015.

    CUI Mengya, HUANG Ting, XIAO Rongshi. Femtosecond laser direct writing of copper microstructures with high efficiency via thermal effect of nanoparticles[J]. Chinese Journal of Lasers, 2022, 8(49): 0802015(in Chinese).
    [31] SHEN H, LIU J, PAN P, et al. One-step synthesis of nanosilver embedding laser-induced graphene for H2O2 sensor[J]. Synthetic Metals, 2023, 293: 117235. doi: 10.1016/j.synthmet.2022.117235
    [32] DONG Z, PENG Y, TAN Z, et al. Simultaneously enhanced electrical conductivity and strength in Cu/graphene/Cu sandwiched nanofilm[J]. Scripta Materialia, 2020, 187: 296-300. doi: 10.1016/j.scriptamat.2020.06.051
    [33] 马来鹏, 任文才, 成会明. 表面电荷转移掺杂石墨烯的研究进展[J]. 物理化学学报, 2022, 38(1): 2012080.

    MA Laipeng, REN Wencai, CHENG Huiming. Progress in surface charge transfer doping of graphene[J]. Acta Physco-Chimica Sinica, 2022, 38(1): 2012080(in Chinese).
    [34] RYU S H, PARK B, HAN Y K, et al. Electromagnetic wave shielding flexible films with near-zero reflection in the 5G frequency band[J]. Journal of Materials Chemistry A, 2022, 10(8): 4446-4455. doi: 10.1039/D1TA10065C
  • 加载中
图(10)
计量
  • 文章访问数:  211
  • HTML全文浏览量:  201
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-11
  • 修回日期:  2023-12-05
  • 录用日期:  2023-12-12
  • 网络出版日期:  2023-12-21
  • 刊出日期:  2024-08-15

目录

    /

    返回文章
    返回