留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑温度影响的Ⅳ型储氢瓶多尺度爆破失效仿真

鲍官军 俞鸣越 祝颖丹 虞筱琛 陈刚 杨树军

鲍官军, 俞鸣越, 祝颖丹, 等. 考虑温度影响的Ⅳ型储氢瓶多尺度爆破失效仿真[J]. 复合材料学报, 2024, 42(0): 1-12.
引用本文: 鲍官军, 俞鸣越, 祝颖丹, 等. 考虑温度影响的Ⅳ型储氢瓶多尺度爆破失效仿真[J]. 复合材料学报, 2024, 42(0): 1-12.
BAO Guanjun, YU Mingyue, ZHU Yingdan, et al. Multiscale burst failure of type IV hydrogen storage vessels considering the influence of temperature[J]. Acta Materiae Compositae Sinica.
Citation: BAO Guanjun, YU Mingyue, ZHU Yingdan, et al. Multiscale burst failure of type IV hydrogen storage vessels considering the influence of temperature[J]. Acta Materiae Compositae Sinica.

考虑温度影响的Ⅳ型储氢瓶多尺度爆破失效仿真

基金项目: “科创甬江2035”关键技术突破计划项目(2024Z241);宁波市科技创新2025重大专项(2020Z030)
详细信息
    通讯作者:

    祝颖丹, 博士, 研究员, 博士生导师, 研究方向为复合材料设计、制造和装备技术等基础研究与应用 E-mail: y.zhu@nimte.ac.cn

    虞筱琛, 硕士, 研究方向为复合材料结构设计与仿真 E-mail: yuxiaochen@nimte.ac.cn

  • 中图分类号: TB332

Multiscale burst failure of type IV hydrogen storage vessels considering the influence of temperature

Funds: The “Innovation Yongjiang 2035” Key R&D Program (2024Z241); Ningbo Key Projects of Science and Technology Innovation 2025 Plan (2020Z030)
  • 摘要: Ⅳ型储氢瓶已成为最具潜力的车载储能装备之一,在快速充装及服役过程中储氢瓶会产生显著温升效应或面临环境温度变化,深入研究该工况下储氢瓶的爆破失效行为对提高其安全使用具有重要意义。本文基于微观失效理论,建立了稳态传热模型、微观力学模型和热力耦合模型,发展了一种考虑温度影响的多尺度爆破失效仿真分析方法,研究了25~85℃范围内温度上升对Ⅳ型储氢瓶爆破失效行为的影响。结果表明,纤维损伤是导致IV型储氢瓶爆破失效的主要原因,预测得到室温下储氢瓶的爆破压力和爆破失效发生位置与试验结果吻合;随着温度的上升,不均匀的温度分布和热膨胀产生了热压应力,与压力载荷产生的拉应力部分抵消,降低了储氢瓶组分的损伤扩展速度,同时复合材料缠绕层的强度下降,储氢瓶的爆破压力降低。其中,外壁面或内壁面温度从室温上升至85℃时,纤维初始损伤发生时载荷分别下降了27.5%和12.1%,最终爆破压力分别下降了12.5%和4.6%。

     

  • 图  1  基于能量的线性软化准则

    Figure  1.  Energy based linear softening law

    图  2  Ⅳ型储氢瓶几何尺寸

    Figure  2.  Geometric dimensions of the type Ⅳ hydrogen storage vessel

    图  3  T700碳纤维/环氧树脂复合材料热膨胀系数及基体强度随温度变化曲线

    Figure  3.  Temperature dependent curve of thermal expansion coefficient of the T700 carbon fiber/epoxy composite and tensile of matrix

    图  4  储氢瓶多尺度爆破失效分析计算流程图

    Figure  4.  Flow chart for multiscale burst failure analysis of the hydrogen storage vessel

    图  5  微观力学模型关键点分布以及单位载荷下应力分布

    Figure  5.  Key points distribution and stress distribution under unit load in micromechanics model

    图  6  70 MPa压力载荷下储氢瓶应力分布:(a)接头;(b)内衬;(c)缠绕层

    Figure  6.  Stress distribution of the hydrogen storage vessel under 70 MPa pressure: (a) Boss; (b) Liner; (c) Winding layers

    图  7  基体损伤扩展

    Figure  7.  Progressive failure of matrix

    图  8  纤维损伤扩展

    Figure  8.  Progressive failure of fiber

    图  9  储氢瓶轴向载荷-位移曲线

    Figure  9.  Axial load-displacement curve of the hydrogen storage vessel

    图  10  爆破试验进水压力曲线

    Figure  10.  Water inlet pressure curve of the burst test

    图  11  爆破后的储氢瓶

    Figure  11.  Hydrogen storage vessel after burst

    图  12  储氢瓶稳态温度分布:(a)内壁面85℃;(b)外壁面85℃

    Figure  12.  Steady-state temperature distribution of the hydrogen storage vessel: (a) Inner wall surface 85℃; (b) Outer wall surface 85℃

    图  13  不同温度下储氢瓶各部分热应力

    Figure  13.  Thermal stress in each part of the hydrogen storage vessel under different temperatures

    图  14  复合材料缠绕层热应力分布:(a)S11;(b)S22

    Figure  14.  Thermal stress distribution of composite layers: (a) S11; (b) S22

    图  15  不同温度下储氢瓶轴向载荷-位移曲线

    Figure  15.  Axial load-displacement curve of the hydrogen storage vessel under different temperature

    图  16  不同温度下储氢瓶纤维初始损伤

    Figure  16.  Fiber damage initiation of the hydrogen storage vessel under different temperature

    图  17  不同温度下储氢瓶的爆破压力

    Figure  17.  The burst pressure of the vessel under different temperature

    表  1  铝合金6061和PA6材料参数

    Table  1.   Materials properties of alloy 6061 and PA6

    Properties 6061-T6 PA6
    Modulus /GPa 68.90 1.88
    Poisson’s ratio 0.33 0.38
    Yield Strength /MPa 284.89 39.78
    Break Elongation /% 20 104
    Density /(g·cm−3) 2.75 1.08
    Conductivity /(W·(m·K)−1) 180.00 3.01
    Specific heat /(J·(kg·K) -1) 896.00 1750.00
    Expansion /(10−6·K−1) 23.60 106.00
    下载: 导出CSV

    表  2  常温下T700碳纤维/环氧树脂复合材料参数

    Table  2.   Materials properties of the T700 carbon fiber/epoxy composite at room temperature

    Properties Ply (T700-Epoxy) Fiber
    (T700)
    Matrix
    (Epoxy)
    Longitudinal modulus E1/GPa 142.00 232.00 3.50
    Transverse moduli E2=E3/GPa 10.30 18.00 3.50
    Shear modulus G12=G13/GPa 7.10 8.70 1.25
    Shear modulus G23/GPa 3.80 5.80 1.25
    Poisson’s ratio υ1213 0.25 0.20 0.35
    Poisson’s ratio υ23 0.42 0.49 0.35
    Tensile strength /GPa XT =2.50,
    YT =0.06
    Tf =4.90 Tm =0.11
    Compressive strength /GPa XC =1.25,
    YC =0.19
    Cf =2.50 Cm =0.24
    Toughness /(N·mm−1) - Gfc =106.00 Gnc =0.28,
    Gsc =0.79
    Density /(g·cm−3) 1.53 2.75 1.17
    Conductivity /(W·(m·K)−1) 14.61 180.00 1.84
    Specific heat /(J·(kg·K)−1) 972.20 896.00 1330.00
    Expansion/(10−6·K−1) $ {\alpha }_{1} $ =5.78,
    $ {\alpha }_{2} $ =0.19
    $ {\alpha }_{1\mathrm{f}} $ =2.50,
    $ {\alpha }_{2\mathrm{f}} $ =0.00
    12.90
    Notes: 1−Direction of fiber; 2−In-plane direction of the matrix; 3−Out-plane direction of the matrix.
    下载: 导出CSV
  • [1] AIR A, SHAMSUDDOHA M, GANGADHARA PRUSTY B. A review of type V composite pressure vessels and automated fibre placement based manufacturing[J]. Composites Part B: Engineering, 2023, 253: 1-17.
    [2] DONG C, LIU Y, LI J, et al. Hydrogen permeability of polyamide 6 used as liner material for type IV on-board hydrogen storage cylinders[J]. Polymers, 2023, 15(18): 1-13.
    [3] LI J, LIU J, ZHAO B, et al. Research on temperature rise of type IV composite hydrogen storage cylinders in hydrogen fast-filling process[J]. Energies, 2023, 16(6): 1-21.
    [4] SAPRE S, VYAS M, PAREEK K. Impact of refueling parameters on storage density of compressed hydrogen storage tank[J]. International Journal of Hydrogen Energy, 2021, 46(31): 16685-16692. doi: 10.1016/j.ijhydene.2020.08.136
    [5] 刘峻. 结构参数对车载储氢气瓶快充温升的影响规律研究[D]. 杭州: 浙江大学, 2021.

    LIU Jun. The study on the effects of geometrical parameters on temperature rise in on-board gaseous hydrogen storage cylinder during the fast filling process [D]. Hangzhou: Zhejiang University, 2021 (in Chinese).
    [6] 邹光雄, 寇文能, 涂成林, 等. 高温环境对汽车制动的影响[J]. 汽车文摘, 2019, (7): 42-45.

    Zhou Guangxiong, Guan Wenneng, Tu Chenglin, et al. Influence of high temperature environment on automobile braking system[J]. Automotive Digest, 2019, (7): 42-45 (in Chinese).
    [7] WEI Q, CHEN H, WANG J, et al. Research on temperature rise performance of EV charging coupler[J]. Journal of Physics: Conference Series, 2020, 1626(1): 1-7.
    [8] LEH D, MAGNEVILLE B, SAFFRÉ P, et al. Optimisation of 700 bar type IV hydrogen pressure vessel considering composite damage and dome multi-sequencing[J]. International Journal of Hydrogen Energy, 2015: 1-16.
    [9] Chen Y Z, Zhao S L, Ma H J, et al. Analysis of Hydrogen Embrittlement on Aluminum Alloys for Vehicle-Mounted Hydrogen Storage Tanks: A Review[J]. Metals, 2021, 11(8): 1-23.
    [10] 姚嘉平, 王建, 张谦, 等. Ⅳ型储氢气瓶塑料内胆的失效形式与机理[J]. 塑料, 2023, 52(1): 133-138.

    YAO Jiaping, WANG Jian, ZHANG Qian, et al. Failure modes and mechanism of plastic liner of type Ⅳ hydrogen storage vessel[J]. Plastics, 2023, 52(1): 133-138 (in Chinese).
    [11] 白皛, 乔亮, 范峻铭, 等. Ⅳ型储氢气瓶塑料内胆氢渗透特性及失效分析研究进展[J]. 中国塑料, 2024, 38(1): 62-78.

    BAI Xiao, QIAO Liang, FAN Junming, et al. Research progress in hydrogen permeation characteristics and failure analysis of plastic liner of type IV hydrogen storage vessel[J]. China Plastics, 2024, 38(1): 62-78 (in Chinese).
    [12] BLANC-VANNET P, PAPIN P, WEBER M, et al. Sample scale testing method to prevent collapse of plastic liners in composite pressure vessels[J]. International Journal of Hydrogen Energy, 2019, 44: 8682-8691. doi: 10.1016/j.ijhydene.2018.10.031
    [13] WANG X, TIAN M, CHEN X, et al. Advances on materials design and manufacture technology of plastic liner of type Ⅳ hydrogen storage vessel[J]. International Journal of Hydrogen Energy, 2022, 47(13): 8382-8408. doi: 10.1016/j.ijhydene.2021.12.198
    [14] JIN S, CHENG P, BAI Y, et al. Progressive failure analysis and burst mode study of type IV composite vessels[J]. Ships and Offshore Structures, 2022: 1-10.
    [15] HU Z Y, CHEN M H, ZU L, et al. Investigation on failure behaviors of 70 MPa type IV carbon fiber overwound hydrogen storage vessels[J]. Composite Structure, 2021, 259: 113387-113397. doi: 10.1016/j.compstruct.2020.113387
    [16] BOUVIER M, GUIHENEUF V, JEAN-MARIE A. Modeling and simulation of a composite high-pressure vessel made of sustainable and renewable alternative fibers[J]. International Journal of Hydrogen Energy, 2019, 44(23): 11970-11978. doi: 10.1016/j.ijhydene.2019.03.088
    [17] MAGNEVILLE B, GENTILLEAU B, VILLALONGA S, et al. Modeling, parameters identification and experimental validation of composite materials behavior law used in 700 bar type IV hydrogen high pressure storage vessel[J]. International Journal of Hydrogen Energy, 2015, 40: 13193-13205. doi: 10.1016/j.ijhydene.2015.06.121
    [18] JEBELI M A, HEIDARI-RARANI M. Development of Abaqus WCM plugin for progressive failure analysis of type IV composite pressure vessels based on Puck failure criterion[J]. Engineering Failure Analysis, 2022, 131: 1-15.
    [19] ALAM S, YANDEK G R, Lee R C, et al. Design and development of a filament wound composite overwrapped pressure vessel[J]. Composites Part C: Open Access, 2020, 2: 1-14.
    [20] HWANG J S, KO K H, JUNG G S. Proposal of a short-body hydrogen pressure vessel to assess the burst of long-body/large-capacity vessels[J]. International Journal of Precision Engineering and Manufacturing, 2023, 24(3): 471-483. doi: 10.1007/s12541-022-00757-5
    [21] 鄢家乐, 陈学东, 范志超, 等. 70MPa车载Ⅳ型储氢气瓶铺层设计与实验验证[J]. 西安交通大学学报, 2022, 56(10): 71-80. doi: 10.7652/xjtuxb202210007

    YAN Jiale, CHEN Xuedong, FAN Zhichao et al. Layered design and experimental verification of 70MPa vehicle-mounted type Ⅳ hydrogen storage cylinder[J]. Journal of Xi’an Jiaotong University, 2022, 56(10): 71-80 (in Chinese). doi: 10.7652/xjtuxb202210007
    [22] LEH D, SAFFRÉ P, FRANCESCATO P, et al. A progressive failure analysis of a 700-bar type IV hydrogen composite pressure vessel[J]. International Journal of Hydrogen Energy, 2015, 40(38): 13206-13214. doi: 10.1016/j.ijhydene.2015.05.061
    [23] WU Q, ZU L, WANG P, et al. Design and fabrication of carbon-fiber-wound composite pressure vessel with HDPE liner[J]. International Journal of Pressure Vessels and Piping, 2022, 200: 1-8.
    [24] LI F, CHEN X, XU P, et al. Optimal design of thin-layered composites for type IV vessels: Finite element analysis enhanced by ANN[J]. Thin-walled Structures, 2023, 187: 1-15.
    [25] RAFIEE R, TORABI M A. Stochastic prediction of burst pressure in composite pressure vessels[J]. Composite Structures, 2018, 185: 573-583. doi: 10.1016/j.compstruct.2017.11.068
    [26] GENTILLEAU B, TOUCHARD F, GRANDIDIER J C. Numerical study of influence of temperature and matrix cracking on type IV hydrogen high pressure storage vessel behavior[J]. Composite Structures, 2014, 111: 98-110. doi: 10.1016/j.compstruct.2013.12.034
    [27] 朱国华, 竺森森, 胡珀, 等. CFRP薄壁结构多尺度建模及耐撞性分析[J]. 复合材料学报, 2023, 40(6): 3626-3639.

    ZHU Guohua, ZHU Sensen, HU Po, et al. Multi-scale modeling and crashworthiness analysis of CFRP thin-walled structures[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3626-3639 (in Chinese).
    [28] REN M, ZHANG X, HUANG C, et al. An integrated macro/micro-scale approach for in situ evaluation of matrix cracking in the polymer matrix of cryogenic composite tanks[J]. Composite Structures, 2019, 216: 201-212. doi: 10.1016/j.compstruct.2019.02.079
    [29] NGUYEN B N, ROH H S, MERKEL D R, et al. A predictive modeling tool for damage analysis and design of hydrogen storage composite pressure vessels[J]. International Journal of Hydrogen Energy, 2021, 46(39): 20573-20585. doi: 10.1016/j.ijhydene.2021.03.139
    [30] 刘长喜, 姜旭, 王佳杰, 等. 纤维缠绕复合材料压力容器的多尺度分析与性能预测[J]. 工程塑料应用, 2023, 51(11): 115-122. doi: 10.3969/j.issn.1001-3539.2023.11.019

    Liu Changxi, Jiang Xu, Wang Jiajie, et al. Multiscale analysis and performance prediction of filament-wound composite pressure vessel[J]. Engineering Plastics Application, 2023, 51(11): 115-122 (in Chinese). doi: 10.3969/j.issn.1001-3539.2023.11.019
    [31] ZHANG N, GAO S, SONG M, et al. A multiscale study of CFRP based on asymptotic homogenization with application to mechanical analysis of composite pressure vessels[J]. Polymers, 2022, 14: 1-23.
    [32] LIN S, YANG L, XU H, et al. Progressive damage analysis for multiscale modelling of composite pressure vessels based on Puck failure criterion[J]. Composite Structures, 2021, 255: 1-12.
    [33] HA S K, JIN K K, HUANG Y. Micro-mechanics of failure (MMF) for continuous fiber reinforced composites-All Databases[J]. Journal of Composite Materials, 2008, 41(18): 1873-1895.
    [34] WANG L, ZHENG C, WEI S, et al. Micromechaics-based progressive failure analysis of carbon fiber/epoxy composite vessel under combined internal pressure and thermomechanical loading[J]. Composites Part B: Engineering, 2016, 89: 77-84. doi: 10.1016/j.compositesb.2015.11.018
    [35] JIN K K, YUANCHEN H, LEE Y H, et al. Distribution of micro stresses and interfacial tractions in unidirectional composites[J]. Journal of Composite Materials, 2008, 42(18): 1825-1849. doi: 10.1177/0021998308093909
    [36] 全国绝热材料标准化技术委员会. 绝热材料稳态热阻及有关特性的测定 防护热板法. GB/T 10294-2008[S]. 北京: 中国标准出版社, 2008.

    National Technical Committee 191 on Thermal Insulation Materials of Standardization Administration of China. Thermal insulation-Determination of steady-state thermal resistance and related properties-Guarded hot plate apparatus. GB/T 10294-2008[S]. Beijing: Standards Press of China, 2008 (in Chinese).
    [37] ASTM, Standard Test Method for Determining Specific Heat Capacity by Differential Scanning Calorimetry, ASTM E1269-11[S]. West Conshohocken, 2018.
    [38] International Organization for Standardization. Plastics-Thermomechanical analysis (TMA)- Part 2: Determination of coefficient of linear thermal expansion and glass transition temperature: ISO 11359-2[S]. Switzerland, 2005.
    [39] 全国纤维增强塑料标准化技术委员会. 树脂浇铸体性能试验方法: GB/T 2567-2021[S]. 北京: 中国标准出版社, 2021.

    National Technical Committee 39 on Fiber Reinforced Plastic of Standardization Administration of China. Test methods for properties of resin casting body: GB/T 2567-2021[S]. Beijing: China Standards Press, 2021 (in Chinese).
    [40] 全国气瓶标准化技术委员会. 车用压缩氢气纤维全缠绕气瓶定期检验与评定: GB/T 42626-2023[S]. 北京: 中国标准出版社, 2023.

    National Technical Committee 31 on Cylinder of Standardization Administration of China. Periodic inspection and evaluation of fully wrapped fibre reinforced composite gas cylinders of compressed hydrogen gas for automotive vehicles: GB/T 42626-2023[S]. Beijing: China Standards Press, 2023 (in Chinese).
    [41] 王亮. 基于微观力学分析的复合材料储氢容器强度与寿命研究[D]. 杭州: 浙江大学, 2016.

    Wang Liang, Micromechanics-based failure theory for strength and life investigation of carbon fiber-reinforced composite hydrogen storage vessel[D]. Hangzhou: Zhejiang University, 2016 (in Chinese).
    [42] SIMONOVSKI I, BARALDI D, MELIDEO D, et al. Thermal simulations of a hydrogen storage tank during fast filling[J]. International Journal of Hydrogen Energy, 2015, 40(36): 12560-12571. doi: 10.1016/j.ijhydene.2015.06.114
    [43] IMMEL R, MACK-GARDNER A. Development and validation of a numerical thermal simulation model for compressed hydrogen gas storage tanks[J]. SAE International Journal of Engines, 2011, 4(1): 1850-1861. doi: 10.4271/2011-01-1342
    [44] 全国气瓶标准化技术委员会. 车用压缩氢气塑料内胆碳纤维全缠绕气瓶: GB/T 42612-2023[S]. 北京: 中国标准出版社, 2023.

    National Technical Committee 31 on Cylinder of Standardization Administration of China. Fully-wrapped carbon fiber reinforced cylinders with a plastic liner for the on-board storage of compressed hydrogen as a fuel for land vehicles: GB/T 42612-2023[S]. Beijing: China Standards Press, 2023 (in Chinese).
  • 加载中
计量
  • 文章访问数:  64
  • HTML全文浏览量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-30
  • 修回日期:  2024-07-01
  • 录用日期:  2024-07-15
  • 网络出版日期:  2024-07-30

目录

    /

    返回文章
    返回