留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁性核壳结构Fe3O4@SiO2@TiO2-Au的制备及其光催化还原性能

郭小华 马剑琪

郭小华, 马剑琪. 磁性核壳结构Fe3O4@SiO2@TiO2-Au的制备及其光催化还原性能[J]. 复合材料学报, 2024, 42(0): 1-11.
引用本文: 郭小华, 马剑琪. 磁性核壳结构Fe3O4@SiO2@TiO2-Au的制备及其光催化还原性能[J]. 复合材料学报, 2024, 42(0): 1-11.
GUO Xiaohua, MA Jianqi. Fabrication of Magnetic Fe3O4@SiO2@TiO2-Au with Core-shell Structure and Its Photocatalytic Reduction Activity[J]. Acta Materiae Compositae Sinica.
Citation: GUO Xiaohua, MA Jianqi. Fabrication of Magnetic Fe3O4@SiO2@TiO2-Au with Core-shell Structure and Its Photocatalytic Reduction Activity[J]. Acta Materiae Compositae Sinica.

磁性核壳结构Fe3O4@SiO2@TiO2-Au的制备及其光催化还原性能

基金项目: 陕西省自然科学基金(20210302123102)
详细信息
    通讯作者:

    马剑琪,博士,教授,研究方向:环境催化 E-mail: jianqima@126.com

  • 中图分类号: O644; TB332

Fabrication of Magnetic Fe3O4@SiO2@TiO2-Au with Core-shell Structure and Its Photocatalytic Reduction Activity

Funds: Natural Science Foundation of Shaanxi Province (20210302123102)
  • 摘要: TiO2基的光催化剂已被广泛用于各种有机物污染物的光氧化和水中六价铬Cr(VI)的光还原。然而,对光催化还原硝基芳香化合物为胺基芳香化合物的研究鲜有报道。本研究采用液相沉积(LPD)法将锐钛矿型TiO2沉积在非晶SiO2包覆的Fe3O4上,制备了核壳结构的Fe3O4@SiO2@TiO2磁性光催化剂。为进一步提高其光催化活性,将均匀分散的Au纳米粒子(Au NPs)修饰在其表面,以获得Fe3O4@SiO2@TiO2-Au纳米复合材料。对这两种TiO2基的磁性复合材料进行表征并将其用作光催化剂。在紫外光照射下,用HCOONH4作为空穴捕集剂和H源,以对硝基苯胺(p-NA)光催化还原至对苯二胺(p-PDA)作为模型反应,评价其光催化还原性能。结果表明,虽然两种光催化剂都能将p-NA完全还原成p-PDA,但Fe3O4@SiO2@TiO2-Au表现出比Fe3O4@SiO2@TiO2更优异的光催化活性。这是因为TiO2表面修饰的Au NPs能有效地促进光激发的电子从TiO2的导带转移到Au,最大限度地减少电子和空穴的复合率,延长光电子的寿命。此外,不可或缺的HCOONH4在p-NA的光催化还原中能有效地捕获光生空穴,及大地提高了其光催化还原效率。

     

  • 图  1  磁性Fe3O4@SiO2@TiO2-Au核壳结构微球的组装流程图

    Figure  1.  Schematic diagram for fabricating magnetic Fe3O4@SiO2@TiO2-Au microspheres with core-shell structure

    图  2  Fe3O4 (a,b), Fe3O4@SiO2 (c,d), Fe3O4@SiO2@TiO2 (e,f), Au-seed-decorated Fe3O4@SiO2@TiO2 (g) 和 Fe3O4@SiO2@TiO2-Au (h,i)的不同放大倍数的透射电镜照片; the deposited TiO2 and Au NPs on Fe3O4@SiO2 (j)的高分辨透射电镜照片

    Figure  2.  TEM images with different magnifications: Fe3O4 (a,b), Fe3O4@SiO2 (c,d), Fe3O4@SiO2@TiO2 (e,f), Au-seed-decorated Fe3O4@SiO2@TiO2 (g), Fe3O4@SiO2@TiO2-Au (h,i) and HRTEM of the deposited TiO2 and Au NPs on Fe3O4@SiO2 (j).

    图  3  Fe3O4@SiO2@TiO2-Au复合物的扫描透射照片(a),元素谱分布图(b)-(f),样品的能量色散谱(g)

    Figure  3.  (a) STEM of a single sphere Fe3O4@SiO2@TiO2-Au, a series of EDS elemental mapping images (Fe, Si, Ti, O and Au) (b)-(f), its corresponding EDX spectrum (g)

    图  4  Fe3O4, Fe3O4@SiO2, Fe3O4@SiO2@TiO2 和 Fe3O4@ SiO2@TiO2-Au的XRD谱图:F, T 和A分别表示Fe3O4, TiO2和Au的特征衍射峰。

    Figure  4.  XRD patterns of Fe3O4, Fe3O4@SiO2, Fe3O4@SiO2 @TiO2 and Fe3O4@SiO2@TiO2-Au. F, T and A represent the diffraction peaks of Fe3O4, TiO2, and Au, respectively

    图  5  Fe3O4@SiO2@TiO2-Au的XPS全谱(a)和组成元素的高分辨XPS谱:Fe 2 p (b), Ti 2 p (c)和Au 4 f (d)

    Figure  5.  XPS survey spectra of composite survey (a) and high-resolution spectra of Fe 2 p (b), Ti 2 p (c) and Au 4 f (d) in the sample

    图  6  Fe3O4, Fe3O4@SiO2, Fe3O4@SiO2@TiO2和 Fe3O4@ SiO2@TiO2-Au的室温磁滞洄线

    Figure  6.  Room-temperature magnetization hysteresis loops of Fe3O4, Fe3O4@SiO2, Fe3O4@SiO2@TiO2 and Fe3O4@SiO2 @TiO2-Au.

    图  7  Fe3O4@SiO2@TiO2-Au和Fe3O4@SiO2@TiO2-Au紫外-可见漫反射光谱(a),能带图(b)

    Figure  7.  UV-Vis diffuse reflectance spectra of Fe3O4@SiO2@TiO2-Au and Fe3O4@SiO2@TiO2-Au (a), band gap energies of Fe3O4@SiO2@TiO2-Au and Fe3O4@SiO2@TiO2-Au (b)

    图  8  Fe3O4@SiO2@TiO2 和 Fe3O4@SiO2@TiO2-Au分别在有HCOONH4 (a,b)和无HCOONH4 (c,d)条件下光催化还原p-NA的UV-Vis谱图(p-NA: 20 mg·L−1,HCOONH4: 800 mg·L−1,催化剂: 50 mg)

    Figure  8.  UV-vis absorption spectra of the p-NA aqueous solution under UV irradiation catalyzed by Fe3O4@SiO2@TiO2 (a,c) in both the presence and the absence of HCOONH4 and Fe3O4@SiO2@TiO2-Au (b,d) in both the presence and the absence of HCOONH4, respectively.(p-NA: 20 mg·L−1, HCOONH4: 800 mg·L−1,catalyst: 50 mg)

    图  9  金纳米粒子和TiO2之间的电荷转移和紫外光照下Fe3O4@SiO2@TiO2-Au催化还原p-NA的机制示意图

    Figure  9.  Schematic diagram indicating the charge transfer between Au NPs and TiO2 (EF: Fermi level of Au) and the mechanism for reduction of p-NA over the Fe3O4@SiO2@TiO2-Au photocatalyst under UV light irradiation.

    图  10  用HCOONH4作为空穴捕获剂,Fe3O4@SiO2@TiO2-Au光催化剂的循环使用性能测试

    Figure  10.  The reusability of Fe3O4@SiO2@TiO2-Au photocata- lyst using HCOONH4 as hole scavenger. The duration of UV irradiation in each cycle is 50 min

  • [1] AHMED A, SANDLER S I. Hydration free energies of multifunctional nitroaromatic compounds[J]. Journal of Chemical Theory and Compution, 2013, 9(6): 2774-2785. doi: 10.1021/ct3011002
    [2] ALINA G, SÜHNHOLZ S, GEORGI A, et al. Fe-zeolites for the adsorption and oxidative degradation of nitroaromatic compounds in water[J]. Journal of Hazardous Materials, 2023, 459: 132125. doi: 10.1016/j.jhazmat.2023.132125
    [3] BILAL M, BAGHERI A R, BHATT P, et al. En vironmental occurrence, toxicity concerns, and remediation of recalcitrant nitroaromatic compounds[J]. Journal of Environmental Management, 2021, 291: 112685 doi: 10.1016/j.jenvman.2021.112685
    [4] HIDALGO A M, LEÓN G, GÓMEEZ M, MURCIA M D, et al. Behaviour of RO90 membrane on the removal of 4-nitrophenol and 4-nitroaniline by low pressure reverse osmosis[J]. Journal of Water Process Engineering, 2015, 7: 169-175. doi: 10.1016/j.jwpe.2015.06.007
    [5] ZHU C C, HUANG H N, CHEN Y G. Recent advanc es in biological removal of nitroaromatics from wastewater[J]. Environmental Pollution 2022, 307 : 119570
    [6] 殷月月, 杨 勇, 张良柱, 等. 金/钯哑铃状纳米晶的制备及其催化对硝基苯酚还原研究[J]. 无机材料学报, 2018, 33(1): 19-26 doi: 10.15541/jim20170146

    YIN Y Y, YANG Y, ZHANG L Z, et al. Facile Synthesis of Au/Pd nano-dumbells for catalytic reduction of p-nitrophenol[J]. Journal of Inorganic Materials, 2018, 33(1): 19-26. (in chinese doi: 10.15541/jim20170146
    [7] YANG M Q, PAN X Y, ZHANG N, et al. A facile one-step way to anchor noble metal (Au, Ag, Pd) nanoparticles on a reduced graphene oxide mat with catalytic activity for selective reduction of nitroaromatic compounds[J]. CrystEngComm, 2013, 15(34): 6819-6828. doi: 10.1039/c3ce40694f
    [8] LUO P F, XU K L, ZHANG R, et al. Highly effi cient and selective reduction of nitroarenes with hydrazine over supported rhodium nanoparticles[J]. Catalysis Science & Technology, 2012, 2(2): 301-304.
    [9] FOUNTOULAKI S, DAIKOPOULOU V, GKIZIS P L, et al. Mechanistic studies of the reduction of nitroarenes by NaBH4 or hydrosilanes catalyzed by supported gold nanoparticles[J]. ACS Catalysis, 2014, 4(10): 3504-3511. doi: 10.1021/cs500379u
    [10] GONG Y Z, YANG C, JI H W, et al. Aqueous oxidations started by TiO2 photoinduced holes can be a rate-determining step[J]. Chemistry-An Asian Journal, 2017, 12(16): 2048-2051. doi: 10.1002/asia.201700658
    [11] PAN D L, HAN Z Y, MIAO Y C, et al. Ther- mally stable TiO2 quantum dots embedded in SiO2 foams: characterization and photocatalytic H2 evolution activity[J]. Applied Catalysis B:Environmental, 2018, 229: 130-138. doi: 10.1016/j.apcatb.2018.02.022
    [12] YANG Y, WANG G Z, Deng Q, et al. Micro wave-assisted fabrication of nanoparticulate TiO2 microspheres for synergistic photocatalytic removal of Cr(VI) and methyl orange[J]. ACS Applied Materials & Interfaces, 2014, 6(4): 3008-3015.
    [13] LI W, WU Z X, WANG J X, et al. A perspective on mesoporous TiO2 materials[J]. Chemistry of Materials, 2014, 26(1): 287-298. doi: 10.1021/cm4014859
    [14] LIU Q, QIU W, WU P, et al. Low-temperature ammonia oxidation in a microchannel reactor with wall-loaded X(X = Pt, Pd, Rh, PtPdRh)/TiO2 nanotube catalysts[J]. Industrial & Engineering Chemistry Research, 2019, 58(23): 9819-9828
    [15] HUSSAIN M, AHMAD M, NISAR A, et al. Enhanced photocatalytic and electrochemical properties of Au nanoparticles supported TiO2 microspheres, New Journal of Chemistry, 2014, 38 (4): 1424-1432.
    [16] 龚新怀, 李明春, 杨坤, 等. 纳米Fe3O4@茶渣/海藻酸钙磁性复合材料制备及其对亚甲基蓝的吸附性能与吸附机制[J]. 复合材料学报, 2021, 38(02): 424-438.

    GONG X H , LI M C, YANG K, et al. Preparation of nano-Fe3O4@tea waste/calcium alginate magnetic composited bead and it’s adsorption characteristics and mechanisms for methylene blue from aqueous solution.[J]. Acta Materiae Compositae Sinica, 2021, 38(02): 424-438 (in Chinese).
    [17] 梁艳莉, 马剑琪, 郭少波. CoFe2O4@PDA@Pt核壳型磁性复合材料的制备及催化性能. 复合材料学报[J]. 2021, 38(05): 1551-1557.

    LIANG Y L , MA J Q, GUO S B. Preparation and catalytic properties of CoFe2O4@PDA@Pt magnetic composite with core shell structure[J]. Acta Materiae Compositae Sinica, 2021, 38(05): 424-438 (in Chinese).
    [18] 方丽, 罗琨. Fe3O4@Ag3PO4光催化剂可见光降解盐酸环丙沙星的研究[J]. 水处理技术, 2022, 48(12): 71-76.

    FANG L, LUO K. Photocatalytic Degradation of Ciprofloxacin Hydrochloride by Fe3O4@Ag3PO4 under Visible-Light Irradiation[J]. Technology of Water Treatment, 2022, 48(12): 71-76. (in chinese
    [19] JIN S, PARK E, GUO S, et al. Process monitor- ing of photocatalytic degradation of 2, 4-dinitrotoluene by Au-decorated Fe3O4@TiO2 nanoparticles: surface-enhanced Raman scattering method[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2022, 275: 121155. doi: 10.1016/j.saa.2022.121155
    [20] LI C Y, YOUNESI R, CAI Y L, et al. Photo- catalytic and antibacterial properties of Au-decorated Fe3O4@mTiO2 core-shell microspheres[J]. Applied Catalysis B:Environmental, 2014, 156-157: 314-322. doi: 10.1016/j.apcatb.2014.03.031
    [21] CHI Y, YUAN Q, Li Y J, et al. Magnetically separable Fe3O4@SiO2@TiO2-Ag microspheres with well-designed nanostructure and enhanced photocatalytic activity[J]. Journal of Hazardous Materials, 2013, 262: 404-411. doi: 10.1016/j.jhazmat.2013.08.077
    [22] LI X Y, LIU D P, Song S Y, et al. Fe3O4@SiO2@TiO2@Pt Hierarchical core-shell microspheres: controlled synthesis, enhanced degradation system, and rapid magnetic separation to recycle[J]. Crystal Growth & Design, 2014, 14(11): 5506-5511.
    [23] MA D W, SCHNEIDER J, LEE W I, et al. Controlla ble synthesis and self-template phase transition of hydrous TiO2 colloidal spheres for photo/electrochemical applications[J]. Advances in Colloid and Interface Science, 2021, 295: 102493. doi: 10.1016/j.cis.2021.102493
    [24] BEYDOUM D, AMAL R, LOW G, et al. Oc currence and prevention of photodissolution at the phase junction of magnetite and titanium dioxide[J]. Journal of Molecular Catalysis A:Chemical, 2002, 180(1-2): 193-200. doi: 10.1016/S1381-1169(01)00429-0
    [25] KALIDINDI S B, JAGIRDAR B R. Nanocatal- ysis and prospects of green chemistry[J]. ChemSusChem, 2012, 5(1): 65-75. doi: 10.1002/cssc.201100377
    [26] CHENG C M, WEN Y H, XU X F, et al. Tuna ble synthesis of carboxyl-functionalized magnetite nanocrystal clusters with uniform size[J]. Journal of Materials Chemistry, 2009, 19(46): 8782-8788. doi: 10.1039/b910832g
    [27] MA J Q, GUO S B, Guo X H, et al. Liquid-phase deposition of TiO2 nanoparticles on core-shell Fe3O4@SiO2 spheres: preparation, characterization, and photocatalytic activity[J]. Journal of Nanoparticle Research, 2015, 17(7): 307. doi: 10.1007/s11051-015-3107-1
    [28] JANA N R, GEARHEART L, MURPHY C J. Seeding growth for size control of 5-40 nm diameter gold nanoparticles[J]. Langmuir, 2001, 17(22): 6782-6786. doi: 10.1021/la0104323
    [29] ZHANG Y Y, GUO S B, MA J Q, et al. Prepara tion, characterization, catalytic performance and antibacterial activity of Ag photodeposited on monodisperse ZnO submicron spheres[J]. Journal of Sol-Gel Science and Technology, 2014, 72(1): 171-178. doi: 10.1007/s10971-014-3440-3
    [30] LI G, BAI R B, ZHAO X S. Coating of TiO2 thin films on the surface of SiO2 microspheres: toward industrial photocatalysis[J]. Industrial & Engineering Chemistry research, 2008, 47(21): 8228-8232.
    [31] CHIU C Y, CHUNG P J, Lao K U, et al. Facet-dependent catalytic activity of gold nanocubes, octahedra, and rhombic dodecahedra toward 4-nitroaniline reduction[J]. Journal of Physical Chemistry C, 2012, 116(44): 23757-23763. doi: 10.1021/jp307768h
    [32] WU W, WEN L, SHEN L, et al. A new insight into the photocatalytic reduction of 4-nitroaniline to p-phenylenediamine in the presence of alcohols[J]. Applied Catalysis B: Environmental, 2013, 130–131: 163-167.
    [33] YAMAMOTO Y, FUKUI M, TANAKA A, et al. Hydrogen- and noble metal-free conversion of nitro aromatics to amino aromatics having reducible groups over an organically modified TiO2 photocatalyst under visible light irradiation[J]. Catalysis Science & Technology, 2019, 9(4): 966-973.
    [34] FUKUI M, KOSHIDA W, TANAKA A, et al. Photocatalytic hydrogenation of nitrobenzenes to anilines over noble metal-free TiO2 utilizing methylamine as a hydrogen donor[J]. Applied Catalysis B:Environmental, 2020, 268: 118446. doi: 10.1016/j.apcatb.2019.118446
    [35] CHENTHAMARKSHAN C R, RAJESHWAR K, WOLFRUM E R. Heterogeneous photocatalytic reduction of Cr(VI) in UV-irradiated titania suspensions: effect of protons, ammonium ions, and other interfacial aspects[J]. Langmuir, 2000, 16(6): 2715-2721. doi: 10.1021/la9911483
    [36] JAKOB M, LEVANON H, KAMAT P V. Charge distribution between UV-irradiated TiO2 and gold nanoparticles: determination of shift in the Fermi level[J]. Nano Letters, 2003, 3(3): 353-358. doi: 10.1021/nl0340071
    [37] VANDARKUZHALI S A A, PUGAZHENTHIR- ANN, MANGALARAJA R V, et al. Ultrasmall plasmonic nanoparticles decorated hierarchical mesoporous TiO2 as an efficient photocatalyst for photocatalytic degradation of textile dyes[J]. ACS Omega, 2018, 3(3): 9834-9845.
  • 加载中
计量
  • 文章访问数:  149
  • HTML全文浏览量:  119
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-20
  • 修回日期:  2023-12-26
  • 录用日期:  2024-01-05
  • 网络出版日期:  2024-01-31

目录

    /

    返回文章
    返回