留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cu2O/CuO-四环素复合材料的协同抑菌性能

吴迎花 陈惠惠 房迅 季晓晖 郭少波 徐海涛 李利华

吴迎花, 陈惠惠, 房迅, 等. Cu2O/CuO-四环素复合材料的协同抑菌性能[J]. 复合材料学报, 2023, 40(12): 6789-6799. doi: 10.13801/j.cnki.fhclxb.20230417.004
引用本文: 吴迎花, 陈惠惠, 房迅, 等. Cu2O/CuO-四环素复合材料的协同抑菌性能[J]. 复合材料学报, 2023, 40(12): 6789-6799. doi: 10.13801/j.cnki.fhclxb.20230417.004
WU Yinghua, CHEN Huihui, FANG Xun, et al. Synergistic antibacterial study of Cu2O/CuO-tetracycline composites[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6789-6799. doi: 10.13801/j.cnki.fhclxb.20230417.004
Citation: WU Yinghua, CHEN Huihui, FANG Xun, et al. Synergistic antibacterial study of Cu2O/CuO-tetracycline composites[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6789-6799. doi: 10.13801/j.cnki.fhclxb.20230417.004

Cu2O/CuO-四环素复合材料的协同抑菌性能

doi: 10.13801/j.cnki.fhclxb.20230417.004
基金项目: 陕西省教育厅重点研究项目(21JS002);陕西省教育厅科研项目(20JS017);陕西省自然科学基金(2023-JC-QN-0162;2022JQ-148);陕西省教育厅项目(22JK0311);陕西理工大学基础研究基金(SLGKYXM2208)
详细信息
    通讯作者:

    季晓晖,博士,教授,硕士生导师,研究方向为天然产物提取和有机合成 E-mail: slgjxh@163.com

    郭少波,硕士,讲师,研究方向为生物材料 E-mail: 545366954@qq.com

  • 中图分类号: TB333

Synergistic antibacterial study of Cu2O/CuO-tetracycline composites

Funds: Key Research Projects of the Education Department of Shaanxi Province (21JS002); Scientific Research Projects of the Education Department of Shaanxi Province (20JS017); Shaanxi Provincial Natural Science Foundation (2023-JC-QN-0162; 2022JQ-148); Shaanxi Provincial Department of Education Project (22JK0311); Fundamental Research Funds of Shaanxi University of Technology (SLGKYXM2208)
  • 摘要: 耐药细菌快速的增长和新治疗策略的可用性越来越少,迫使人们急需研发出新型抑菌剂来解决这类难题。本文以三水硝酸铜[Cu(NO3)2·3H2O]为原料、水合肼为还原剂制备氧化亚铜(Cu2O/CuO),通过与四环素配位结合得到Cu2O/CuO-四环素复合材料。采用TEM、EDS、XRD、XPS、FTIR和UV-vis等表征技术对抑菌剂进行系统表征。探究了Cu2O/CuO-四环素复合材料对革兰氏阳性菌金黄色葡萄球菌(S. aureus)、革兰氏阴性菌大肠杆菌(E. coli)和耐药菌沙门氏菌(T-Salmonella)的抑菌性能及抑菌机制。抑菌性能结果表明:抑菌浓度为150 µg/mL的Cu2O/CuO-四环素复合材料在80 min时对E. coliS. aureusT-Salmonella的抑菌率均达到99.99%;与单独使用四环素和Cu2O/CuO相比,Cu2O/CuO-四环素复合材料对E. coli的抑菌效率分别提高了2.50和1.38倍,对S. aureus分别提高了1.58和1.18倍及对T-Salmonella分别提高1.26和1.12倍,总而言之,Cu2O/CuO-四环素复合材料对E. coli最敏感。抑菌机制表明,该复合材料能有效破坏细菌细胞壁,使膜通透性发生改变,最终使细菌破裂死亡。Cu2O/CuO-四环素复合材料具有优异的抑菌性能,进一步为公共卫生、生物医用等领域提供了广泛的科学依据。

     

  • 图  1  Cu2O/CuO-四环素复合物的合成示意图

    Figure  1.  Schematic of the synthesis of Cu2O/CuO-tetracycline complexes

    PVP—Polyvinylpyrrolidone

    图  2  Cu2O/CuO的TEM图像

    Figure  2.  TEM images of Cu2O/CuO

    图  3  (a) Cu2O/CuO和Cu2O/CuO-四环素的XRD图谱;Cu2O/CuO-四环素复合材料中Cu2p (b)、C1s (c)、N1s (d) 和O1s (e) 的XPS图谱;(f) 四环素、Cu2O/CuO和Cu2O/CuO-四环素的FTIR图谱;(g) 光发射图谱(虚线)和Cu2O/CuO-四环素和四环素的紫外可见吸收图谱(实线)

    Figure  3.  (a) XRD spectra of Cu2O/CuO and Cu2O/CuO-tetracycline; XPS spectra of Cu2p (b), C1s (c), N1s (d) and O1s (e) in Cu2O/CuO-tetracycline composites; (f) FTIR spectra of tetracycline, Cu2O/CuO and Cu2O/CuO-tetracycline; (g) Photoemission spectra (dashed lines) and UV-vis absorption spectra (solid lines) of Cu2O/CuO-tetracycline and tetracycline

    图  4  (a) 四环素和Cu2O的优化电子结构和四环素的静电势(ESP)分析示意图;(b) Cu2O与四环素的结合能

    Figure  4.  (a) Optimized electronic structure of tetracycline and Cu2O and electrostatic potential (ESP) analysis diagram of tetracycline; (b) Binding Energy of Cu2O with tetracycline

    ΔG—Free energy

    图  5  不同浓度下四环素、Cu2O/CuO和Cu2O/CuO-四环素复合物对E. coli (a1)、S. aureus (b1) 和T-Salmonella (c1) 的滤纸扩散结果;抑菌圈直径随E. coli (a2)、S. aureus (b2) 和T-Salmonella (c2) 浓度变化的曲线

    Figure  5.  Filter paper diffusion results of tetracycline, Cu2O/CuO and Cu2O/CuO-tetracycline composites on E. coli (a1), S. aureus (b1) and T-Salmonella (c1) at different concentrations; Curves of the diameter of inhibition zone changing with concentration of E. coli (a2), S. aureus (b2) and T-Salmonella (c2)

    图  6  浓度为150 µg/mL的Cu2O/CuO-四环素复合材料对E. coli (a)、S. aureus (b) 和T-Salmonella (c) 的菌落计数结果;(d) Cu2O/CuO-四环素在不同时间对3种测试菌的抑菌率;(e) Cu2O/CuO-四环素在不同时间对3种测试菌的菌落数;(f) 浓度为150 µg/mL的Cu2O/CuO-四环素复合材料与3种测试菌混合5 min和40 min后的Zeta电位值

    Figure  6.  Colony counting results of E. coli (a), S. aureus (b) and T-Salmonella (c) by Cu2O/CuO-tetracycline composites with concentration of 150 µg/mL; (d) Antibacterial rate of Cu2O/CuO-tetracycline compound to three experimental bacteria in different time; (e) Colony number of Cu2O/CuO-tetracycline composites to 3 kinds of tested bacteria in different time; (f) Zeta potential value of Cu2O/CuO-tetracycline composites with concentration of 150 µg/mL mixed with 3 kinds of experimental bacteria for 5 min and 40 min

    图  7  (a) 电感耦合等离子体发射光谱法(ICP-OES)测得铜阳离子的累积释放;((b1)~(b3)) 空白对照组纯菌E. coliS. aureusT-Salmonella的代表性荧光图像;((b4)~(b6)) Cu2O/CuO-四环素复合材料与E. coliS. aureusT-Salmonella接触2 h后的代表性荧光图像

    Figure  7.  (a) Cumulative release of copper cations measured by inductively coupled plasma optical emission spectrometer (ICP-OES); ((b1)-(b3)) Representative fluorescence images of pure bacteria E. coli, S. aureus and T-Salmonella in the blank control group;((b4)-(b6)) Representative fluorescence images of Cu2O/CuO-tetracycline composite after contacting with E. coli, S. aureus and T-Salmonella for 2 h

    图  8  Cu2O/CuO-四环素复合材料对革兰氏阴性菌的抑菌机制图

    Figure  8.  Bacteriostatic mechanism diagram of Cu2O/CuO-tetracycline composite against Gram-negative bacteria

  • [1] ZHANG H X, MA J, LIU C, et al. Antibacterial activity of guanidinium-based ionic covalent organic framework anchoring Ag nanoparticles[J]. Journal of Hazardous Materials,2022,435:128965.
    [2] RATTHAPIT W, KANKAVEE S, NOLLAPAN N, et al. Benzoxazine monomers grafted poly(acrylic acid) as novel organic additives with fluorescence and antibacterial properties[J]. Materials Today Communications,2022,31:103500.
    [3] NGUYEN V N, ZHAO Z, TANG B Z, et al. Organic photosensitizers for antimicrobial phototherapy[J]. Chemical Society Reviews,2022,51(9):3324-3340.
    [4] VENTOLA C L. The antibiotic resistance crisis: Part 1: Causes and threats[J]. Pharmacy and Therapeutics,2015,40(4):277-283.
    [5] MAGIORAKOS A P, SRINIVASAN A, CAREY R B, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance[J]. Clinical Microbiology and Infection,2012,18(3):268-281. doi: 10.1111/j.1469-0691.2011.03570.x
    [6] SINGH R, SMITHA M S, SINGH S P. The role of nanotechnology in combating multi-drug resistant bacteria[J]. Journal of Nanoscience and Nanotechnology,2014,14(7):4745-4756. doi: 10.1166/jnn.2014.9527
    [7] ZHAO D, LU Y H, WANG Z, et al. Antifouling properties of micro arc oxidation coatings containing Cu2O/ZnO nanoparticles on Ti6Al4V[J]. International Journal of Refractory Metals and Hard Materials,2016,54:417-421. doi: 10.1016/j.ijrmhm.2015.10.003
    [8] RADI A, PRADHAN D, SOHN Y, et al. Nanoscale shape and size control of cubic, cuboctahedral, and octahedral Cu-Cu2O core-shell nanoparticles on Si(100) by one-step, templateless, capping-agent-free electrodeposition[J]. ACS Nano,2010,4(3):1553-1560. doi: 10.1021/nn100023h
    [9] ZHANG Y H, YUAN Y, CHEN W, et al. Integrated nanotechnology of synergism-sterilization and removing-residues for neomycin through nano-Cu2O[J]. Colloids and Surfaces B: Biointerfaces,2019,183:110371. doi: 10.1016/j.colsurfb.2019.110371
    [10] KHURANA C, SHARMA P, PANDEY O P, et al. Synergistic effect of metal nanoparticles on the antimicrobial activi-ties of antibiotics against biorecycling microbes[J]. Jour-nal of Materials Science & Technology,2016,32(6):524-532.
    [11] FRISCH M J, TRUCKS G W, POPLE J A, et al. Gaussian 09, Version D. 01[CP]. Gaussian Inc: Pittsburgh, PA, 2009.
    [12] LU T A, CHEN F W, Multiwfn: A multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592.
    [13] GIANNOUSI K, SARAFIDIS G, MOURDIKOUDIS S, et al. Selective synthesis of Cu2O and Cu/Cu2O NPs: Antifungal activity to yeast Saccharomyces cerevisiae and DNA interaction[J]. Inorganic Chemistry,2014,53(18):9657-9666. doi: 10.1021/ic501143z
    [14] KHAN A, RASHID A, YOUNAS R, et al. A chemical reduction approach to the synthesis of copper nanoparticles[J]. International Nano Letters,2016,6(1):21-26. doi: 10.1007/s40089-015-0163-6
    [15] MA J Q, GUO S B, GUO X H, et al. Preparation, characterization and antibacterial activity of core-shell Cu2O@CuO@Ag composites[J]. Surface and Coatings Technology,2015,272:268-272. doi: 10.1016/j.surfcoat.2015.03.056
    [16] LI J Z, MA J X, HONG L, et al. Prominent antibacterial effect of sub 5 nm Cu nanoparticles/MoS2 composite under visible light[J]. Nanotechnology,2021,33(7):075706.
    [17] SELVANATHAN V, AMINUZZAMAN M, TEY L H, et al. Muntingia calabura leaves mediated green synthesis of CuO nanorods: Exploiting phytochemicals for unique morphology[J]. Materials,2021,14(21):6379. doi: 10.3390/ma14216379
    [18] VASQUEZ R P. CuO by XPS[J]. Surface Science Spectra,1998,5(4):262-266. doi: 10.1116/1.1247882
    [19] WEI Q, WANG Y, QIN H Y, et al. Construction of rGO wrapping octahedral Ag-Cu2O heterostructure for enhanced visible light photocatalytic activity[J]. Applied Catalysis B: Environmental,2018,227:132-144. doi: 10.1016/j.apcatb.2018.01.003
    [20] CHEN X N, WANG X H, FANG D. A review on C1s XPS-spectra for some kinds of carbon materials[J]. Fullerenes, Nanotubes and Carbon Nanostructures,2020,28(12):1048-1058. doi: 10.1080/1536383X.2020.1794851
    [21] GUO H, CHENG J, MAO Y X, et al. Fabricating different coordination states of cobalt as magnetic acid-base bifunctional catalyst for biodiesel production from microalgal lipid[J]. Fuel,2022,322:124172. doi: 10.1016/j.fuel.2022.124172
    [22] DOU H Z, XU M, ZHENG Y, et al. Bioinspired tough solid-state electrolyte for flexible ultralong-life zinc-air battery[J]. Advanced Materials,2022,34(18):2110585. doi: 10.1002/adma.202110585
    [23] SIVKOV D V, PETROVA O V, NEKIPELOV S V, et al. Quantitative characterization of oxygen-containing groups on the surface of carbon materials: XPS and NEXAFS study[J]. Applied Sciences,2022,12(15):7744. doi: 10.3390/app12157744
    [24] LIU S, ZHAO X R, SUN H Y, et al. The degradation of tetracycline in a photo-electro-Fenton system[J]. Chemical Engineering Journal,2013,231:441-448. doi: 10.1016/j.cej.2013.07.057
    [25] TRIVEDI M K, PATIL S, SHETTIGAR H, et al. Spectroscopic characterization of chloramphenicol and tetracycline: An impact of biofield treatment[J]. Pharmaceutica Analytica Acta,2015,6(7):395.
    [26] JONES K H, SENFT J A. An improved method to determine cell viability by simultaneous staining with fluorescein diacetate-propidium iodide[J]. Journal of Histochemistry & Cytochemistry,1985,33(1):77-79.
    [27] ROHDE M. The Gram-positive bacterial cell wall[J]. Microbiology Spectrum,2019,7(3):7.3.10. doi: 10.1128/microbiolspec.GPP3-0044-2018
    [28] ROJAS E R, BILLINGS G, ODERMATT P D, et al. The outer membrane is an essential load-bearing element in Gram-negative bacteria[J]. Nature,2018,559(7715):617-621. doi: 10.1038/s41586-018-0344-3
    [29] CHOPRA I. Tetracycline analogs whose primary target is not the bacterial ribosome[J]. Antimicrobial Agents and Chemotherapy,1994,38(4):637-640. doi: 10.1128/AAC.38.4.637
    [30] GASPARRINI A J, MARKLEY J L, KUMAR H, et al. Tetracycline-inactivating enzymes from environmental, human commensal, and pathogenic bacteria cause broad-spectrum tetracycline resistance[J]. Communications Biology,2020,3(1):1-12. doi: 10.1038/s42003-019-0734-6
    [31] LI W R, XIE X B, SHI Q S, et al. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli[J]. Applied Microbiology and Biotechnology,2010,85(4):1115-1122. doi: 10.1007/s00253-009-2159-5
  • 加载中
图(8)
计量
  • 文章访问数:  545
  • HTML全文浏览量:  311
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-02
  • 修回日期:  2023-04-04
  • 录用日期:  2023-04-08
  • 网络出版日期:  2023-04-17
  • 刊出日期:  2023-12-01

目录

    /

    返回文章
    返回