留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纤维/环氧树脂复合材料L型接头拉伸失效机制

张琪 蔡登安 余章杰 戴征征 吴大可 周光明

张琪, 蔡登安, 余章杰, 等. 碳纤维/环氧树脂复合材料L型接头拉伸失效机制[J]. 复合材料学报, 2023, 40(1): 542-552. doi: 10.13801/j.cnki.fhclxb.20220317.003
引用本文: 张琪, 蔡登安, 余章杰, 等. 碳纤维/环氧树脂复合材料L型接头拉伸失效机制[J]. 复合材料学报, 2023, 40(1): 542-552. doi: 10.13801/j.cnki.fhclxb.20220317.003
ZHANG Qi, CAI Deng’an, YU Zhangjie, et al. Tensile failure mechanism of carbon fiber/epoxy composite L-joints[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 542-552. doi: 10.13801/j.cnki.fhclxb.20220317.003
Citation: ZHANG Qi, CAI Deng’an, YU Zhangjie, et al. Tensile failure mechanism of carbon fiber/epoxy composite L-joints[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 542-552. doi: 10.13801/j.cnki.fhclxb.20220317.003

碳纤维/环氧树脂复合材料L型接头拉伸失效机制

doi: 10.13801/j.cnki.fhclxb.20220317.003
基金项目: 国家自然科学基金(52005256);江苏省基础研究计划(自然科学基金)资助项目(BK20190394);江苏省博士后科研资助计划项目(2020Z437);中央高校基本科研业务费专项资金资助(NS2019001);江苏高校优势学科建设工程资助项目(PAPD)
详细信息
    通讯作者:

    周光明,博士,教授,博士生导师,研究方向为先进复合材料结构设计及工程问题的计算机建模 E-mail: zhougm@nuaa.edu.cn

  • 中图分类号: TB332

Tensile failure mechanism of carbon fiber/epoxy composite L-joints

Funds: National Natural Science Foundation of China (52005256); Natural Science Foundation of Jiangsu Province (BK20190394); Jiangsu Post-doctoral Research Funding Program (2020Z437); Fundamental Research Funds for the Central Universities (NS2019001); Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
  • 摘要: 设计了单L型(LS)及双L型(LD)两种重量相近的L型接头。采用试验与数值模拟相结合的方式对两种接头的拉伸失效机制进行了研究。通过自行设计的试验夹具在伺服液压试验机上将两种L型接头准静态加载至破坏,分析其破坏机制及应变分布。研究发现,两种L型接头存在不同的失效机制,在破坏阶段单L型接头表现出更好的延展性。单L型接头加载至峰值载荷时,在靠近加载侧的内侧螺栓孔附近首先出现破坏,随后损伤向外侧螺栓孔附近扩展,直至完全失效。双L型接头加载至峰值载荷的50%左右时,L型框体和L型片之间的胶膜首先发生破坏,随后载荷继续增加至峰值载荷时,L型框螺栓孔附近发生破坏,损伤向框体边缘扩展,载荷大幅下降。此外,两种接头的应变随载荷的增加存在不同的变化趋势。采用一种新型复合材料初始失效准则及刚度折减方法,编写用户自定义子程序(UMAT),结合内聚区模型建立复合材料L型接头的渐进损伤模型。基于ABAQUS软件进行计算,得到接头的预测失效载荷及破坏形式。结果表明:有限元分析所得复合材料L型接头的损伤位置及失效模式与试验吻合,预测载荷与试验值相差较小,证明了有限元模型的适用性。

     

  • 图  1  单L型接头(LS)几何尺寸

    Figure  1.  Geometry configuration of single L-joint (LS)

    R—Radius; $\phi $—Diameter

    图  2  双L型接头(LD)几何尺寸

    Figure  2.  Geometry configuration of double L-joint (LD)

    图  3  碳纤维/环氧树脂复合材料单L型及双L型接头试件加载示意图

    Figure  3.  Loading schematic diagram of carbon fiber/epoxy composite single L-joint and double L-joint

    F—Force

    图  4  L型接头试验机加载图

    Figure  4.  L-joints on test machine

    图  5  单L型及双L型接头应变花位置示意图

    Figure  5.  Schematic of strain rosette positions of single L-joint and double L-joint

    A—Surface A; B—Surface B; C—Surface C; D—Surface D; 1-23—Strain rosettes number

    图  6  单L型(LS1~LS3)及双L型(LD1~LD3)接头载荷-位移曲线

    Figure  6.  Load-displacement curves of single L-joints (LS1-LS3) and double L-joints (LD1-LD3)

    图  7  L型框螺栓附近破坏情况

    Figure  7.  Damage near the bolts of the L-frame

    图  8  L型框侧面拐角位置破坏情况

    Figure  8.  Damage of the side corners of the L-frame

    图  9  LS1和LD1的应变-载荷曲线:(a) L型框正面:面A;(b) LS1中L型框背面和LD1中L型片表面:面B;(c) L型框底面:面C;(d) L型框侧面:面D

    Figure  9.  Strain-load curves of LS1 and LD1: (a) Front of L frame: Surface A; (b) Back of the L frame of LS1 and surface of the L frame of LD1: Surface B; (c) Bottom of the L frame: Surface C; (d) Side of the L frame: Surface D

    图  10  双L型接头11~18号测点各方向载荷-应变曲线:(a) L型片底部:11号、12号测点;(b) L型片螺栓附近:13号、14号、15号;(c) L型框螺栓附近:16号、17号、18号

    Figure  10.  Load-strain curves in each direction at measuring points 11-18 for double L-joint: (a) Bottom of L-piece: No.11 and No.12; (b) Near bolts of the L-piece: No.13, No.14 and No.15 ; (C) Near bolts of the L-frame: No.16, No.17 and No.18

    图  11  碳纤维/环氧树脂复合材料L型接头有限元模型约束加载示意图

    Figure  11.  Schematic of constraint and load for finite element model of carbon fiber/epoxy composite L-joint

    RP-1, RP-2—Reference point; U1, U2, U3—Displacement; UR1, UR2, UR3—Rotation

    图  12  单L型接头仿真损伤云图

    Figure  12.  Simulated damage diagram of a single L-joint

    图  13  双L型接头仿真损伤云图

    Figure  13.  Simulated damage diagram of a double L-joint

    图  14  各载荷阶段双L型接头胶层损伤云图

    Figure  14.  Simulated diagram of adhesive layer damage of double L-joints in each load stage

    表  1  碳纤维/环氧树脂复合材料的性能参数

    Table  1.   Material properties of carbon fiber/epoxy composite

    ParameterMaterial propertiesValue
    ParametersEx= Ey/GPa57.7
    Ez/GPa15*
    υxy0.07
    υxz=υyz0.27*
    Gxy/GPa9.7
    Gxz=Gyz/GPa6*
    Fracture
    parameters
    Xt= Yt/MPa609.7
    Zt/MPa50*
    Xc= Yc/MPa533.6
    Zc/MPa150*
    Sxy/MPa141.7
    Sxz= Syz/MPa70*
    Notes: Ex, Ey, Ez—Elastic modulus in direction of x, y, z; Xt, Yt, Zt—Tensile strength in the three directions above; Xc, Yc, Zc—Compress strength in the three directions above; υij, Gij, Sij (i, j = x, y, z)—Poisson’s ratio, shear modulus and shear strength for x-y, x-z, y-z plane; *Material data were provided by the manufacture, Avic Aviation High-tech CO., LTD.. The rest data were measured by experiment on the laminates.
    下载: 导出CSV

    表  2  碳纤维/环氧树脂复合材料L型接头拉伸试验结果

    Table  2.   Tensile load test results of carbon fiber/epoxy composite L-joint

    Specimen numberFailure load/
    kN
    Average load/
    kN
    Coefficient of variation/%
    LS114.22514.1094.296
    LS213.316
    LS314.787
    LD114.30514.2151.095
    LD214.344
    LD313.996
    下载: 导出CSV

    表  3  碳纤维/环氧树脂复合材料接头性能退化方式

    Table  3.   Degradation modes of carbon fiber/epoxy composite joint

    DirectionCriterionMaterial
    constants
    to degrade
    Stiffness
    degradation
    ratio
    xEq. (1)$\begin{gathered} {E_x},{\upsilon_{xy}},{\upsilon_{x{\textit{z}}}}, \\ {G_{xy}},{G_{x{\textit{z}}}} \\ \end{gathered} $0.4407
    Eqs. (2) and (3)0.001
    yEq. (4)$\begin{gathered} {E_y},{\upsilon _{xy}},{\upsilon _{y{\textit{z}}}}, \\ {G_{xy}},{G_{y{\textit{z}}}} \\ \end{gathered} $0.4407
    Eqs. (5) and (6)0.001
    zEqs. (7) and (8)$\begin{gathered} {E_{\textit{z}}},{\upsilon_{x{\textit{z}}}},{\upsilon_{y{\textit{z}}}}, \\ {G_{x{\textit{z}}}},{G_{y{\textit{z}}}} \\ \end{gathered} $0.001
    下载: 导出CSV

    表  4  J-116B结构胶材料属性[25]

    Table  4.   Material properties of J-116B adhesive[25]

    ParameterStiffnessNormal strength
    $t_{\text{n}}^{\text{o}}$/ MPa
    Shear strength
    $t_{\text{s}}^{\text{o}} = t_{\text{t}}^{\text{o}}$/ MPa
    Fracture energy
    ${G^{\text{C}}}$/${\text{(J}} \cdot {{\text{m}}^{{{ - 2}}}})$
    $E/{E_{{\text{nn}}}}$/${\text{(MPa}} \cdot {\text{m}}{{\text{m}}^{{{ - 1}}}})$${G_1}/{E_{{\text{ss}}}} = {G_2}/{E_{{\text{tt}}}}$/${\text{(MPa}} \cdot {\text{m}}{{\text{m}}^{{{ - 1}}}})$
    Value100030020302
    Notes:$E/{E_{{\text{nn}}}}$,${G_1}/{E_{{\text{ss}}}}$,${G_2}/{E_{{\text{tt}}}}$—Interface stiffness for three directions, respectively; $t_{\text{n}}^{\text{o}}$,$t_{\text{s}}^{\text{o}}$,$t_{\text{t}}^{\text{o}}$—Interface strength for three directions, respectively.
    下载: 导出CSV

    表  5  碳纤维/环氧树脂复合材料L型接头部分测点应变仿真值与试验值对比

    Table  5.   Comparison of simulation and test values of some strain gauges on carbon fiber/epoxy composite L-joint

    Strain gauge numberSingle L-joint strain at 12 kNDouble L-joint strain at 6 kN
    Simulation
    value/10−6
    Test
    value/10−6
    Simulation
    value/10−6
    Test
    value/10−6
    5 1321 1675 53 110
    6 1321 1143 53 30
    11 −1270 −1446 387 476
    12 −1270 −1173 387 393
    13 3110 4471 2822 2810
    14 3915 331 3300 3703
    15 3110 1308 2822 3175
    下载: 导出CSV
  • [1] SHANG X, MARQUES E A S, CARBAS R J C, et al. Fracture mechanism of adhesive single-lap joints with composite adherends under quasi-static tension[J]. Composite Structures,2020,251:112639. doi: 10.1016/j.compstruct.2020.112639
    [2] 毛振刚, 侯玉亮, 李成, 等. 搭接长度和铺层方式对CFRP复合材料层合板胶接结构连接性能和损伤行为的影响[J]. 复合材料学报, 2020, 37(1):121-131.

    MAO Zhengang, HOU Yuliang, LI Cheng, et al. Effect of lap length and stacking sequence on strength and damage behaviors of adhesively bonded cfrp composite laminates[J]. Acta Materiae Compositae Sinica,2020,37(1):121-131(in Chinese).
    [3] CHENG X, WANG S, ZHANG J, et al. Effect of damage on failure mode of multi-bolt composite joints using failure envelope method[J]. Composite Structures,2017,160:8-15. doi: 10.1016/j.compstruct.2016.10.042
    [4] 赵丽滨, 徐吉峰. 先进复合材料连接结构分析方法[M]. 北京: 北京航空航天大学出版社, 2015.

    ZHAO Libin, XU Jifeng. Advanced composite connection structure analysis method[M]. Beijing: Beihang University Press, 2015(in Chinese).
    [5] PHILLIPS H J, SHENOI R A. Damage tolerance of laminated tee joints in FRP structures[J]. Composites Part A: Applied Science and Manufacturing,1998,29(4):465-478. doi: 10.1016/S1359-835X(97)00081-X
    [6] 王国平, 黄领才, 王冠. 复合材料层板多钉连接设计与试验研究[C]//第19届全国直升机年会论文. 哈尔滨: 中国航空学会, 2003: 65-70.

    WANG Guoping, HUANG Lingcai, WANG Guan. Design and experimental research of composite laminate multi-bolted joint[C]// The 19th National Helicopter Conference. Harbin: Chinese Society of Aeronautics and Astronautics, 2003: 65-70(in Chinese).
    [7] SHAMAEI-KASHANI A, SHOKRIEH M M. A strain-rate-dependent analytical model for composite bolted joints[J]. Steel and Composite Structures,2021,41:279-292. doi: 10.12989/scs.2021.41.2.279
    [8] MONTAGNE B, LACHAUD F, PAROISSIEN E, et al. Failure analysis of single lap composite laminate bolted joints: Comparison of experimental and numerical tests[J]. Composite Structures,2020,238:111949. doi: 10.1016/j.compstruct.2020.111949
    [9] 孙旋, 童明波, 陈智, 等. 碳纤维复合材料接头力学性能试验与仿真分析[J]. 复合材料学报, 2016, 33(11):2517-2527.

    SUN Xuan, TONG Mingbo, CHEN Zhi, et al. Test and simulation analysis of mechanical properties for joint of carbon fiber composites[J]. Acta Materiae Compositae Sinica,2016,33(11):2517-2527(in Chinese).
    [10] SHENOI R A, HAWKINS G L. Influence of material and geometry variations on the behavior of bonded tee connections in FRP ships[J]. Composites,1992,23(5):335-345. doi: 10.1016/0010-4361(92)90333-P
    [11] HAWKINS G L, HOLNESS J W, DODKINS A R, et al. The strength of bonded tee joints in FRP ships[J]. Plastics Rubber and Composites Processing and Applications, 1993, 19: 279-284.
    [12] GUO S, LI W. Numerical analysis and experiment of sandwich T-joint structure reinforced by composite fasteners[J]. Composite Part B: Engineering,2020,199:108288. doi: 10.1016/j.compositesb.2020.108288
    [13] 文立伟, 余坤, 宦华松. 缝合复合材料T型接头拉伸载荷下的有限元数值模拟[J]. 航空学报, 2021, 42(2):136-143.

    WEN Liwei, YU Kun, HUAN Huasong. Finite element numerical simulation of stitched composite T-joint under tensile load[J]. Acta Aeronautica et Aetronautica Sinica,2021,42(2):136-143(in Chinese).
    [14] FEIH S, SHERCLIFF H R. Composite failure prediction of single-L joint structures under bending[J]. Composites Part A: Applied Science and Manufacturing,2005,36(3):381-395. doi: 10.1016/j.compositesa.2004.06.021
    [15] WOOD M D K, TONG L, LUO Q, et al. Failure of stitched composite L-joints under tensile loading - Experiment and simulation[J]. Journal of Reinforced Plastics and Composites, 2009, 28(6): 715-742.
    [16] QIN K, YAN R, CUI M, et al. Failure mode shift of sandwich composite L-joint for ship structures under tension load[J]. Ocean Engineering, 2020, 214: 107863.
    [17] 石好男, 王继辉, 张桂明. 复合材料L型接头的损伤与破坏模式研究[J]. 复合材料科学与工程, 2019(3):16-20.

    SHI Haonan, WANG Jihui, ZHANG Guiming. The research on damage and failure modes of composite L-joint[J]. Composites Science and Engineering,2019(3):16-20(in Chinese).
    [18] ZHAO L, QIN T, ZHANG J, et al. Modified maximum stress failure criterion for composite π joints[J]. Journal of Composite Materials, 2012, 47(23): 2995-3008.
    [19] ZHAO L, GONG Y, QIN T, et al. Failure prediction of out-of-plane woven composite joints using cohesive element[J]. Composite Structures, 2013, 106: 407-416.
    [20] ZHAO L, QIN T, CHEN Y, et al. Three-dimensional progressive damage models for cohesively bonded composite π joint[J]. Journal of Composite Materials, 2014, 48(6): 707-721.
    [21] 成李南, 迟坚, 屈天骄, 等. 夹芯复合材料π型接头失效实验研究[J]. 机械强度, 2020, 42(4):837-841.

    CHENG Linan, CHI Jian, QU Tianjiao, et al. Experiment research on failure of composite sandwich π-joint[J]. Journal of Mechanical Strength,2020,42(4):837-841(in Chinese).
    [22] QIN K, YAN R, SHEN W, et al. Research on the tension damage behavior of sandwich composite L-joints: Experiment and simulation[J]. Composite Structures, 2020, 232: 111566.
    [23] 陈丁丁, 朱萌, 胡其高, 等. 含拼接铺层碳纤维增强树脂复合材料拉伸破坏机制[J]. 复合材料学报, 2020, 37(6):1312-1320.

    CHEN Dingding, ZHU Meng, HU Qigao, et al. Tensile failure mechanism of carbon fiber reinforced polymer composites with ply splice[J]. Acta Materiae Compositae Sinica,2020,37(6):1312-1320(in Chinese).
    [24] BENZEGGAGH M L, KENANE M. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus[J]. Composites Science and Technology, 1996, 56(4): 439-449.
    [25] 郭丽君, 陆方舟, 李想, 等. 碳纤维/环氧树脂复合材料缠绕接头拉伸失效机制[J]. 复合材料学报, 2020, 37(9):2163-2172.

    GUO Lijun, LU Fangzhou, LI Xiang, et al. Tensile failure mechanism of carbon fiber/epoxy composite winding joint[J]. Acta Materiae Compositae Sinica,2020,37(9):2163-2172(in Chinese).
  • 加载中
图(14) / 表(5)
计量
  • 文章访问数:  1132
  • HTML全文浏览量:  397
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-31
  • 修回日期:  2022-02-23
  • 录用日期:  2022-03-05
  • 网络出版日期:  2022-03-18
  • 刊出日期:  2023-01-15

目录

    /

    返回文章
    返回