留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合催化材料CuO NPs@CNF-Si-N(OH)2的制备及其对4-硝基苯酚的催化还原性能

戢德贤 林兆云 陈嘉川 李新才 邱程龙 杨桂花

戢德贤, 林兆云, 陈嘉川, 等. 复合催化材料CuO NPs@CNF-Si-N(OH)2的制备及其对4-硝基苯酚的催化还原性能[J]. 复合材料学报, 2022, 40(0): 1-12
引用本文: 戢德贤, 林兆云, 陈嘉川, 等. 复合催化材料CuO NPs@CNF-Si-N(OH)2的制备及其对4-硝基苯酚的催化还原性能[J]. 复合材料学报, 2022, 40(0): 1-12
Dexian JI, Zhaoyun LIN, Jiachuan CHEN, Xincai LI, Chenglong QIU, Guihua YANG. Preparation of catalytic composite CuO NPs@CNF-Si-N(OH)2 and its catalytic reduction of 4-nitrophenol[J]. Acta Materiae Compositae Sinica.
Citation: Dexian JI, Zhaoyun LIN, Jiachuan CHEN, Xincai LI, Chenglong QIU, Guihua YANG. Preparation of catalytic composite CuO NPs@CNF-Si-N(OH)2 and its catalytic reduction of 4-nitrophenol[J]. Acta Materiae Compositae Sinica.

复合催化材料CuO NPs@CNF-Si-N(OH)2的制备及其对4-硝基苯酚的催化还原性能

基金项目: 山东省重点研发计划项目(No. 2021 CXGC010601),国家高端外国专家引进计划(G2021024005 L),泰山学者工程
详细信息
    通讯作者:

    陈嘉川,博士,教授,博士生导师,研究方向为生物基功能材料制备 E-mail:chenjc@qlu.edu.cn

  • 中图分类号: TB332

Preparation of catalytic composite CuO NPs@CNF-Si-N(OH)2 and its catalytic reduction of 4-nitrophenol

  • 摘要: 针对目前降解工业废水中4-硝基苯酚(4-NP)的催化剂效率低,催化活性差等问题,以桉木漂白化学浆为原料,通过超微粒研磨机和高压均质机处理制备得到直径50~100 nm和长度1500~2000 nm的纤维素纳米纤丝(CNF),在其表面原位负载纳米氧化铜颗粒(CuO NPs),并通过3-氯丙基三甲氧基硅烷(CPTES)与二乙醇胺(DEA)进行接枝反应制备得到复合催化材料-CuO NPs@CNF-Si-N(OH)2。探讨了DEA添加量对CuO NPs@CNF–Si–N(OH)2的性能影响,分析表征了CNF基催化复合材料的表面电荷、官能团、晶体结构、表面元素组成及价态分布、微观形貌、热稳定性等。结果表明,CuO NPs被原位还原并成功负载在CNF表面,其直径约为3.84 nm,负载量为3.83wt%,通过硅烷化改性及接枝胺基可提高CuO NPs在复合材料表面的分散性及稳定性,进而增强了其催化活性。CNF基复合催化材料对4-NP的催化还原结果显示,DEA添加量为20wt%下的CuO NPs@CNF-Si-N(OH)2对4-NP催化还原性能最佳,在180 s内可催化还原98.39%的4-NP,且反应符合伪一级动力学模型,表观速率常数为5.50×10−3 s−1,转化效率为1723.41 h−1,研究结果可为高性能催化复合材料的制备提供新思路和新途径。

     

  • 图  1  纤维素纳米纤丝(CNF)基复合材料的制备及对4-硝基苯酚(4-NP)催化还原示意图

    Figure  1.  Schematic diagram of preparation of cellulose nanofiber (CNF) based catalytic composite and its catalytic reduction of 4-nitrophenol (4-NP)

    图  2  CNF及CNF基复合催化材料的Zeta电位图

    Figure  2.  Zeta potential of CNF and CNF based catalytic composite

    图  3  CNF与CNF基复合催化材料的XPS图(a)及CuO NPs@CNF中Cu2 p分析图(b)

    Figure  3.  XPS spectra of CNF and CNF based catalytic composite

    图  4  CNF及CNF基复合催化材料的FT-IR图

    Figure  4.  FT-IR spectra of CNF and CNF based catalytic composite

    图  5  CNF及CNF基复合催化材料的XRD图

    Figure  5.  XRD patterns of CNF and CNF based catalytic composite

    图  6  CNF及CNF基复合催化材料的TG图(a)与DTG图谱(b)

    Figure  6.  TG (a) and DTG (b) analysis of CNF and CNF based catalytic composite

    图  7  CNF及CNF基复合催化材料的TEM图(a-d)及CuO NPs@CNF的HRTEM图(e)

    Figure  7.  TEM images of CNF (a), CNF based catalytic composite (b-d) and HRTEM images of CuO NPs@CNF (e)

    图  8  4-NP还原过程中各阶段的光学图片(a);CNF及CNF基复合催化材料在180 s内还原4-NP的紫外-可见分光光谱图(b);不同DEA含量的CuO NPs@CNF-Si-N(OH)2 180 s内还原4-NP的紫外-可见分光光谱图(c);CNF、CuO NPs及CNF基复合催化材料的动力学曲线(d)

    Figure  8.  Color changes of 4-NP solution after adding CuO NPs@CNF-Si-N(OH)2 (a); UV-vis absorption spectra after adding CNF and CNF based catalytic composite for 180 s (b); UV-vis absorption spectra after adding CuO NPs@CNF-Si-N(OH)2 grafted with DEA (5 wt%-20 wt%) for 180 s (c); In (At/A0) versus reaction time (at 400 nm) (d)

    A0−Absorbance of the mixture at the initial moment of reaction; At−Absorbance at 400 nm (4-NP) after reaction time t

    图  9  不同回用次数下CuO NPs@CNF-Si-N(OH)2对4-NP的转化率

    Figure  9.  Conversion yield of 4-NP using the CuO NPs@CNF-Si-N(OH)2 with 20 wt% DEA dosage

    表  1  CNF及CNF基复合催化材料的热重特征温度表

    Table  1.   The characteristic temperature of TG thermograms of CNF and CNF based catalytic composite

    SampleT1/°CT2/°CResidual mass/%Weight change/%
    CNF324.76356.0011.4384.56
    CuO NP@CNF321.67352.6714.3181.59
    CuO NP@CNF-Si322.19354.8412.0683.74
    CuO NP@CNF-Si-N(OH)2318.68354.5913.4183.54
    Note: T1 represents the initial temperature of extrapolation; T2 represents the temperature at maximum rate of mass change.
    下载: 导出CSV

    表  2  不同催化剂对4-NP的催化还原性能分析

    Table  2.   Catalytic performance of the CuO NPs and CNF based catalytic composite

    SampleTemperature/KMolar ratio of
    4-NP/ catalyst
    TimeApparent rate
    constant K/s−1
    Conversion
    yield/%
    CuO NPs29887∶1180 s0.60×10−346.14
    CuO NPs@CNF29887∶1180 s1.30×10−371.82
    CuO NPs@CNF-Si29887∶1180 s1.50×10−384.46
    CuO NPs@CNF-Si-N(OH)2 (5 wt% DEA)29887∶1180 s2.20×10−386.71
    CuO NPs@CNF-Si-N(OH)2 (10 wt% DEA)29887∶1180 s3.00×10−387.92
    CuO NPs@CNF-Si-N(OH)2 (15 wt% DEA)29887∶1180 s4.70×10−390.90
    CuO NPs@CNF-Si-N(OH)2 (20 wt% DEA)29887∶1180 s5.50×10−398.39
    下载: 导出CSV

    表  3  CNF基复合催化材料与其他纳米纤维素基复合催化材料的转化效率分析

    Table  3.   Comparison of catalytic performance of the CNF based catalytic composite with other reported metal nanoparticles based catalysts

    SampleTemp/KMolar ratio of
    4-NP/ catalyst
    TOF/h−1Reference
    CuO NPs@CNF29887∶1407.31This work
    CuO NPs@CNF-Si-N(OH)2 (20 wt% DEA)29887∶11723.24This work
    CuO NPs@GO298150∶1816.2[5]
    Au NPs@CNF298150∶1563[32]
    Au NPs@PDDA/NCC29837∶1212[7]
    Au NPs@CNCs29830∶1109[33]
    Ag NPs@CNCs/CTAB29897.2∶11077.3[34]
    NoteS: TOF-Turnover Frequency; CCF-Carboxymethylated cellulose fibers; GO-Graphene oxide; PDDA- Poly(diallyldimethylammonium chloride); NCC-Nanocellulose crystal; CNC-Cellulose nanocrystal; CTAB- Hexadecyl-trimethylammonium bromide
    下载: 导出CSV

    表  4  CuO NPs@CNF-Si-N(OH)2与其他纤维素基复合催化材料的回用效果分析

    Table  4.   Comparison of the conversion of the CNF based nanohybrids with other reported cellulose based composite

    SampleCatalystCarrierRepeated timesConversion yieldReference
    CuO NPs@CNF-Si-N(OH)2 (20 wt% DEA)CuO NPsCellulose nanofibers894.42%This work
    Ag NPs@ MOF‐199 s/CCFsAg NPsCellulose fibers591.0%[35]
    Ag NPs@CFPAg NPsCellulose filter paper490.0%[36]
    Ag NPs@CMFsAg NPsCellulose microfibers687.0%[37]
    Fe3O4/Ag@NFCAg NPsNanofibrillated cellulose781.8%[38]
    Notes: CFP-cellulose filter paper; CMF-cellulose microfiber; NFC-Nanofibrillated cellulose
    下载: 导出CSV
  • [1] 杨晓闪. SiO2@C负载Ni、Cu催化剂的制备及性能研究[D]. 郑州: 郑州大学, 2019.

    YANG Xiaoshan. Preparation and Properties of SiO2@C Supported Ni and Cu Catalysts[D]. Zhengzhou: Zhengzhou University, 2019(in Chinese).
    [2] WAN N, GU J D, YAN Y. Degradation of p-nitrophenol by chromobacter xylosoxidans Ns isolated from wetland sediment[J]. International Biodeterioration & Biodegradation,2007(59):90-96.
    [3] 梁艳莉, 马剑琪, 郭少波. CoFe2O4@PDA@Pt核壳型磁性复合材料的制备及催化性能[J]. 复合材料学报, 2021, 38(5):1551-1557.

    LIANG Yanli, MA Jianqi, GUO Shaobo. Preparation and catalytic properties of CoFe2 O4@PDA@Pt magnetic composite with core shell structure[J]. Acta Materiae Compositae Sinica,2021,38(5):1551-1557(in Chinese).
    [4] 林兆云, 戢德贤, 杨桂花, 等. 纤维素基金属纳米粒子复合催化剂的制备与应用[J]. 复合材料学报, 2022, 39(3):977-988.

    LIN Zhaoyun, JI Dexian, YANG Guihua, et al. Preparation and application of cellulose-based metal nanoparticles composite catalysts[J]. Acta Materiae Compositae Sinica,2022,39(3):977-988(in Chinese).
    [5] ZHOU Z, LU C, WU X, et al. Cellulose nanocrystals as a novel support for CuO nanoparticles catalysts: facile synthesis and their application to 4-nitrophenol reduction[J]. RSC Advances,2013,3(48):26066-26073. doi: 10.1039/c3ra43006e
    [6] CHEN L, CAO W J, QUINLAN P, et al. Sustainable catalysts from gold-loaded polyamidoamine dendrimer-cellulose nanocrystals[J]. ACS Sustainable Chemistry & Engineering,2015,3(5):978-985.
    [7] LAM E, HRAPOVIC S, MAJID E, et al. Catalysis using gold nanoparticles decorated on nanocrystalline cellulose[J]. Nanoscale,2012,4(3):997-1002. doi: 10.1039/c2nr11558a
    [8] 王海英, 刘志明, 毕晓欣, 等. 桉木浆纳米纤维素制备优化条件初探[J]. 江苏农业科学, 2012, 40(7):242-245. doi: 10.3969/j.issn.1002-1302.2012.07.092

    WANG Haiying, LIU Zhiming, BI Xiaoxin, et al. Preliminary study on optimum preparation conditions of nanocrystalline cellulose from Eucalyptus pulp[J]. Jiangsu Agricultural Sciences,2012,40(7):242-245(in Chinese). doi: 10.3969/j.issn.1002-1302.2012.07.092
    [9] PINTO R J B, MÁRCIA C, NETO C P, et al. Growth and chemical stability of copper nanostructures on cellulosic fibers[J]. European Journal of Inorganic Chemistry,2012,2012(31):5043-5049. doi: 10.1002/ejic.201200605
    [10] GOY-LÓPEZ S, TABOADA P, CAMBON A, et al. Modulation of size and shape of Au nanoparticles using amino-X-shaped poly(ethylene oxide)-poly(propylene oxide) Block Copolymers[J]. The Journal of Physical Chemistry B,2010,114(1):66-76. doi: 10.1021/jp908569z
    [11] 倪镜博, 刘如一, 张明, 等. 原位聚合法制备纳米核-壳型PS-CHO@RGO复合微球及其催化活化过硫酸氢钾降解亚甲基蓝[J]. 复合材料学报, 2021, 38(7):2132-2139.

    NI Jingbo, LIU Ruyi, ZHANG Ming, et al. Preparation of nano core-shell PS-CHO@RGO composite microspheres by in-situ polymerization as a potassium hydrogen persulfate catalytic activator for methylene blue degradation[J]. Acta Materiae Compositae Sinica,2021,38(7):2132-2139(in Chinese).
    [12] ARMELAO L, BARRECA D, BERTAPELLE M, et al. A sol-gel approach to nanophasic copper oxide thin films[J]. Thin Solid Films,2003,442(1):48-52.
    [13] VAINIO U, PIRKKALAINEN K, KISKO K, et al. Copper and copper oxide nanoparticles in a cellulose support studied using anomalous small-angle X-ray scattering[J]. The European Physical Journal D,2007,42(1):93-101. doi: 10.1140/epjd/e2007-00015-y
    [14] FAN J C, XIE Z. Effects of substrate temperature on structural, electrical and optical properties of As-doped ZnO films[J]. Materials Science & Engineering B,2008,150(1):61-65.
    [15] BHATTACHARJEE A, AHMARUZZAMAN M. Green synthesis of 2 D CuO nanoleaves (NLs) and its application for the reduction of pnitrophenol[J]. Materials Letters,2015,161:79-82. doi: 10.1016/j.matlet.2015.08.061
    [16] REDDY K R. Green synthesis, Morphological and optical studies of CuO nanoparticles[J]. Journal of Molecular Structure,2017,1150:553-557. doi: 10.1016/j.molstruc.2017.09.005
    [17] SAITO T, KIMURA S, NISHIYAMA Y, et al. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose[J]. Biomacromolecules,2007,8(8):2485-2491. doi: 10.1021/bm0703970
    [18] ISOGAI A, ATALLA R H. Dissolution of cellulose in aqueous NaOH solutions[J]. Cellulose,1998,5(4):309-319. doi: 10.1023/A:1009272632367
    [19] 叶瑞荣, 汪朝阳, 杨凯, 等. 二乙醇胺改性聚乳酸的直接熔融聚合法合成及其表征[J]. 化学通报, 2009, 72(07):637-643.

    YE Ruirong, WANG Chaoyang, YANG Kai, et al. Direct Melt Polycondensation and Characterization of Polylactic acid Modified by Diethanolamine[J]. Chemistry,2009,72(07):637-643(in Chinese).
    [20] LIONEL M, ALEXIS C, HEINRICH H. Polymer adsorption on iron oxide nanoparticles for one-step amino-functionalized silica encapsulation[J]. Journal of Nanomaterials,2015,2015(8):1-6.
    [21] KHAN S B, ALAMRY K A, BIFARI E N, et al. Assessment of antibacterial cellulose nanocomposite for water permeability and salt rejection[J]. Journal of Industrial & Engineering Chemistry,2015,24:266-275.
    [22] TANG J, SHI Z, BERRY R M, et al. Mussel-inspired green metallization of silver nanoparticles on cellulose nanocrystals and their enhanced catalytic reduction of 4-nitrophenol in the presence of β-cyclodextrin[J]. Industrial & Engineering Chemistry Research,2015,54(13):3299-3308.
    [23] CAO M, HU C, WANG Y, ET AL. A controllable synthetic route to Cu, Cu2O, and CuO nanotubes and nanorods[J]. Chemical Communications,2003(15):1884-1885. doi: 10.1039/b304505f
    [24] MARÍNPAREJA N, CANTINI M, GONZALEZGARCIA C, et al. Different organization of type I collagen immobilized on silanized and nonsilanized titanium surfaces affects fibroblast adhesion and fibronectin secretion[J]. ACS Applied Materials & Interfaces,2015,7(37):20667-20677.
    [25] BOUAZIZI N, BARGOUGUI R, THEBAULT P, ET AL. Development of a novel functional core-shell-shell nanoparticles: From design to anti-bacterial applications[J]. Journal of Colloid & Interface Science,2017,513:726-735.
    [26] WANG C, WANG H, YU H. Preparation and application of biomimetic superhydrophobic silica and polyurethane composite coating[J]. International Journal of Surface Science and Engineering,2015,9(6):510-519. doi: 10.1504/IJSURFSE.2015.072832
    [27] LIU B H, LI Z P. A review: Hydrogen generation from borohydride hydrolysis reaction[J]. Journal of Power Sources,2009,187(2):527-534. doi: 10.1016/j.jpowsour.2008.11.032
    [28] YANG Y, CHEN Z, WU X, et al. Nanoporous cellulose membrane doped with silver for continuous catalytic decolorization of organic dyes[J]. Cellulose,2018,25(4):2547-2558. doi: 10.1007/s10570-018-1710-x
    [29] BAE S, GIM S, KIM H, et al. Effect of NaBH4 on properties of nanoscale zero-valent iron and its catalytic activity for reduction of p-nitrophenol[J]. Applied Catalysis B:Environmental,2016,182:541-549. doi: 10.1016/j.apcatb.2015.10.006
    [30] LI J, LIU C Y, LIU Y. Au/graphene hydrogel: synthesis, characterization and its use for catalytic reduction of 4-nitrophenol[J]. Journal of Materials Chemistry,2012,22(17):8426-8430. doi: 10.1039/c2jm16386a
    [31] WU X, LU C, ZHOU Z, et al. Strategy for synthesizing porous cellulose nanocrystal supported metal nanocatalysts[J]. ACS Sustainable Chemistry & Engineering,2016,1(1):71-79.
    [32] KOGA H, TOKUNAGA E, HIDAKA M, et al. Topochemical synthesis and catalysis of metal nanoparticles exposed on crystalline cellulose nanofibers[J]. Chemical Communications,2010,46(45):8567-8569. doi: 10.1039/c0cc02754e
    [33] WU X, LU C, ZHOU Z, et al. Green synthesis and formation mechanism of cellulose nanocrystal-supported gold nanoparticles with enhanced catalytic performance[J]. Environmental Science Nano,2014,1(1):71-79. doi: 10.1039/c3en00066d
    [34] AN X, LONG Y, NI Y. Cellulose nanocrystal/hexadecyltrimethylammonium bromide/silver nanoparticle composite as a catalyst for reduction of 4-nitrophenol[J]. Carbohydrate Polymers[J],2017,156:253-258. doi: 10.1016/j.carbpol.2016.08.099
    [35] DUAN C, LIU C, MENG X, et al. Fabrication of carboxymethylated cellulose fibers supporting Ag NPs@MOF-199 s nanocatalysts for catalytic reduction of 4-nitrophenol[J]. Applied Organometallic Chemistry,2019,33(5):4865. doi: 10.1002/aoc.4865
    [36] AHMAD I, KAMAL T, KHAN S B, et al. An efficient and easily retrievable dip catalyst based on silver nanoparticles/chitosan-coated cellulose filter paper[J]. Cellulose,2016,23(6):1-12.
    [37] XU P, CEN C, CHEN N, et al. Facile fabrication of silver nanoparticles deposited cellulose microfiber nanocomposite for catalytic application[J]. Journal of Colloid and Interface Science,2018,526:194-200. doi: 10.1016/j.jcis.2018.04.045
    [38] XIONG R, LU C, WANG Y, et al. Nanofibrillated cellulose as the support and reductant for the facile synthesis of Fe3O4/Ag nanocomposite with catalytic and antibacterial activity[J]. Journal of Materials Chemistry A,2013,1(47):14910-14918. doi: 10.1039/c3ta13314a
  • 加载中
计量
  • 文章访问数:  97
  • HTML全文浏览量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-02
  • 录用日期:  2022-03-26
  • 修回日期:  2022-03-20
  • 网络出版日期:  2022-04-18

目录

    /

    返回文章
    返回