Template-induced synthesis of CuO-g-C3N4/C composite and its electrochemical property
-
摘要: 多价铜基氧化物的理论比容量较高,但自身导电性和稳定性差;石墨相氮化碳(g-C3N4)稳定性好、氮含量高、合成方法简单,但其电容性能不佳;生物质炭具有较大的比表面积、相对较好的导电性和刚性结构。为使各相优势得到充分发挥,并且尽量弥补其缺陷,本文以尿素为g-C3N4前驱体,杏鲍菇为模板诱导合成了具有疏松多孔结构的g-C3N4/C两相复合材料,后使用水热法将CuO均匀负载在g-C3N4/C表面及孔洞内得到CuO-g-C3N4/C三相复合材料。电化学测试结果表明,CuO-g-C3N4/C的最高比电容为262.8F/g,2000次恒电流充放电循环后的电容保持率为97%,在不同电流密度下仍具有良好的充放电性能,CuO-g-C3N4/C的电容性能和稳定性能较好。这表明CuO和g-C3N4/C的三相复合不仅提高了CuO的导电性,而且使g-C3N4的电容性能得到改善,从而使整体材料的储能性能、导电性和稳定性得到提升。Abstract: The theoretical specific capacity of polyvalent copper-based oxides is considerable, but their conductivity and stability are inadequate. Graphite phase carbon nitride (g-C3N4) exhibits good stability, high nitrogen content and simple synthesis method; however, its capacitance performance is poor. Biochar possesses a substantial specific surface area, relatively good electrical conductivity and rigid structure. To fully leverage the advantages of single phase and compensate for their respective shortcomings, a two-phase compound g-C3N4/C with porous structure was synthesized. Urea was served as the precursor of g-C3N4, and pleurorus eryngii was selected as the template. Subsequently, CuO was uniformly anchored on the surface and pores of g-C3N4/C through hydrothermal method, resulting in three-phase CuO-g-C3N4/C. Electrochemical testing reveals that the maximum specific capacitance of CuO-g-C3N4/C reaches 262.8F/g, with a capacitance retention rate of 97% after 2000 constant current charge-discharge cycles. CuO-g-C3N4/C consistently exhibits excellent charge and discharge performance across different current densities, showcasing superior capacitance and stability of CuO-g-C3N4/C. This highlights that the combination of CuO and g-C3N4/C in a three-phase structure not only enhances the conductivity of CuO, but also enhances the capacitive performance of g-C3N4, thereby improving the energy storage performance, electrical conductivity and stability of the overall material.
-
Key words:
- g-C3N4 /
- CuO /
- electrochemical /
- biochar /
- template induction /
- supercapacitor
-
表 1 氧化铜基材料研究进展
Table 1. Research progress of copper oxide based materials
Material Electrolyte Specific capacitance /(F·g−1) Cycling stability Ref. Bi2CuO4//AC 1 mol/L KOH-polyvinyl alcohol (PVA) 94.5 92% 29 Cu2O(Ni(OH)2@Cu2O) 3 mol/L KOH 389.1 70% 30 Cu2O 3 mol/L KOH 79.7 / 30 CuO/ZnO@MWCNT – CZM 3 mol/L KOH 199.4 86.09% 31 CuO NPs 1 mol/L KOH 132 / 32 CuO/NiO/N-rGO 5 mol/L KOH 220 97% 33 CuO-NiO 1 mol/L Na2SO4 35.63 86.7% 34 CuO-g-C3N4/C 3 mol/L KOH 262.8 97 This work Notes: activated carbon (AC);multiwalled carbon nanotube-cohesive zone model(MWCNT-CZM);nanoparticles(NPs);reduced graphene oxide(rGO). Data marked with "/" in the table are not mentioned in the cited literature 表 2 样品名称及原料配比
Table 2. Sample names and raw material ratio
Sample name 2g-C3N4/C /g Cu(NO3)2·3H2O NaOH /g 30CuO-2g-C3N4/C 0.07 0.09 0.15 50CuO-2g-C3N4/C 0.05 0.15 0.25 60CuO-2g-C3N4/C 0.04 0.18 0.3 70CuO-2g-C3N4/C 0.03 0.24 0.4 Notes: The prefix "pre-CuO" in the sample nomenclature denotes the mass fraction of CuO in the theoretical calculation relative to the total mass, while the prefix "pre-g-C3N4" represents the mass ratio of g-C3N4 precursors to the pleurorus eryngii template in the g-C3N4/C material. For instance, 50CuO-2g-C3N4/C indicates a three-phase composite material comprising 50% (by weight) CuO and a mass ratio of g-C3N4 precursor to pleurorus eryngii template of 2:1. -
[1] SHRESTHA A, MUSTAFA A A, HTIKE M M, et al. Evolution of energy mix in emerging countries: Modern renewable energy, traditional renewable energy, and non-renewable energy[J]. Renewable Energy, 2022, 199: 419-432. doi: 10.1016/j.renene.2022.09.018 [2] JIANG Long, WANG Liwei, WANG Ruzhu, et al. Experimental investigation on an innovative resorption system for energy storage and upgrade[J]. Energy Conversion and Management, 2017, 138: 651-658. doi: 10.1016/j.enconman.2017.02.014 [3] BADWAL S P S, GIDDEY S S, MUNNINGS C, et al. Emerging electrochemical energy conversion and storage technologies[J]. Frontiers in Chemistry, 2014, 2: 79. [4] BONACCORSO F, COLOMBO L G, YU G H, et al. 2D materials. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage[J]. Science, 2015, 347(6217): 1246501. doi: 10.1126/science.1246501 [5] ZHAO Wenxi, MA Xiaoqing, GAO Lixia, et al. Hierarchical Architecture Engineering of Branch-Leaf-Shaped Cobalt Phosphosulfide Quantum Dots: Enabling Multi-Dimensional Ion-Transport Channels for High-Efficiency Sodium Storage[J]. Advanced Materials, 2024, 36: 2305190. doi: 10.1002/adma.202305190 [6] ZHAO Wenxi, MA Xiaoqing, WANG Xiaodeng, et al. A natural juncus-derived three-dimensional interconnected tubular carbon network decorated with tiny solid-solution metal sulfide nanoparticles achieves efficient sodium storage[J]. Journal of Materials Chemistry, A 2023, 11: 2431-2442. [7] YUE Luchao, LIANG Jie, WU Zhenguo, et al. Progress and perspective of metal phosphide/carbon heterostructure anodes for rechargeable ion batteries[J]. Journal of Materials Chemistry A, 2021, 9: 11879-11907. doi: 10.1039/D1TA01626A [8] ZHANG Lili, ZHAO Xiusong. Carbon-based materials as supercapacitor electrodes[J]. Chemical Society Reviews., 2009, 38: 2520-2531. doi: 10.1039/b813846j [9] BALDUCCI A, DUGAS R, TABERNA P, et al. High temperature carbon-carbon supercapacitor using ionic liquid as electrolyte[J]. Journal of Power Sources, 2007, 165: 922-927. doi: 10.1016/j.jpowsour.2006.12.048 [10] LARGEOT C, PORTET C, CHMIOLA J, et al. Relation between the ion size and pore size for an electric double-layer capacitor[J]. Journal of the American Chemical Society, 2008, 130: 2730-2731. doi: 10.1021/ja7106178 [11] KANDALKAR S, DHAWALE D, KIM C, et al. C. Chemical synthesis of cobalt oxide thin film electrode for supercapacitor application[J]. Synthetic Metals., 2010, 160: 1299-1302. doi: 10.1016/j.synthmet.2010.04.003 [12] GONZALEZ A, GOIKOLEA E, BARRENA J A, et al. Review on supercapacitors: Technologies and materials[J]. Renewable and Sustainable Energy Reviews, 2016, 58: 1189-1206. doi: 10.1016/j.rser.2015.12.249 [13] WANG Li, SHAO Danni, GUO Jianyu, et al. A MXene-coated activated carbon cloth for flexible solid-state supercapacitor[J]. Energy Technology, 2019, 8(3): 1901003. [14] YUE Luchao, MA Chaoqun, YAN Shihai, et al. Improving the intrinsic electronic conductivity of NiMoO4 anodes by phosphorous doping for high lithium storage[J]. Nano Research, 2021, 15: 186-194. [15] GAO Feng, HE Jiaqing, WANG Haowei, et al. Te-mediated electro-driven oxygen evolution reaction[J]. Nano Research Energy, 2022, 1: 9120029. doi: 10.26599/NRE.2022.9120029 [16] ZHAO Wenxi, MA Xiaoqing, ZHENG Yinyuan, et al. Hierarchical wormlike engineering: Self-assembled SnS2 nanoflake arrays decorated on hexagonal FeS2@C nano-spindles enables stable and fast sodium storage[J]. Chemical Engineering Journal, 2023, 459: 141629. doi: 10.1016/j.cej.2023.141629 [17] LIU Minmin, NIU Baitong, GUO Hongxu, et al. Simple preparation of g-C3N4@Ni3C nanosheets and its application in supercapacitor electrode materials, hydrogengeneration via NaBH4 hydrolysis and reduction of p–nitrophenol[J]. Inorganic Chemistry Communications, 2021, 130: 108687. doi: 10.1016/j.inoche.2021.108687 [18] ASAITHAMBIA S, SAKTHIVELA P, KARUPPAIAHA M, et al. The bifunctional performance analysis of synthesized Ce doped SnO2/g-C3N4 composites for asymmetric supercapacitor and visible light photocatalytic applications[J]. Journal of Alloys and Compounds, 2021, 866: 158807. doi: 10.1016/j.jallcom.2021.158807 [19] QIN Fangfang, TIAN Xiaodong, GUO Zhongya, et al. Asphaltene-based porous carbon nanosheet as electrode for supercapacitor[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 15708-15719. [20] SUN Yao, XUE Jianjun, DONG Shengyang, et al. Biomass-derived porous carbon electrodes for high-performance supercapacitors[J]. Journal of Materials Science, 2020, 55: 5166-5176. doi: 10.1007/s10853-019-04343-5 [21] FENG Wenle, ZHANG Feng, WEI Kaiying, et al. Controlled synthesis of porous carbons and their electrochemical performance for supercapacitors[J]. Chemical Physics Letters, 2022, 806: 140066. doi: 10.1016/j.cplett.2022.140066 [22] MOOSAVIFARD S E, KAVERLAVANI S K, SHAMSI J, et al. Hierarchical multi-shelled nanoporous mixed copper cobalt phosphide hollow microspheres as a novel advanced electrode for high-performance asymmetric supercapacitors[J]. Journal of Materials Chemistry A, 2017, 5: 18429-18433. doi: 10.1039/C7TA06514K [23] TAO Wen, WU Xilin, ZHANG Shouwei, et al. Core–shell carbon-coated CuO nanocomposites: A highly stable electrode material for supercapacitors and lithium-ion batteries[J]. Chemistry-An Asian Journal, 2015, 10(3): 595-601. doi: 10.1002/asia.201403295 [24] ZHANG Qianyu, HUANG Lihua, KANG Shifei, et al. CuO/Cu2O nanowire arrays grafted by reduced graphene oxide: synthesis, characterization, and application in photocatalytic reduction of CO2[J]. RSC Advances, 2017, 7: 43642-43647. doi: 10.1039/C7RA07310K [25] YUE Luchao, WANG Dong, WU Zhenguo, et al. Polyrrole-encapsulated Cu2Se nanosheets in situ grown on Cu mesh for high stability sodium-ion battery anode[J]. Chemical Engineering Journal, 2022, 433: 134477. doi: 10.1016/j.cej.2021.134477 [26] CHANDRA M S, SIVA N K, MOHAMMAD A, et al. Enhancing Electrochemical Performance with g-Csub3/subNsub4/sub/CeOsub2/sub Binary Electrode Material[J]. Molecules, 2023, 28(6): 2489-2489. doi: 10.3390/molecules28062489 [27] WANG Yawei, DUAN Yuhui, LIANG Xia, et al. Hierarchical Porous Activated Carbon Derived from Coconut Shell for Ultrahigh-Performance Supercapacitors[J]. Molecules, 2023, 28(20): 7187. doi: 10.3390/molecules28207187 [28] RAGUPATHI V, PANIGRAHI P, SUBRAMANIAM G N. g-C3N4 doped MnS as high performance electrode material for supercapacitor application[J]. Materials Letters, 2019, 246: 88-91. doi: 10.1016/j.matlet.2019.03.054 [29] BOBADE R G, DABKE N B, F SHAIKH S, et al. Concentration-dependent SILAR synthesized Di-bismuth copper oxide nano-materials electrode in asymmetric supercapacitor[J]. Journal of Materials Science: Materials in Electronics, 2024, 35(2): 129. doi: 10.1007/s10854-023-11818-4 [30] CHENG Tsaimu, LEE Pinchun, Chen Meiwei, et al. Active sites-induced decoration of nickel hydroxide nanosheets on copper oxide nanocubes as electroactive material of battery supercapacitor hybrids[J]. Journal of Energy Storage, 2023, 72: 108143. doi: 10.1016/j.est.2023.108143 [31] HARIHARAN G, SHANMUGAPRIYA V, ARUNPANDIYAN S, et al. Studies on sustainable CuO/ZnO@MWCNT electrodes and their supercapacitive performances in redox additive electrolyte[J]. Diamond Related Materials, 2024, 141: 110579. doi: 10.1016/j.diamond.2023.110579 [32] BALASUBRAMANIAN R, RAVI S. Eco-Friendly Synthesis of CuO Nanoparticles by Using Ulva Fasciata Algae Extract for Antibacterial and Supercapacitor Application[J]. International Journal of Membrane Science and Technology, 2023: 1540-1548. [33] KAKANI V, RAMESH S, YADAV M H, et al. Facile synthesis of CuO/NiO/nitrogen doped rGO by ultrasonication for high performance supercapacitors[J]. Journal of Alloys and Compounds, 2020, 847: 156411. doi: 10.1016/j.jallcom.2020.156411 [34] CHATTERJEE S, RAY A, MANDAL M, et al. Synthesis and Characterization of CuO-NiO Nanocomposites for Electrochemical Supercapacitors[J]. Journal of Materials Engineering and Performance, 2020, 29: 1-13. doi: 10.1007/s11665-019-04524-y [35] ZHANG Sijing, LI Yutong, DU Yile, et al. Apple-pomace-based porous biochar as electrode materials for supercapacitors[J]. Diamond and Related Materials, 2022, 130: 109507. doi: 10.1016/j.diamond.2022.109507 [36] XU Jie, LONG Kaizhou, WANG Yue, et al. Fast and facile preparation of metal-doped g-C3N4 composites for catalytic synthesis of dimethyl carbonate[J]. Applied Catalysis A-General, 2015, 496: 1-8. doi: 10.1016/j.apcata.2015.02.025 [37] MAJUMDAR D, GHOSH S. Recent advancements of copper oxide based nanomaterials for supercapacitor applications[J]. Journal of Energy Storage, 2021, 34: 101995. doi: 10.1016/j.est.2020.101995 [38] SOLANKI R G, RAJARAM P. Theoretical analysis of XRD data by X-ray peak profile analysis for estimation of lattice strain and crystallite size and study of the effect of growth temperature in CdS nanoparticles[J]. Materialstoday: Proceedings, 2021, 47(18): 6384-6388.
计量
- 文章访问数: 49
- HTML全文浏览量: 29
- 被引次数: 0