留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CuO-g-C3N4/C复合材料的模板诱导合成及其电化学性能

黄晨阳 刘成宝 郑磊之 陈丰 邱永斌 孟宪荣 陈志刚

黄晨阳, 刘成宝, 郑磊之, 等. CuO-g-C3N4/C复合材料的模板诱导合成及其电化学性能[J]. 复合材料学报, 2024, 42(0): 1-11.
引用本文: 黄晨阳, 刘成宝, 郑磊之, 等. CuO-g-C3N4/C复合材料的模板诱导合成及其电化学性能[J]. 复合材料学报, 2024, 42(0): 1-11.
HUANG Chenyang, LIU Chengbao, ZHENG Leizhi, et al. Template-induced synthesis of CuO-g-C3N4/C composite and its electrochemical property[J]. Acta Materiae Compositae Sinica.
Citation: HUANG Chenyang, LIU Chengbao, ZHENG Leizhi, et al. Template-induced synthesis of CuO-g-C3N4/C composite and its electrochemical property[J]. Acta Materiae Compositae Sinica.

CuO-g-C3N4/C复合材料的模板诱导合成及其电化学性能

基金项目: 江苏省自然科学基金(BK20180103, BK20180971);苏州市科技发展计划项目(民生科技—关键技术应用研究) (SS202036)
详细信息
    通讯作者:

    刘成宝,博士,副教授,硕士研究生导师,研究方向为二维基催化材料、量子点材料和环境功能材料等的结构设计、合成及其环境和能源性能评价。 E-mail:Lcb@mail.usts.edu.cn

  • 中图分类号: TB333; O646

Template-induced synthesis of CuO-g-C3N4/C composite and its electrochemical property

Funds: Natural Science Foundation of Jiangsu Province (BK20180103, BK20180971); Suzhou Science and Technology Development Plan Project (Livelihood Science and Technology-Application Research of Key Technology) (SS202036)
  • 摘要: 多价铜基氧化物的理论比容量较高,但自身导电性和稳定性差;石墨相氮化碳(g-C3N4)稳定性好、氮含量高、合成方法简单,但其电容性能不佳;生物质炭具有较大的比表面积、相对较好的导电性和刚性结构。为使各相优势得到充分发挥,并且尽量弥补其缺陷,本文以尿素为g-C3N4前驱体,杏鲍菇为模板诱导合成了具有疏松多孔结构的g-C3N4/C两相复合材料,后使用水热法将CuO均匀负载在g-C3N4/C表面及孔洞内得到CuO-g-C3N4/C三相复合材料。电化学测试结果表明,CuO-g-C3N4/C的最高比电容为262.8F/g,2000次恒电流充放电循环后的电容保持率为97%,在不同电流密度下仍具有良好的充放电性能,CuO-g-C3N4/C的电容性能和稳定性能较好。这表明CuO和g-C3N4/C的三相复合不仅提高了CuO的导电性,而且使g-C3N4的电容性能得到改善,从而使整体材料的储能性能、导电性和稳定性得到提升。

     

  • 图  1  不同配比的g-C3N4/C和CuO-g-C3N4/C的XRD图谱

    Figure  1.  XRD patterns of g-C3N4/C and CuO-g-C3N4/C with different proportions

    图  2  2 g-C3N4/C的SEM图

    Figure  2.  SEM image of 2 g-C3N4/C

    图  3  50 CuO-2 g-C3N4/C复合材料的SEM图

    Figure  3.  SEM image of 50 CuO-2 g-C3N4/C composites

    图  4  50 CuO-2 g-C3N4/C复合材料的TEM图谱

    Figure  4.  TEM spectra of 50 CuO-2 g-C3N4/C composites

    图  5  50 CuO-2 g-C3N4/C的N2吸附-脱附等温线(a)及其孔径分布(b)

    Figure  5.  N2 adsorption-desorption isotherm (a) and pore size distribution (b) of 50 CuO-2 g-C3N4/C

    图  6  CuO-g-C3N4/C的X射线光电子能谱(XPS)(a)及其Cu 2p(b),C 1s(c),N 1s(d),O 1s(e)的高分辨XPS能谱

    Figure  6.  X-ray photoelectron spectroscopy (XPS)(a) of CuO-g-C3 N4/C and high-resolution XPS spectra of Cu2p (b), C1s (C), N1s (d), and O 1s(e)

    图  7  不同配比的g-C3N4/C和CuO-g-C3N4/C的CV性能测试曲线图

    Figure  7.  CV performance test curves of g-C3N4/C and CuO-g-C3N4/C with different proportions

    图  8  不同配比的g-C3N4/C和CuO-g-C3N4/C的GCD性能测试曲线图

    Figure  8.  GCD performance test curves of g-C3N4/C and CuO-g-C3N4/C with different proportions

    图  9  不同电流密度下g-C3N4/C和CuO-g-C3N4/C的GCD性能测试曲线图

    Figure  9.  GCD performance test curves of g-C3N4/C and CuO-g-C3N4/C at different current densities

    图  10  g-C3N4/C和CuO-g-C3N4/C恒电流充放电性能测试曲线图

    Figure  10.  Test curve of constant-current charge-discharge performance of g-C3N4/C and CuO-g-C3N4/C

    表  1  氧化铜基材料研究进展

    Table  1.   Research progress of copper oxide based materials

    Material Electrolyte Specific capacitance /(F·g−1) Cycling stability Ref.
    Bi2CuO4//AC 1 mol/L KOH-polyvinyl alcohol (PVA) 94.5 92% 29
    Cu2O(Ni(OH)2@Cu2O) 3 mol/L KOH 389.1 70% 30
    Cu2O 3 mol/L KOH 79.7 / 30
    CuO/ZnO@MWCNT – CZM 3 mol/L KOH 199.4 86.09% 31
    CuO NPs 1 mol/L KOH 132 / 32
    CuO/NiO/N-rGO 5 mol/L KOH 220 97% 33
    CuO-NiO 1 mol/L Na2SO4 35.63 86.7% 34
    CuO-g-C3N4/C 3 mol/L KOH 262.8 97 This work
    Notes: activated carbon (AC);multiwalled carbon nanotube-cohesive zone model(MWCNT-CZM);nanoparticles(NPs);reduced graphene oxide(rGO). Data marked with "/" in the table are not mentioned in the cited literature
    下载: 导出CSV

    表  2  样品名称及原料配比

    Table  2.   Sample names and raw material ratio

    Sample name 2g-C3N4/C /g Cu(NO3)2·3H2O NaOH /g
    30CuO-2g-C3N4/C 0.07 0.09 0.15
    50CuO-2g-C3N4/C 0.05 0.15 0.25
    60CuO-2g-C3N4/C 0.04 0.18 0.3
    70CuO-2g-C3N4/C 0.03 0.24 0.4
    Notes: The prefix "pre-CuO" in the sample nomenclature denotes the mass fraction of CuO in the theoretical calculation relative to the total mass, while the prefix "pre-g-C3N4" represents the mass ratio of g-C3N4 precursors to the pleurorus eryngii template in the g-C3N4/C material. For instance, 50CuO-2g-C3N4/C indicates a three-phase composite material comprising 50% (by weight) CuO and a mass ratio of g-C3N4 precursor to pleurorus eryngii template of 2:1.
    下载: 导出CSV
  • [1] SHRESTHA A, MUSTAFA A A, HTIKE M M, et al. Evolution of energy mix in emerging countries: Modern renewable energy, traditional renewable energy, and non-renewable energy[J]. Renewable Energy, 2022, 199: 419-432. doi: 10.1016/j.renene.2022.09.018
    [2] JIANG Long, WANG Liwei, WANG Ruzhu, et al. Experimental investigation on an innovative resorption system for energy storage and upgrade[J]. Energy Conversion and Management, 2017, 138: 651-658. doi: 10.1016/j.enconman.2017.02.014
    [3] BADWAL S P S, GIDDEY S S, MUNNINGS C, et al. Emerging electrochemical energy conversion and storage technologies[J]. Frontiers in Chemistry, 2014, 2: 79.
    [4] BONACCORSO F, COLOMBO L G, YU G H, et al. 2D materials. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage[J]. Science, 2015, 347(6217): 1246501. doi: 10.1126/science.1246501
    [5] ZHAO Wenxi, MA Xiaoqing, GAO Lixia, et al. Hierarchical Architecture Engineering of Branch-Leaf-Shaped Cobalt Phosphosulfide Quantum Dots: Enabling Multi-Dimensional Ion-Transport Channels for High-Efficiency Sodium Storage[J]. Advanced Materials, 2024, 36: 2305190. doi: 10.1002/adma.202305190
    [6] ZHAO Wenxi, MA Xiaoqing, WANG Xiaodeng, et al. A natural juncus-derived three-dimensional interconnected tubular carbon network decorated with tiny solid-solution metal sulfide nanoparticles achieves efficient sodium storage[J]. Journal of Materials Chemistry, A 2023, 11: 2431-2442.
    [7] YUE Luchao, LIANG Jie, WU Zhenguo, et al. Progress and perspective of metal phosphide/carbon heterostructure anodes for rechargeable ion batteries[J]. Journal of Materials Chemistry A, 2021, 9: 11879-11907. doi: 10.1039/D1TA01626A
    [8] ZHANG Lili, ZHAO Xiusong. Carbon-based materials as supercapacitor electrodes[J]. Chemical Society Reviews., 2009, 38: 2520-2531. doi: 10.1039/b813846j
    [9] BALDUCCI A, DUGAS R, TABERNA P, et al. High temperature carbon-carbon supercapacitor using ionic liquid as electrolyte[J]. Journal of Power Sources, 2007, 165: 922-927. doi: 10.1016/j.jpowsour.2006.12.048
    [10] LARGEOT C, PORTET C, CHMIOLA J, et al. Relation between the ion size and pore size for an electric double-layer capacitor[J]. Journal of the American Chemical Society, 2008, 130: 2730-2731. doi: 10.1021/ja7106178
    [11] KANDALKAR S, DHAWALE D, KIM C, et al. C. Chemical synthesis of cobalt oxide thin film electrode for supercapacitor application[J]. Synthetic Metals., 2010, 160: 1299-1302. doi: 10.1016/j.synthmet.2010.04.003
    [12] GONZALEZ A, GOIKOLEA E, BARRENA J A, et al. Review on supercapacitors: Technologies and materials[J]. Renewable and Sustainable Energy Reviews, 2016, 58: 1189-1206. doi: 10.1016/j.rser.2015.12.249
    [13] WANG Li, SHAO Danni, GUO Jianyu, et al. A MXene-coated activated carbon cloth for flexible solid-state supercapacitor[J]. Energy Technology, 2019, 8(3): 1901003.
    [14] YUE Luchao, MA Chaoqun, YAN Shihai, et al. Improving the intrinsic electronic conductivity of NiMoO4 anodes by phosphorous doping for high lithium storage[J]. Nano Research, 2021, 15: 186-194.
    [15] GAO Feng, HE Jiaqing, WANG Haowei, et al. Te-mediated electro-driven oxygen evolution reaction[J]. Nano Research Energy, 2022, 1: 9120029. doi: 10.26599/NRE.2022.9120029
    [16] ZHAO Wenxi, MA Xiaoqing, ZHENG Yinyuan, et al. Hierarchical wormlike engineering: Self-assembled SnS2 nanoflake arrays decorated on hexagonal FeS2@C nano-spindles enables stable and fast sodium storage[J]. Chemical Engineering Journal, 2023, 459: 141629. doi: 10.1016/j.cej.2023.141629
    [17] LIU Minmin, NIU Baitong, GUO Hongxu, et al. Simple preparation of g-C3N4@Ni3C nanosheets and its application in supercapacitor electrode materials, hydrogengeneration via NaBH4 hydrolysis and reduction of p–nitrophenol[J]. Inorganic Chemistry Communications, 2021, 130: 108687. doi: 10.1016/j.inoche.2021.108687
    [18] ASAITHAMBIA S, SAKTHIVELA P, KARUPPAIAHA M, et al. The bifunctional performance analysis of synthesized Ce doped SnO2/g-C3N4 composites for asymmetric supercapacitor and visible light photocatalytic applications[J]. Journal of Alloys and Compounds, 2021, 866: 158807. doi: 10.1016/j.jallcom.2021.158807
    [19] QIN Fangfang, TIAN Xiaodong, GUO Zhongya, et al. Asphaltene-based porous carbon nanosheet as electrode for supercapacitor[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 15708-15719.
    [20] SUN Yao, XUE Jianjun, DONG Shengyang, et al. Biomass-derived porous carbon electrodes for high-performance supercapacitors[J]. Journal of Materials Science, 2020, 55: 5166-5176. doi: 10.1007/s10853-019-04343-5
    [21] FENG Wenle, ZHANG Feng, WEI Kaiying, et al. Controlled synthesis of porous carbons and their electrochemical performance for supercapacitors[J]. Chemical Physics Letters, 2022, 806: 140066. doi: 10.1016/j.cplett.2022.140066
    [22] MOOSAVIFARD S E, KAVERLAVANI S K, SHAMSI J, et al. Hierarchical multi-shelled nanoporous mixed copper cobalt phosphide hollow microspheres as a novel advanced electrode for high-performance asymmetric supercapacitors[J]. Journal of Materials Chemistry A, 2017, 5: 18429-18433. doi: 10.1039/C7TA06514K
    [23] TAO Wen, WU Xilin, ZHANG Shouwei, et al. Core–shell carbon-coated CuO nanocomposites: A highly stable electrode material for supercapacitors and lithium-ion batteries[J]. Chemistry-An Asian Journal, 2015, 10(3): 595-601. doi: 10.1002/asia.201403295
    [24] ZHANG Qianyu, HUANG Lihua, KANG Shifei, et al. CuO/Cu2O nanowire arrays grafted by reduced graphene oxide: synthesis, characterization, and application in photocatalytic reduction of CO2[J]. RSC Advances, 2017, 7: 43642-43647. doi: 10.1039/C7RA07310K
    [25] YUE Luchao, WANG Dong, WU Zhenguo, et al. Polyrrole-encapsulated Cu2Se nanosheets in situ grown on Cu mesh for high stability sodium-ion battery anode[J]. Chemical Engineering Journal, 2022, 433: 134477. doi: 10.1016/j.cej.2021.134477
    [26] CHANDRA M S, SIVA N K, MOHAMMAD A, et al. Enhancing Electrochemical Performance with g-Csub3/subNsub4/sub/CeOsub2/sub Binary Electrode Material[J]. Molecules, 2023, 28(6): 2489-2489. doi: 10.3390/molecules28062489
    [27] WANG Yawei, DUAN Yuhui, LIANG Xia, et al. Hierarchical Porous Activated Carbon Derived from Coconut Shell for Ultrahigh-Performance Supercapacitors[J]. Molecules, 2023, 28(20): 7187. doi: 10.3390/molecules28207187
    [28] RAGUPATHI V, PANIGRAHI P, SUBRAMANIAM G N. g-C3N4 doped MnS as high performance electrode material for supercapacitor application[J]. Materials Letters, 2019, 246: 88-91. doi: 10.1016/j.matlet.2019.03.054
    [29] BOBADE R G, DABKE N B, F SHAIKH S, et al. Concentration-dependent SILAR synthesized Di-bismuth copper oxide nano-materials electrode in asymmetric supercapacitor[J]. Journal of Materials Science: Materials in Electronics, 2024, 35(2): 129. doi: 10.1007/s10854-023-11818-4
    [30] CHENG Tsaimu, LEE Pinchun, Chen Meiwei, et al. Active sites-induced decoration of nickel hydroxide nanosheets on copper oxide nanocubes as electroactive material of battery supercapacitor hybrids[J]. Journal of Energy Storage, 2023, 72: 108143. doi: 10.1016/j.est.2023.108143
    [31] HARIHARAN G, SHANMUGAPRIYA V, ARUNPANDIYAN S, et al. Studies on sustainable CuO/ZnO@MWCNT electrodes and their supercapacitive performances in redox additive electrolyte[J]. Diamond Related Materials, 2024, 141: 110579. doi: 10.1016/j.diamond.2023.110579
    [32] BALASUBRAMANIAN R, RAVI S. Eco-Friendly Synthesis of CuO Nanoparticles by Using Ulva Fasciata Algae Extract for Antibacterial and Supercapacitor Application[J]. International Journal of Membrane Science and Technology, 2023: 1540-1548.
    [33] KAKANI V, RAMESH S, YADAV M H, et al. Facile synthesis of CuO/NiO/nitrogen doped rGO by ultrasonication for high performance supercapacitors[J]. Journal of Alloys and Compounds, 2020, 847: 156411. doi: 10.1016/j.jallcom.2020.156411
    [34] CHATTERJEE S, RAY A, MANDAL M, et al. Synthesis and Characterization of CuO-NiO Nanocomposites for Electrochemical Supercapacitors[J]. Journal of Materials Engineering and Performance, 2020, 29: 1-13. doi: 10.1007/s11665-019-04524-y
    [35] ZHANG Sijing, LI Yutong, DU Yile, et al. Apple-pomace-based porous biochar as electrode materials for supercapacitors[J]. Diamond and Related Materials, 2022, 130: 109507. doi: 10.1016/j.diamond.2022.109507
    [36] XU Jie, LONG Kaizhou, WANG Yue, et al. Fast and facile preparation of metal-doped g-C3N4 composites for catalytic synthesis of dimethyl carbonate[J]. Applied Catalysis A-General, 2015, 496: 1-8. doi: 10.1016/j.apcata.2015.02.025
    [37] MAJUMDAR D, GHOSH S. Recent advancements of copper oxide based nanomaterials for supercapacitor applications[J]. Journal of Energy Storage, 2021, 34: 101995. doi: 10.1016/j.est.2020.101995
    [38] SOLANKI R G, RAJARAM P. Theoretical analysis of XRD data by X-ray peak profile analysis for estimation of lattice strain and crystallite size and study of the effect of growth temperature in CdS nanoparticles[J]. Materialstoday: Proceedings, 2021, 47(18): 6384-6388.
  • 加载中
计量
  • 文章访问数:  49
  • HTML全文浏览量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-25
  • 修回日期:  2024-06-08
  • 录用日期:  2024-06-28
  • 网络出版日期:  2024-07-15

目录

    /

    返回文章
    返回