Preparation and properties of swelling-resistant polyperfluoroethylene propylene/polytetrafluoroethylene composite film
-
摘要: 以聚四氟乙烯(PTFE)纤维膜为支撑层的纳滤膜常用于非极性有机溶剂过滤,但PTFE纤维在溶剂中易产生溶胀现象,导致膜过滤效能变差。本文提出以聚全氟乙丙烯(FEP)乳液为后整理剂,经浸渍涂层处理提升PTFE纤维膜耐溶胀性能的策略。分析FEP后整理提升PTFE纤维膜耐溶胀性的原理,探究FEP质量分数和烘燥温度对FEP/PTFE复合膜溶胀性能的影响规律,考察FEP与PTFE纤维膜间的结合牢度及FEP/PTFE复合膜的分离性能。结果表明:将FEP施加于PTFE纤维膜上,烘燥处理可使FEP熔融,进而实现对PTFE微原纤的包裹,从而提升PTFE纤维的尺寸稳定性。FEP/PTFE复合膜在正己烷中浸泡7 d后的表观形貌、力学性能、溶剂通量衰减变化情况均优于纯PTFE纤维膜,且随着FEP质量分数和烘燥温度的增加,FEP在PTFE纤维膜上的附着面积也越大,稳定性改善程度越明显。FEP/PTFE复合膜经超声清洗6 h后质量损失率为±0.27%,表明FEP与PTFE纤维间的界面相容性好、结合强度较高。在正己烷溶剂中浸泡7 d前后的FEP/PTFE复合膜对300 nm SiO2污染物的截留率均高达99%以上,在四种典型非极性有机溶剂环境体系浸泡7 d后截留率也基本保持不变,表现出了优异的过滤性能。本文的研究结果可为PTFE基耐有机溶剂分离膜的推广和应用提供策略支持。Abstract: Nanofiltration membranes with polytetrafluoroethylene (PTFE) fiber membranes as the support layer are commonly used for non-polar organic solvent filtration, but PTFE fibers are prone to swelling phenomenon in solvents, which leads to the deterioration of membrane filtration efficiency. This paper proposes a strategy to improve the swelling resistance of the PTFE fiber membrane by impregnating the coating with polyperfluoroethylene propylene (FEP) emulsion as the finishing agent. The principle of improving the swelling resistance of PTFE fiber membrane after FEP finishing was analyzed, the effects of FEP mass fraction and sintering temperature on the swelling performance of FEP/PTFE composite film was investigated, and the bonding fastness between FEP and PTFE fiber film and the separation performance of FEP/PTFE composite film were examined. The results show that FEP is applied to the PTFE fiber film, and the sintering treatment makes FEP melt to realize the wrapping of PTFE micro primary fibers, thus enhancing the dimensional stability of PTFE fibers. The changes in the apparent morphology, mechanical properties, and solvent flux of FEP/PTFE composite membranes after 7 d n-hexane immersion experiments are better than those of PTFE-based membranes, and with the increase of the mass fraction of FEP and the drying temperature, the greater the area of FEP attached to PTFE fiber membrane, the more obvious the stability improvement. The mass loss rate of the FEP/PTFE composite membrane after ultrasonic cleaning for 6 h is ±0.27%, with good interfacial compatibility and excellent bonding fastness. After FEP finishing, the rejection rate of 300nm SiO2 pollutants in FEP/PTFE composite membrane is as high as 99% before and after soaking in n-hexane solvent for 7 days, and the rejection rate is basically unchanged after soaking in four typical non-polar organic solvent environmental systems for 7 days. The results provide strategic support for popularizing and applying PTFE-based organic solvent-resistant separation membranes.
-
图 9 FEP/PTFE复合膜的结合牢度测试:(a)原膜的FE-SEM图像,(b)超声6 h后膜的FE-SEM图像,(a1、b1)膜截面的FE-SEM图像(c)红外光谱图
Figure 9. Binding fastness test of FEP/PTFE composite membranes before and after ultrasonic testing (a) FE-SEM images of the primary membrane, (b) FE-SEM images of the membrane after 6 h of ultrasound, (a1、b1) FE-SEM images of Membrane cross-section,(c)Infrared spectrograms
表 1 不同聚全氟乙丙烯(FEP)/聚四氟乙烯(PTFE)复合膜的制备参数
Table 1. Preparation parameters of different polyperfluoroethylene propylene (FEP)/ polytetrafluoroethylene (PTFE) composite films
Membrane samples (before soaking) Mass fraction of FEP/wt% Sintering temperature /℃ Membrane samples
(after soaking)PTFE 0 300 PTFE-7 d 1wt%FEP/PTFE 1 300 1wt%FEP/PTFE-7 d 2wt%FEP/PTFE 2 300 2wt%FEP/PTFE-7 d 3wt%FEP/PTFE 3 300 3wt%FEP/PTFE-7 d 4wt%FEP/PTFE 4 300 4wt%FEP/PTFE-7 d 3wt%FEP/PTFE-25℃ 3 25 3wt%FEP/PTFE-25℃-7 d 3wt%FEP/PTFE-280℃ 3 280 3wt%FEP/PTFE-280℃-7 d 3wt%FEP/PTFE-320℃ 3 320 3wt%FEP/PTFE-320℃-7 d 3wt%FEP/PTFE-360℃ 3 360 3wt%FEP/PTFE-360℃-7 d 表 2 PTFE纤维膜在非极性溶剂浸泡7 d后溶胀比
Table 2. Swelling ratio of PTFE fiber film soaked in non-polar solvent for 7 d
Non-polar solvent Swelling ratio of PTFE fiber film/% N-hexane 1.99 Tetrahydrofuran 1.01 Trichloromethane 1.03 -
[1] JATOI A H, KIM K H, KHAN M A, et al. Functionalized graphene oxide-based lamellar membranes for organic solvent nanofiltration applications[J]. RSC Advances, 2023, 13(19): 12695-12702. doi: 10.1039/D3RA00223C [2] SÁNCHEZ-ARÉVALO C M, VINCENT-VELA M C, LUJÁN-FACUNDO M J, et al. Ultrafiltration with organic solvents: A review on achieved results, membrane materials and challenges to face[J]. Process Safety and Environmental Protection, 2023, 177: 118-137. doi: 10.1016/j.psep.2023.06.073 [3] XIAO H, FENG Y, GOUNDRY W R F, et al. Organic Solvent Nanofiltration in Pharmaceutical Applications[J]. Organic Process Research & Development, 2024, 28(4): 891-923. [4] BASTIN M, BOGAERT K, DOM E, et al. Towards fully epoxy-based thin film composite membranes for solvent-resistant and solvent-tolerant nanofiltration[J]. Journal of Membrane Science, 2023, 683: 121813. doi: 10.1016/j.memsci.2023.121813 [5] 王思思, 赵洋, 程羽君, 等. 耐有机溶剂型分离膜的制备及应用研究进展[J]. 高分子材料科学与工程, 2024, 40(1): 159-167.Wang Sisi, Zhao Yang, Cheng Yujun, et al. Progress in Research of Preparation and Application of Organic Solvent Resistant Separation Membranes[J]. Polymer Materials Science & Engineering, 2024, 40(1): 159-167(in Chinese). [6] MA K, LI X, XIA X, et al. Fluorinated solvent resistant nanofiltration membrane prepared by alkane / ionic liquid interfacial polymerization with excellent solvent resistance[J]. Journal of Membrane Science, 2023, 673: 121486. doi: 10.1016/j.memsci.2023.121486 [7] KIM S. Sustainable fabrication of solvent resistant biodegradable cellulose membranes using green solvents[J]. Chemical Engineering Journal, 2024, 494: 153201 doi: 10.1016/j.cej.2024.153201 [8] WANG X lei, WANG Q, XUE Y, et al. Preparation of composite nanofiltration membrane with interlayer for pharmaceutical rejection[J]. Separation and Purification Technology, 2023, 312: 123411. doi: 10.1016/j.seppur.2023.123411 [9] LI P, XIE H, BI Y, et al. Preparation of high flux organic solvent nanofiltration membrane based on polyimide/Noria composite ultrafiltration membrane[J]. Applied Surface Science, 2023, 618: 156650. doi: 10.1016/j.apsusc.2023.156650 [10] REZAEI HOSSEINABADI S, RUTGEERTS L A J, VANKELECOM I F J. Molecular weight resolution of solvent resistant nanofiltration (SRNF) membranes[J]. Journal of Membrane Science, 2023, 683: 121792. doi: 10.1016/j.memsci.2023.121792 [11] GUSTAFSON R D, MCGAUGHEY A L, DING W, et al. Morphological changes and creep recovery behavior of expanded polytetrafluoroethylene (ePTFE) membranes used for membrane distillation[J]. Journal of Membrane Science, 2019, 584: 236-245. doi: 10.1016/j.memsci.2019.04.068 [12] HUANG H, CUI Y, FU Z, et al. Fabrication of Multifunctional Composites with Hydrophobicity, High Thermal Conductivity and Wear Resistance Based on Carbon Fiber/Epoxy Resin Composites[J]. Applied Sciences, 2022, 12(18): 9363. doi: 10.3390/app12189363 [13] HUANG Y, XIAO C, HUANG Q, et al. Robust preparation of tubular PTFE/FEP ultrafine fibers-covered porous membrane by electrospinning for continuous highly effective oil/water separation[J]. Journal of Membrane Science, 2018, 568: 87-96. doi: 10.1016/j.memsci.2018.09.062 [14] FRANCIS V N, CHONG J Y, YANG G, et al. Robust polyamide-PTFE hollow fibre membranes for harsh organic solvent nanofiltration[J]. Chemical Engineering Journal, 2023, 452: 139333. doi: 10.1016/j.cej.2022.139333 [15] XIANG X, CHEN D, LI N, et al. PVDF/PLA electrospun fiber membrane impregnated with metal nanoparticles for emulsion separation, surface antimicrobial, and antifouling activities[J]. Science China Technological Sciences, 2023, 66(5): 1461-1470. doi: 10.1007/s11431-022-2325-2 [16] 中国国家标准化管理委员会. 塑料-耐液体化学试剂性能的测定: GB/T 11547-2008[S]. 北京: 中国标准出版社, 2008.Standardization Administration of the People’s Republic of China. Plastic-Methods of test for the determination of the effects of immersion in liquid chemicals: GB/T 11547-2008[S]. Beijing: China Standards Press, 2008. (in Chinese). [17] ZHANG X, LI T, WANG Z, et al. Polar aprotic solvent-resistant nanofiltration membranes generated by flexible-chain binding interfacial polymerization onto PTFE substrate[J]. Journal of Membrane Science, 2023, 668: 121294. doi: 10.1016/j.memsci.2022.121294 [18] SHIN S J, PARK Y I, PARK H, et al. Solvent-resistant crosslinked polybenzimidazole membrane for use in enhanced molecular separation[J]. Journal of Membrane Science, 2024, 695: 122463. doi: 10.1016/j.memsci.2024.122463 [19] FENG S, ZHONG Z, WANG Y, et al. Progress and perspectives in PTFE membrane: Preparation, modification, and applications[J]. Journal of Membrane Science, 2018, 549: 332-349. doi: 10.1016/j.memsci.2017.12.032 [20] YU S. Pore structure optimization of electrospun PTFE nanofiber membrane and its application in membrane emulsification[J]. Separation and Purification Technology, 2020, 251: 117297. doi: 10.1016/j.seppur.2020.117297 [21] XU L, YANG X, FU X, et al. Fluorinated epoxy based superhydrophobic coating with robust self-healing and anticorrosive performances[J]. Progress in Organic Coatings, 2022, 171: 107045. doi: 10.1016/j.porgcoat.2022.107045 [22] HUANG A, LIU F, CUI Z, et al. Novel PTFE/CNT composite nanofiber membranes with enhanced mechanical, crystalline, conductive, and dielectric properties fabricated by emulsion electrospinning and sintering[J]. Composites Science and Technology, 2021, 214: 108980. doi: 10.1016/j.compscitech.2021.108980 [23] XU D, LUO X, JIN P, et al. A novel ceramic-based thin-film composite nanofiltration membrane with enhanced performance and regeneration potential[J]. Water Research, 2022, 215: 118264. doi: 10.1016/j.watres.2022.118264 [24] ELABOUDI I. Comparing the sorption kinetics of poly-tetrafluoroethylene processed either by extrusion or spark plasma sintering[J]. 2020, 190: 122192. [25] HEIDARI A A, MAHDAVI H, KHODAEI KAHRIZ P. Thin film composite solvent resistant nanofiltration membrane via interfacial polymerization on an engineered polyethylene membrane support coated with polydopamine[J]. Journal of Membrane Science, 2021, 634: 119406. doi: 10.1016/j.memsci.2021.119406 [26] LIU Z, DENG X, LIN L, et al. A tris(hydroxymethyl)aminomethane-modified polyimide membrane with efficient organic solvent resistant performance and high separation selectivity for dye/salt separation[J]. Desalination, 2023, 549: 116325. doi: 10.1016/j.desal.2022.116325
计量
- 文章访问数: 21
- HTML全文浏览量: 19
- 被引次数: 0