留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液下超双疏性Cu2O薄膜的制备及其油水乳液选择性分离性能

展玉珍 刘长松 付永强 栗心明 闫旭

展玉珍, 刘长松, 付永强, 等. 液下超双疏性Cu2O薄膜的制备及其油水乳液选择性分离性能[J]. 复合材料学报, 2024, 42(0): 1-10.
引用本文: 展玉珍, 刘长松, 付永强, 等. 液下超双疏性Cu2O薄膜的制备及其油水乳液选择性分离性能[J]. 复合材料学报, 2024, 42(0): 1-10.
ZHAN Yuzhen, LIU Changsong, FU Yongqiang, et al. Preparation of under-liquid superamphiphobic Cu2O films and selective separation performance of oil-water emulsions[J]. Acta Materiae Compositae Sinica.
Citation: ZHAN Yuzhen, LIU Changsong, FU Yongqiang, et al. Preparation of under-liquid superamphiphobic Cu2O films and selective separation performance of oil-water emulsions[J]. Acta Materiae Compositae Sinica.

液下超双疏性Cu2O薄膜的制备及其油水乳液选择性分离性能

基金项目: 山东省高等学校青创科技支持计划项目(2019KJB010)和国家自然科学基金面上项目(51875299)
详细信息
    通讯作者:

    刘长松,博士,教授,硕士生导师,研究方向为:表面技术与纳米材料, E-mail:66218483@qq.com

  • 中图分类号: TG178;TB333

Preparation of under-liquid superamphiphobic Cu2O films and selective separation performance of oil-water emulsions

Funds: Shandong Province Higher Education Institutions Entrepreneurship and Technology Support Program Project (2019KJB010) and National Natural Science Foundation General Project (51875299)
  • 摘要: 为了实现液下超双疏材料选择性分离油水乳液,本文从尺寸筛分、润湿性两方面入手制备Cu2O膜以解决油水乳液难分离现象。采用恒电位电化学沉积法在不锈钢网(SSM)表面沉积氧化亚铜(Cu2O)结构薄膜(Cu2O@SSM),该膜无需低表面能物质修饰,即可具有液下超双疏特性和良好的乳液选择性分离性能。根据“尺寸筛分”效应,通过在不同目数原始不锈钢网上镀Cu2O,探究不同孔径尺寸的Cu2O@SSM膜对乳液分离效果的影响,得出可实现油水乳液分离的膜孔径尺寸。利用SEM、EDS、XRD、接触角测量仪对其表面微观形貌、成分和润湿性能进行表征,红外光谱含油量分析仪和卡尔费休水分测定仪测定分离前后乳液的油浓度和水浓度。结果表明Cu2O@SSM膜在空气中油、水接触角均为0°,呈现超亲状态,水下油接触角(UWOCA)和油下水接触角(UOWCA)均超过150°,呈现液下超双疏状态,且该自适应润湿性Cu2O@SSM膜用水或油预润湿即可实现油水乳液的选择性分离,即使对含表面活性剂乳液的分离效率仍在96%以上。因此,本文所制备的液下超双疏Cu2O@SSM膜,对油包水乳液和水包油乳液均表现出良好的选择性分离性能,为乳液选择性分离方面的研究提供了新思路。

     

  • 图  1  实验步骤示意图

    Figure  1.  Schematic diagram of experimental steps

    图  2  乳液分离装置

    Figure  2.  Emulsion separator

    图  3  原始不锈钢网(SSM)和Cu2O@SSM复合膜的SEM图像(a-f)及表面形貌放大图像(g)

    Figure  3.  SEM images (a-f) and enlarged surface topography images (g) of the original stainless steel mesh (SSM) and Cu2O@SSM composite film

    图  4  原始不锈钢网和Cu2O@SSM膜XRD图像

    Figure  4.  XRD results of original stainless steel mesh and Cu2O@SSM films

    图  5  Cu2O@SSM膜的EDS图像

    Figure  5.  EDS images of Cu2O@SSM films

    图  6  原始不锈钢网与Cu2O@SSM膜接触角图像

    Figure  6.  CA images of original stainless steel mesh and Cu2O@SSM film

    图  7  乳液分离图像:(a) 分离过程图(b) Cu2O@SSM膜图 (c) 水包油乳液(d) 油包水乳液

    Figure  7.  Emulsion separation (a) separation process (b) film (c)water in oil emulsion (d) oil in water emulsion

    图  8  有/无表面活性剂水包油乳液分离对比图

    Figure  8.  Comparison of oil in water emulsion separations with/without surfactant

    图  9  有/无表面活性剂油包水乳液分离对比图

    Figure  9.  Comparison water of in oil emulsion separations with/without surfactant

    图  10  乳液分离机制图

    Figure  10.  Separation mechanism of lotion

    图  11  Cu2O@SSM膜循环次数与WOCA、分离效率的关系

    Figure  11.  Relationship between the number of cycles and WOCA and separation efficiency on the Cu2O@SSM film

    表  1  不同目数膜分离效果表

    Table  1.   Separation effect of different mesh films

    Sieve pore
    size/μm
    Original pore
    Size/μm
    Cu2O@SSM pore
    size/μm
    Emulsion separation
    effect
    Flux/
    (L·m−2·h−1)
    Immiscible oil-water
    separation effect
    Flux/
    (L·m−2·h−1)
    36 40 14 × - 2120
    18 22 8 × - 1733
    7 10 3 1020 1510
    6.4 8 2 901 1458
    4.5 3 ~0 × - × -
    2.6 2.5 ~0 × - × -
    Notes: “-” means unmeasured separation flux.
    下载: 导出CSV
  • [1] LI L, SHI Y, HUANG Y, et al. The effect of governance on industrial wastewater pollution in China[J]. International Journal of Environmental Research and Public Health, 2022, 19(15): 9316. doi: 10.3390/ijerph19159316
    [2] GUO W, ZHANG S, WU G, et al. Quantitative oil spill risk from offshore fields in the Bohai Sea, China[J]. Science of the total environment, 2019, 688: 494-504. doi: 10.1016/j.scitotenv.2019.06.226
    [3] QIU L, ZHANG J, GUO Z, et al. Asymmetric superwetting stainless steel meshes for on-demand and highly effective oil-water emulsion separation[J]. Separation and Purification Technology, 2021, 273: 118994. doi: 10.1016/j.seppur.2021.118994
    [4] 高德玉, 程志林. 微波原位合成2D Ni-Fe MOF/硅藻土复合材料及其改性聚乙烯醇水凝胶不锈钢筛网油水分离性能[J]. 复合材料学报, 2023, 40(3): 1686-1695.

    GAO Deyu, CHENG Zhilin. Microwave in-situ synthesis of 2D Ni-Fe MOF/diat-omite composite and oil-water separation performance of modified polyvinyl alcohol hydrogel stainless steel screen[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1686-1695(in Chinese).
    [5] XIA C, Li Y, FEI T, et al. Facile one-pot synthesis of superhydrophobic reduced graphene oxide-coated polyurethane sponge at the presence of ethanol for oil-water separation[J]. Chemical Engineer-ing Journal, 2018, 345: 648-658. doi: 10.1016/j.cej.2018.01.079
    [6] GHIASVAND S, RAHMANI A, SAMADI M, et al. Application of polystyrene nanofibers filled with sawdust as separator pads for separation of oil spills[J]. Process Safety and Environmental Protection, 2021, 146: 161-168. doi: 10.1016/j.psep.2020.08.044
    [7] PENG Y, GUO Z. Recent advances in biomimetic thin membranes applied in emulsified oil/water separation[J]. Journal of Materials Chemistry A, 2016, 4(41): 15749-15770. doi: 10.1039/C6TA06922C
    [8] HLAVACEK M. Break-up of oil-in-water emulsions induced by permeation through a microfiltration membrane[J]. Journal of membrane science, 1995, 102: 1-7. doi: 10.1016/0376-7388(94)00192-2
    [9] 王文文. 液下超双疏性材料的制备及其油水分离性能研究 [D]. 吉林大学, 2023.

    WANG Wenwen. Fabrication of underli-quid dual superlyophobic materi-als and the application in oil/water separa-tion [D]. Jilin University, 2023. (in Chinese).
    [10] 王春莹, 齐博浩, 刘长松等. 可控润湿性的ZnO修饰不锈钢网的制备及其油水分离性能[J]. 复合材料学报, 2022, 39(12): 5827-5834.

    WANG Chunying, QI Bohao, Liu Cha-ngsong, et al. Preparation of ZnO modified stainless steel mesh with controllable wettability and its oil-water separation performance[J]. Acta Mater-iae Compositae Sinica, 2022, 39(12): 5827-5834(in Chinese).
    [11] 井一凡, 刘冬志, 高陈陈等. 基于原位聚合构造特殊润湿性复合材料的研究与应用进展 [J/OL]. 复合材料学报, 2023: 1-17. DOI: 11.1801.TB.20231127.1657. 008.

    JING Yifan, LIU Dongzhi, GAO Chen-chen, et al. Progress in research and application of special wettable composite materials based on in situ polymerization [J/OL]. Acta Materiae Compositae Sinica, 2023: 1-17. DOI: 11.1801.TB.20231127. 1657.008. (in Chinese).
    [12] NEINHUIS C, BARTHLOTT W. Characterization and distribution of water-repellent, self-cleaning plant surfaces[J]. Annals of botany, 1997, 79(6): 667-677. doi: 10.1006/anbo.1997.0400
    [13] BARTHLOTT W, NEINHUIS C. Purity of the sacred lotus, or escape from contamin-ation in biological surfaces[J]. Planta, 1997, 202: 1-8. doi: 10.1007/s004250050096
    [14] LIU M, WANG S, WEI Z, et al. Bioinspired design of a superoleophobic and low adhesive water/solid interface[J]. Advan-ced Materials, 2009, 21(6): 665-669. doi: 10.1002/adma.200801782
    [15] FENG L, ZHANG Z, MAI Z, et al. A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water[J]. Angewandte Chemie, 2004, 116(15): 2046-2048. doi: 10.1002/ange.200353381
    [16] HUANG M, SI Y, TANG X, et al. Gravity driven separation of emulsified oil–water mixtures utilizing in situ polymerized superhydrophobic and superoleophilic nanofibrous membranes[J]. Journal of Materials Chemistry A, 2013, 1(45): 14071-14074. doi: 10.1039/c3ta13385k
    [17] XUE Z, WANG S, LIN L, et al. A novel superhydro-philic and underwater super-oleophobichydrogel-coated mesh for oil/-water separation[J]. Advanced Materials, 2011, 23(37): 4270-4273. doi: 10.1002/adma.201102616
    [18] LI P, GUO M, LI Z, et al. Preparation of Cu2S@ SSM composite membrane and its oil-water separation performance[J]. Journal of Functional Materials /Gong-neng Cailiao, 2022, 53 (11).
    [19] WANG W, LIN J, CHENG J, et al. "Dual super-amphiphilic modified cellulose acetate nanofiber membranes with highly efficient oil/water separation and excellent antifouling properties[J]. " Journal of hazardous materials, 2020, 385: 121582.
    [20] ASHRAFI Z, LUCIA L, KRAUSE W. Nature-inspired liquid infused systems for superwettable surface energies[J]. ACS applied materials & interfaces, 2019, 11(24): 21275-21293.
    [21] TIAN X, JOKINEN V, LI J, et al. Unusual dual superlyophobic surfaces in oil–water systems: the design principles[J]. Advanced Materials, 2016, 28(48): 10652-10658. doi: 10.1002/adma.201602714
    [22] WANG Q, WANGg Y, WANG B, et al. Under-liquid dual superlyophobic nanofibrous polymer membranes achieved by coating thin-film composites: a design principle[J]. Chemical Science, 2019, 10(25): 6382-6389. doi: 10.1039/C9SC01607D
    [23] KANG Y, JIAO S, WANG B, et al. PVDF-modified TiO2 nanowires membrane with underliquid dual superlyophobic property for switchable separation of oil–water emulsions[J]. ACS Applied Materials & Interfaces, 2020, 12(36): 40925-40936.
    [24] WANG W, KANG Y, CUI C, et al. Fabrication of underliquid dual superlyophobic membrane via anchoring polyethersulfo-ne nanoparticles on Zn-Ni-Co layered double hydroxide (LDH) nanowires with stainless steel mesh as supporter[J]. Separation and Purification Technology, 2022, 294: 121148. doi: 10.1016/j.seppur.2022.121148
    [25] GUO S, FANG Y, DONG S, et al. Template-less, surfactantless, electroche-mical rout-e to a cuprous oxide microcar-ystal: from octahedra to monodisperse colloid sph-eres[J]. Inorganic chemistry, 2007, 46(23): 9537-9539. doi: 10.1021/ic7016193
    [26] SUN F, GUO Y, TIAN Y, et al. The effect of additives on the Cu2O crystal morphology in acetate bath by electrodeposition[J]. Journal of crystal growth, 2008, 310(2): 318-323. doi: 10.1016/j.jcrysgro.2007.11.010
    [27] KUO C H, HUANG M H. Morpholo-gically controlled synthesis of Cu2O nanocrystals and their properties[J]. Nano Today, 2010, 5(2): 106-116. doi: 10.1016/j.nantod.2010.02.001
    [28] 孙芳. 电沉积制备氧化亚铜薄膜及其性能研究 [D]. 吉林大学, 2008.

    SUN Fang. The preparation and perfor-mance investigation of Cu2O thin films by electrodeposition [D]. Jilin University, 2008. (in Chinese).
    [29] LEOPOLD S, HERRANEN M, CARLSSON J O, et al. In situ pH measurement of the self-oscillating Cu (II)–lactate system using an electropolymerised polyaniline film as a micro pH sensor[J]. Journal of Electroanalytical Chemistry, 2003, 547(1): 45-52. doi: 10.1016/S0022-0728(03)00187-6
    [30] LI J, XU C, GUO C, et al. Underoil superhydrophilic desert sand layer for efficient gravity-directed water-in-oil emulsions separation with high flux[J]. Journal of materials chemistry A, 2018, 6(1): 223-230. doi: 10.1039/C7TA08076J
    [31] YONG J, HUO J, CHEN F, et al. Oil/water separation based on natural materials with super-wettability: recent advances[J]. Physical Chemistry Chemical Physics, 2018, 20(39): 25140-25163. doi: 10.1039/C8CP04009E
    [32] HU L, GAO S, DING X, et al. Photothermal-responsive single-walled carbon nanotu-be-based ultrathin memb-ranes for on/off switchable separation of oil-in-water nanoemulsions[J]. ACS Nano, 2015, 9(5): 4835-4842. doi: 10.1021/nn5062854
    [33] LIPP P, LEE C H, FANE A G, et al. A fundamental study of the ultrafiltration of oil-water emulsions[J]. Journal of Membrane Science, 1988, 36: 161-177. doi: 10.1016/0376-7388(88)80014-0
    [34] LIU K, JIANG L. Multifunctional integration: from biological to bio-inspired materials[J]. ACS Nano, 2011, 5(9): 6786-6790. doi: 10.1021/nn203250y
  • 加载中
计量
  • 文章访问数:  100
  • HTML全文浏览量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-30
  • 修回日期:  2024-04-10
  • 录用日期:  2024-04-14
  • 网络出版日期:  2024-05-11

目录

    /

    返回文章
    返回