Preparation of under-liquid superamphiphobic Cu2O films and selective separation performance of oil-water emulsions
-
摘要: 为了实现液下超双疏材料选择性分离油水乳液,本文从尺寸筛分、润湿性两方面入手制备Cu2O膜以解决油水乳液难分离现象。采用恒电位电化学沉积法在不锈钢网(SSM)表面沉积氧化亚铜(Cu2O)结构薄膜(Cu2O@SSM),该膜无需低表面能物质修饰,即可具有液下超双疏特性和良好的乳液选择性分离性能。根据“尺寸筛分”效应,通过在不同目数原始不锈钢网上镀Cu2O,探究不同孔径尺寸的Cu2O@SSM膜对乳液分离效果的影响,得出可实现油水乳液分离的膜孔径尺寸。利用SEM、EDS、XRD、接触角测量仪对其表面微观形貌、成分和润湿性能进行表征,红外光谱含油量分析仪和卡尔费休水分测定仪测定分离前后乳液的油浓度和水浓度。结果表明Cu2O@SSM膜在空气中油、水接触角均为0°,呈现超亲状态,水下油接触角(UWOCA)和油下水接触角(UOWCA)均超过150°,呈现液下超双疏状态,且该自适应润湿性Cu2O@SSM膜用水或油预润湿即可实现油水乳液的选择性分离,即使对含表面活性剂乳液的分离效率仍在96%以上。因此,本文所制备的液下超双疏Cu2O@SSM膜,对油包水乳液和水包油乳液均表现出良好的选择性分离性能,为乳液选择性分离方面的研究提供了新思路。
-
关键词:
- 油水乳液分离 /
- 选择性分离 /
- 液下超双疏 /
- 尺寸筛分 /
- 自适应润湿性Cu2O@SSM膜
Abstract: In order to achieve the selective separation of oil-water emulsions by under-liquid superamphiphobic materials, the prepared samples were fabricated by considering two aspects: substrate pore size and wettability, to deal with the phenomenon of difficult separation of oil-water emulsions. In this paper, we used electrochemical constant potential deposition method to deposit the Cu2O film with the rough structure on the surface of stainless steel mesh (SSM), which abbreviated as Cu2O@SSM. The prepared sample of Cu2O@SSM showed the typical characteristics of under-liquid superamphiphobic, and it can easily separate the lotion without the modification of low surface energy materials. According to the size screening effect, the pore size was reduced by coating Cu2O on stainless steel mesh with different meshes, so as to explore the effect of Cu2O@SSM film with different pore sizes on the separation performance of emulsion. Besides, the surface morphology, composition, and wetting performance of the products were characterized using the scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and contact angle measurement, respectively. The water and oil droplets on the surface of Cu2O@SSM showed both superhydrophilic and superoleophilic state with contact angle near to 0° in air. Moreover, the contact angle of underwater superoleophobic and underoil superhydrophobicity exceeded 150°, indicating an under-liquid dual superlyophobic state. By pre-wetting the prepared sample surface with water or oil, the adaptive wettability Cu2O@SSM sample can realize the selective separation of oil-water lotion, and the separation efficiency of oil-water lotion is more than 96 %. The Cu2O@SSM film shows the typical selective separation behaviors, which provides a new idea for the selective separation of oil/water emulsions. -
表 1 不同目数膜分离效果表
Table 1. Separation effect of different mesh films
Sieve pore
size/μmOriginal pore
Size/μmCu2O@SSM pore
size/μmEmulsion separation
effectFlux/
(L·m−2·h−1)Immiscible oil-water
separation effectFlux/
(L·m−2·h−1)36 40 14 × - √ 2120 18 22 8 × - √ 1733 7 10 3 √ 1020 √ 1510 6.4 8 2 √ 901 √ 1458 4.5 3 ~0 × - × - 2.6 2.5 ~0 × - × - Notes: “-” means unmeasured separation flux. -
[1] LI L, SHI Y, HUANG Y, et al. The effect of governance on industrial wastewater pollution in China[J]. International Journal of Environmental Research and Public Health, 2022, 19(15): 9316. doi: 10.3390/ijerph19159316 [2] GUO W, ZHANG S, WU G, et al. Quantitative oil spill risk from offshore fields in the Bohai Sea, China[J]. Science of the total environment, 2019, 688: 494-504. doi: 10.1016/j.scitotenv.2019.06.226 [3] QIU L, ZHANG J, GUO Z, et al. Asymmetric superwetting stainless steel meshes for on-demand and highly effective oil-water emulsion separation[J]. Separation and Purification Technology, 2021, 273: 118994. doi: 10.1016/j.seppur.2021.118994 [4] 高德玉, 程志林. 微波原位合成2D Ni-Fe MOF/硅藻土复合材料及其改性聚乙烯醇水凝胶不锈钢筛网油水分离性能[J]. 复合材料学报, 2023, 40(3): 1686-1695.GAO Deyu, CHENG Zhilin. Microwave in-situ synthesis of 2D Ni-Fe MOF/diat-omite composite and oil-water separation performance of modified polyvinyl alcohol hydrogel stainless steel screen[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1686-1695(in Chinese). [5] XIA C, Li Y, FEI T, et al. Facile one-pot synthesis of superhydrophobic reduced graphene oxide-coated polyurethane sponge at the presence of ethanol for oil-water separation[J]. Chemical Engineer-ing Journal, 2018, 345: 648-658. doi: 10.1016/j.cej.2018.01.079 [6] GHIASVAND S, RAHMANI A, SAMADI M, et al. Application of polystyrene nanofibers filled with sawdust as separator pads for separation of oil spills[J]. Process Safety and Environmental Protection, 2021, 146: 161-168. doi: 10.1016/j.psep.2020.08.044 [7] PENG Y, GUO Z. Recent advances in biomimetic thin membranes applied in emulsified oil/water separation[J]. Journal of Materials Chemistry A, 2016, 4(41): 15749-15770. doi: 10.1039/C6TA06922C [8] HLAVACEK M. Break-up of oil-in-water emulsions induced by permeation through a microfiltration membrane[J]. Journal of membrane science, 1995, 102: 1-7. doi: 10.1016/0376-7388(94)00192-2 [9] 王文文. 液下超双疏性材料的制备及其油水分离性能研究 [D]. 吉林大学, 2023.WANG Wenwen. Fabrication of underli-quid dual superlyophobic materi-als and the application in oil/water separa-tion [D]. Jilin University, 2023. (in Chinese). [10] 王春莹, 齐博浩, 刘长松等. 可控润湿性的ZnO修饰不锈钢网的制备及其油水分离性能[J]. 复合材料学报, 2022, 39(12): 5827-5834.WANG Chunying, QI Bohao, Liu Cha-ngsong, et al. Preparation of ZnO modified stainless steel mesh with controllable wettability and its oil-water separation performance[J]. Acta Mater-iae Compositae Sinica, 2022, 39(12): 5827-5834(in Chinese). [11] 井一凡, 刘冬志, 高陈陈等. 基于原位聚合构造特殊润湿性复合材料的研究与应用进展 [J/OL]. 复合材料学报, 2023: 1-17. DOI: 11.1801.TB.20231127.1657. 008.JING Yifan, LIU Dongzhi, GAO Chen-chen, et al. Progress in research and application of special wettable composite materials based on in situ polymerization [J/OL]. Acta Materiae Compositae Sinica, 2023: 1-17. DOI: 11.1801.TB.20231127. 1657.008. (in Chinese). [12] NEINHUIS C, BARTHLOTT W. Characterization and distribution of water-repellent, self-cleaning plant surfaces[J]. Annals of botany, 1997, 79(6): 667-677. doi: 10.1006/anbo.1997.0400 [13] BARTHLOTT W, NEINHUIS C. Purity of the sacred lotus, or escape from contamin-ation in biological surfaces[J]. Planta, 1997, 202: 1-8. doi: 10.1007/s004250050096 [14] LIU M, WANG S, WEI Z, et al. Bioinspired design of a superoleophobic and low adhesive water/solid interface[J]. Advan-ced Materials, 2009, 21(6): 665-669. doi: 10.1002/adma.200801782 [15] FENG L, ZHANG Z, MAI Z, et al. A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water[J]. Angewandte Chemie, 2004, 116(15): 2046-2048. doi: 10.1002/ange.200353381 [16] HUANG M, SI Y, TANG X, et al. Gravity driven separation of emulsified oil–water mixtures utilizing in situ polymerized superhydrophobic and superoleophilic nanofibrous membranes[J]. Journal of Materials Chemistry A, 2013, 1(45): 14071-14074. doi: 10.1039/c3ta13385k [17] XUE Z, WANG S, LIN L, et al. A novel superhydro-philic and underwater super-oleophobichydrogel-coated mesh for oil/-water separation[J]. Advanced Materials, 2011, 23(37): 4270-4273. doi: 10.1002/adma.201102616 [18] LI P, GUO M, LI Z, et al. Preparation of Cu2S@ SSM composite membrane and its oil-water separation performance[J]. Journal of Functional Materials /Gong-neng Cailiao, 2022, 53 (11). [19] WANG W, LIN J, CHENG J, et al. "Dual super-amphiphilic modified cellulose acetate nanofiber membranes with highly efficient oil/water separation and excellent antifouling properties[J]. " Journal of hazardous materials, 2020, 385: 121582. [20] ASHRAFI Z, LUCIA L, KRAUSE W. Nature-inspired liquid infused systems for superwettable surface energies[J]. ACS applied materials & interfaces, 2019, 11(24): 21275-21293. [21] TIAN X, JOKINEN V, LI J, et al. Unusual dual superlyophobic surfaces in oil–water systems: the design principles[J]. Advanced Materials, 2016, 28(48): 10652-10658. doi: 10.1002/adma.201602714 [22] WANG Q, WANGg Y, WANG B, et al. Under-liquid dual superlyophobic nanofibrous polymer membranes achieved by coating thin-film composites: a design principle[J]. Chemical Science, 2019, 10(25): 6382-6389. doi: 10.1039/C9SC01607D [23] KANG Y, JIAO S, WANG B, et al. PVDF-modified TiO2 nanowires membrane with underliquid dual superlyophobic property for switchable separation of oil–water emulsions[J]. ACS Applied Materials & Interfaces, 2020, 12(36): 40925-40936. [24] WANG W, KANG Y, CUI C, et al. Fabrication of underliquid dual superlyophobic membrane via anchoring polyethersulfo-ne nanoparticles on Zn-Ni-Co layered double hydroxide (LDH) nanowires with stainless steel mesh as supporter[J]. Separation and Purification Technology, 2022, 294: 121148. doi: 10.1016/j.seppur.2022.121148 [25] GUO S, FANG Y, DONG S, et al. Template-less, surfactantless, electroche-mical rout-e to a cuprous oxide microcar-ystal: from octahedra to monodisperse colloid sph-eres[J]. Inorganic chemistry, 2007, 46(23): 9537-9539. doi: 10.1021/ic7016193 [26] SUN F, GUO Y, TIAN Y, et al. The effect of additives on the Cu2O crystal morphology in acetate bath by electrodeposition[J]. Journal of crystal growth, 2008, 310(2): 318-323. doi: 10.1016/j.jcrysgro.2007.11.010 [27] KUO C H, HUANG M H. Morpholo-gically controlled synthesis of Cu2O nanocrystals and their properties[J]. Nano Today, 2010, 5(2): 106-116. doi: 10.1016/j.nantod.2010.02.001 [28] 孙芳. 电沉积制备氧化亚铜薄膜及其性能研究 [D]. 吉林大学, 2008.SUN Fang. The preparation and perfor-mance investigation of Cu2O thin films by electrodeposition [D]. Jilin University, 2008. (in Chinese). [29] LEOPOLD S, HERRANEN M, CARLSSON J O, et al. In situ pH measurement of the self-oscillating Cu (II)–lactate system using an electropolymerised polyaniline film as a micro pH sensor[J]. Journal of Electroanalytical Chemistry, 2003, 547(1): 45-52. doi: 10.1016/S0022-0728(03)00187-6 [30] LI J, XU C, GUO C, et al. Underoil superhydrophilic desert sand layer for efficient gravity-directed water-in-oil emulsions separation with high flux[J]. Journal of materials chemistry A, 2018, 6(1): 223-230. doi: 10.1039/C7TA08076J [31] YONG J, HUO J, CHEN F, et al. Oil/water separation based on natural materials with super-wettability: recent advances[J]. Physical Chemistry Chemical Physics, 2018, 20(39): 25140-25163. doi: 10.1039/C8CP04009E [32] HU L, GAO S, DING X, et al. Photothermal-responsive single-walled carbon nanotu-be-based ultrathin memb-ranes for on/off switchable separation of oil-in-water nanoemulsions[J]. ACS Nano, 2015, 9(5): 4835-4842. doi: 10.1021/nn5062854 [33] LIPP P, LEE C H, FANE A G, et al. A fundamental study of the ultrafiltration of oil-water emulsions[J]. Journal of Membrane Science, 1988, 36: 161-177. doi: 10.1016/0376-7388(88)80014-0 [34] LIU K, JIANG L. Multifunctional integration: from biological to bio-inspired materials[J]. ACS Nano, 2011, 5(9): 6786-6790. doi: 10.1021/nn203250y
点击查看大图
计量
- 文章访问数: 131
- HTML全文浏览量: 88
- 被引次数: 0