Effect of thermal aging on the physicochemical and dielectric properties of ethylene-propylene-diene monomer self-fusing insulation
-
摘要: 本文研究了热老化对三元乙丙橡胶(EPDM)自熔式接头绝缘理化性能和介电性能的影响,分析了老化前后试样的分子结构、力学性能、微观结构及介电性能。结果表明:热老化后,EPDM绝缘的分子链发生氧化断裂反应,生成较多的含氧基团,使羰基指数增大。EPDM分子主链断裂造成的分子链柔顺性降低,及黏胶分子间的凝胶化过程,共同导致试样的储能模量和损耗模量升高,损耗因子降低。由于热老化破坏了试样的分子结构,使拉伸性能下降,但自熔式绝缘中的黏胶分子会与交联聚乙烯绝缘表面发生粘结,形成紧密的复合界面,使剥离强度提高。老化后的试样内部极性基团数量增多,转向极化增强,损耗增加。热老化过程中,分子间作用力对载流子的束缚力减弱和黏胶分子的溶胀作用,使载流子更容易跃迁参与导电,体积电导率增大;同时,EPDM分子结构的松散无序性,使电荷更容易迁移,自由电子数量增多,击穿场强降低。
-
关键词:
- 三元乙丙橡胶自熔式绝缘 /
- 热老化 /
- 理化性能 /
- 介电性能 /
- 界面特性
Abstract: The effects of thermal aging on the physicochemical and dielectric properties of EPDM (ethylene-propylene-diene monomer) self-fusing insulation were investigated. The molecular structure, mechanical properties, microstructure, and dielectric performance of the samples before and after aging were analyzed. The results indicate the molecular chains of EPDM insulation are fractured by oxidation, resulting in the formation of a greater number of oxygen-containing groups and an increase in the carbonyl index after thermal aging. The rupture of the main molecular chains reduces the flexibility of EPDM and the gelation process among the adhesive molecules, which lead to the increase of the storage modulus and loss modulus, the decrease of the loss factor. The tensile property is decreased due to the molecular structure of the samples are destroyed during thermal aging, but the adhesive molecules in the self-fusing insulation will bond with the surface of the crosslinked polyethylene insulation to form a tight composite interface, which improves peel strength. The number of polar groups in the aged samples increase, orientation polarization is enhances and the losses increases. In the process of thermal aging, the weakening of intermolecular forces reduces the binding force on charge carriers, and the swelling effect of the adhesive molecules facilitates make it easier for charge carriers to transition and participate in conduction, resulting in an increased volumetric conductivity. Additionally, the loose disorder of the EPDM molecular structure allows for easier charge migration, increases the number of free electrons, and reduces the breakdown strength. -
表 1 EPDM老化前后的红外光谱指数
Table 1. FTIR spectra index of EPDM before and after aging
Sample Methylene
index M1Methyl
index M2Carbonyl
index CBefore aging 0.96 1.58 1.35 After aging 0.74 1.53 2.38 表 2 XLPE/EPDM老化前后的剥离性能
Table 2. Peeling performance of XLPE/EPDM before and after aging
Sample Peeling force/N Peel strength/(N·cm−1) Before aging 16.9 8.5 After aging 29.8 - 表 3 EPDM的活化能
Table 3. Activation energy of EPDM
Sample Activation energy/eV Before aging 0.77 After aging 0.75 表 4 EPDM击穿场强的Weibull分布参数
Table 4. Weibull distribution parameters of breakdown field strength of EPDM
Sample E0/(kV·mm−1) β Before aging 30.02 11.92 After aging 27.35 11.27 Notes: E0 represents the breakdown strength of the sample at 63.2% failure probability; β represents the degree of dispersion of data. -
[1] 董芸滋, 高嫄, 李秀峰, 等. 交联度对XLPE/OMMT纳米复合材料水树枝老化特性的影响[J]. 工程科学与技术, 2023, 55(4): 79-88.DONG Yunzi, GAO Yuan, LI Xiufeng, et al. Effect of crosslinking degree on water-tree aging characteristics of XLPE/OMMT nanocomposites[J]. Advanced Enginee-ring Sciences, 2023, 55(4): 79-88(in Chinese). [2] 张城城, 刘玉健, 范彩伟, 等. 抗氧剂对MPE-XLPE共混物水树枝特性的影响[J]. 复合材料学报, 2023, 40(6): 3331-3340.ZHANG Chengcheng, LIU Yujian, FAN Caiwei, et al. Effect of antioxidant on water tree characteristic of MPE-XLPE blends[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3331-3340(in Chinese). [3] 赵健军, 许庆重, 王文成, 等. 绝缘老化对电缆中间接头界面缺陷处电场分布的影响[J]. 绝缘材料, 2021, 54(7): 67-74.ZHAO Jianjun, XU Qingzhong, Wang Wencheng, et al. Influence of insulation ageing on electric field distribution at interface defects of cable joints[J]. Insulating Materials, 2021, 54(7): 67-74(in Chinese). [4] ZHANG Y F, NIE Y J, LUO B, et al. Optimal design of functionally graded power cable joint utilizing silicone rubber/carbon nanotube composites[J]. IEEE Access, 2021, 9: 123689-123703. doi: 10.1109/ACCESS.2021.3109487 [5] 伊德伦, 郑莹莹, 蒋浩月, 等. 计及硅橡胶应力松弛的电缆接头界面压力演变仿真研究[J]. 高电压技术, 2024, 50(3): 1043-1052.YI Delun, ZHENG Yingying, JIANG Haoyue, et al. Simulation study of interfacial pressure evolution of cable joints considering stress relaxation of silicone rubber[J]. High Voltage Engineering, 2024, 50(3): 1043-1052(in Chinese). [6] 王子健, 周凯, 朱光亚, 等. 基于时频域转换法的配网电缆中间接头受潮诊断[J]. 高电压技术, 2022, 48(6): 2178-2186.WANG Zijian, ZHOU Kai, ZHU Guangya, et al. Moisture diagnosis method for cold-shrinkable intermediate joints of distribution cables based on time-frequency domain conversion[J]. High Voltage Engineering, 2022, 48(6): 2178-2186(in Chinese). [7] 于鑫, 狄健, 叶丽军, 等. 110 kV挤出模注式接头的开发及应用[J]. 绝缘材料, 2018, 51(5): 63-68.YU Xin, DI Jian, YE Lijun, et al. Development and application of 110 kV extrusion molded joint[J]. Insu-lating Materials, 2018, 51(5): 63-68(in Chinese). [8] 王若丞, 贺云逸, 康洪玮, 等. 电缆接头绝缘用硅橡胶热老化及超声特性[J]. 高电压技术, 2021, 47(9): 3181-3188.WANG Ruocheng, HE Yunyi, KANG Hongwei, et al. Thermal aging and ultrasonic characteristics of silicone rubber for cable joint insulation[J]. High Voltage Engineering, 2021, 47(9): 3181-3188(in Chinese). [9] LIU Y, WANG X. Research on property variation of silicone rubber and EPDM rubber under interfacial multi-stresses[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(6): 2027-2035. doi: 10.1109/TDEI.2019.008315 [10] 杨晓红, 许进升, 周长省, 等. 三元乙丙橡胶热氧老化后的力学性能[J]. 北京理工大学学报, 2017, 37(2): 126-130.YANG Xiaohong, XU Jinsheng, ZHOU Changsheng, et al. Microcosmic structure and mechanics performance of EPDM rubber in hot-oxygen aging[J]. Transactions of Beijing Institute of Technology, 2017, 37(2): 126-130(in Chinese). [11] SONG J, WANG Z, JI H, et al. Mechanical behavior of aged EPDM insulation of high-voltage cable joints in thermal-oxidative environment [C] // Proceedings of 3rd International Symposium on Application of Materials Science and Energy Materials(SAMSE 2019), 2019: 221-225. [12] BOUGUEDAD D, MEKHALDI A, JBARA O, et al. Physico-chemical study of thermally aged EPDM used in power cables insulation[J]. IEEE Transactions on Dielec-trics and Electrical Insulation, 2015, 22(6): 3207-3215. doi: 10.1109/TDEI.2015.005227 [13] 中华人民共和国国家发展和改革委员会. 额定电压35kV及以下挤包绝缘电缆用半导电屏蔽料: JB/T 10738—2007[S]. 北京: 机械工业出版社, 2007.National Development and Reform Commission. Semi-conductive shielding compound for power cables of rated voltages up to and including 35kV: JB/T 10738—2007 [S]. Beijing: Machinery Industry Press, 2007(in Chinese). [14] 中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶热空气加速老化和耐热试验: GB/T 3512—2014[S]. 北京: 中国标准出版社, 2014.Standardization Administration of the People’s Republic of China. Rubber, vulcanized or thermoplastic-Accelerated aging and heat resistance test-Air-over method: GB/T 3512—2014[S]. Beijing: China Standards Press, 2014(in Chinese). [15] 中国国家标准化管理委员会. 额定电压1 kV(Um=1.2 kV)到35 kV(Um=40.5 kV)挤包绝缘电力电缆及附件 第2部分: 额定电压6 kV(Um=7.2 kV)和30 kV(Um=36 kV)电缆: GB/T 12706.2—2020[S]. 北京: 中国标准出版社, 2020.Standardization Administration of the People’s Republic of China. Power cables with extruded insulation and their accessories for rated voltages from 1 kV(Um=1.2 kV) up to 35 kV(Um=40.5 kV)-Part 2: Cables for rated voltages from 6 kV(Um=7.2 kV) up to 30 kV(Um=36 kV): GB/T 12706.2−2020[S]. Beijing: China Standards Press, 2020(in Chinese). [16] 中国国家标准化管理委员会. 硫化橡胶或热塑性橡拉伸应力应变性能的测定: GB/T 528−2009[S]. 北京: 中国标准出版社, 2009.Standardization Administration of the People’s Republic of China. Rubber, vulcanized or thermoplastic−Determ-ination of tensile stress-strain properties: GB/T 528−2009[S]. Beijing: China Standards Press, 2009(in Chinese). [17] 许庆重, 李秀峰, 孙光华, 等. 热老化对XLPE/OMMT纳米复合材料微观结构和力学性能的影响[J]. 绝缘材料, 2022, 55(10): 25-32.XU Qingzhong, LI Xiufeng, SUN Guanghua, et al. Effect of thermal ageing on microstructure and mechanical properties of XLPE/OMMT nanocomposites[J]. Insula-ting Materials, 2022, 55(10): 25-32(in Chinese). [18] 徐林, 刘曦非. 不饱和型降冰片烯-三元乙丙橡胶的交联机理[J]. 高分子材料科学与工程, 2021, 37(7): 123-130.XU Lin, LIU Xifei. Crosslinking mechanism of unsat-urated norbornene-EPDM rubber[J]. Polymer Materials Science and Engineering, 2021, 37(7): 123-130(in Chin-ese). [19] 曹海盛, 谢从珍, 王瑞, 等. 基于三相联合分析的XLPE温度频变热老化研究[J]. 绝缘材料, 2020, 53(8): 75-81.CAO Haisheng, XIE Congzhen, WANG Rui, et al. Study on temperature frequency-variable thermal ageing of XLPE based on three-phase joint analysis[J]. Insulating Materials, 2020, 53(8): 75-81(in Chinese). [20] 周凯, 陈泽龙, 李天华, 等. 运行老化XLPE电缆导体屏蔽层侧绝缘缺陷分析[J]. 高电压技术, 2020, 46(1): 187-194.ZHOU Kai, CHEN Zelong, LI Tianhua, et al. Insulation defects at the side of conductor screen layer in service-aged XLPE cables[J]. High Voltage Engineering, 2020, 46(1): 187-194(in Chinese). [21] NASKAR K, KOKOT D, NOORDERMEER J W M. Influence of various stabilizers on ageing of dicumyl peroxide-cured polypropylene/ethylene-propylene-diene thermoplastic vulcanizates[J]. Polymer Degradation and Stability, 2004, 85(2): 831-839. doi: 10.1016/j.polymdegradstab.2004.03.016 [22] 刘英, 汪行, 陈嘉威. 界面多应力作用下乙丙橡胶的特性变化及破坏机理[J]. 西安交通大学学报, 2019, 53(10): 86-95. doi: 10.7652/xjtuxb201910012LIU Ying, WANG Xing, CHEN Jiawei. Performance change and failure mechanism of ethylene propylene-diene monomer under interfacial multi-stresses[J]. Journal of Xi’an Jiaotong university, 2019, 53(10): 86-95(in Chinese). doi: 10.7652/xjtuxb201910012 [23] WANG W Z, QU B J. Photo-and thermo-oxidative degradation of photocrosslinked ethylene–propylene–diene terpolymer[J]. Polymer Degradation and Stability, 2003, 81(3): 531-537(in Chinese). doi: 10.1016/S0141-3910(03)00154-X [24] 谢大荣, 巫松桢. 电工高分子物理[M]. 西安: 西安交通大学出版社, 1990.XIE Darong, WU Songzhen. Electrical polymer physics [M]. Xi'an: Xi'an Jiaotong University Press, 1990(in Chinese). [25] 秦福宁, 邵光磊, 张忠蕾, 等. 电缆中间接头硅橡胶绝缘的理化特性研究[J]. 绝缘材料, 2020, 53(12): 44-49.QIN Funing, SHAO Guanglei, ZHANG Zhonglei, et al. Physical and chemical characteristics of silicone rubber insulation for cable intermediate joint[J]. Insulating Materials, 2020, 53(12): 44-49(in Chinese). [26] 王光照, 杨小慧, 王伟宏. 微纤化纤维素/线性低密度聚乙烯复合材料[J]. 复合材料学报, 2020, 37(1): 67-73.WANG Guangzhao, YANG Xiaohui, WANG weihong. Microfibrillated cellulose/linear low density polyethylene composite[J]. Acta Materiae Compositae Sinica, 2020, 37(1): 67-73(in Chinese). [27] 朱敏. 橡胶化学与物理[M]. 北京: 化学工业出版社, 1984.ZHU Min. Introduction to rubber chemistry and physics[M]. Beijing: Chemical Industry Press, 1984(in Chinese). [28] 熊光耀, 李圣鑫, 李含欣, 等. 基于纳米压入技术的老化橡胶表面力学行为[J]. 高分子材料科学与工程, 2021, 37(9): 109-115.XIONG Guangyao, LI Shengxin, LI Hanxin, et al. Surface mechanical behaviors of aging rubber by nanoindentation technology[J]. Polymer Materials Science and Engineer-ing, 2021, 37(9): 109-115(in Chinese). [29] 王霞, 王华楠, 陈飞鹏, 等. 涂覆硅脂对电缆附件绝缘溶胀机理及影响因素[J]. 高电压技术, 2020, 46(09): 3177-3186.WANG Xia, WANG Huanan, CHEN Penggei, et al. Insulation swelling mechanism and influencing factors of silicone grease coated in cable accessories[J]. High Voltage Engineering 2020, 46(09): 3177-3186. [30] 操卫康, 李喆, 张蓓, 等. 纳米MgO填充浓度和表面处理对纳米MgO/PP理化特性的影响[J]. 绝缘材料, 2016, 49(7): 14-19.CAO Weikang, LI Zhe, ZHANG Bei, et al. Influence of nano-MgO concentration and surface treatment on phy-sicochemical properties of nano-MgO/PP[J]. Insulating Materials, 2016, 49(7): 14-19(in Chinese). [31] 杨晨, 姜亚明, 项赫, 等. 热氧老化对纬编双轴向多层衬纱织物增强复合材料力学性能的影响[J]. 复合材料学报, 2023, 40(1): 96-108.YANG Chen, JIANG Yaming, XIANG He, et al. Effect of thermo-oxidative aging on the mechanical properties of multi-layered biaxial weft knitted fabric reinforced composites[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 96-108(in Chinese). [32] 唐黎明, 赵永强, 畅晓婕. 溶胀下丙烯腈含量影响丁腈橡胶摩擦性能的分子模拟[J]. 弹性体, 2023, 33(4): 31-35. doi: 10.3969/j.issn.1005-3174.2023.04.006TANG Liming, ZHAO Yongqiang, CHANG Xiaojie. Molecular simulation of effect of acrylonitrile content on friction properties of nitrile-butadiene rubber under swelling[J]. China Elastomerics, 2023, 33(4): 31-35(in Chinese). doi: 10.3969/j.issn.1005-3174.2023.04.006 [33] 欧阳本红, 刘松华, 王诗航, 等. 高压交流电缆用交联聚乙烯绝缘料性能对比实验研究[J]. 中国电力, 2021, 54(4): 87-93.OUYANG Benhong, LIU Songhua, WANG Shihang, et al. Comparative experimental study of performance of crosslinked polyethylene insulation materials used for HVAC cables[J]. Electric Power, 2021, 54(4): 87-93(in Chinese). [34] KEMARI Y, MEKHALDI A, TEYSSEDRE G, et al. Correlations between structural changes and dielectric behavior of thermally aged XLPE[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(6): 1859-1866. doi: 10.1109/TDEI.2019.008189 [35] LI X F, YANG Y M, WANG Q, et al. Study on the water-tree ageing characteristics of polyethylene/organic mont-morillonite and crosslinked polyethylene/organic mont-morillonite nanocomposites[J]. High Voltage, 2022, 8(2): 262-273. [36] 王霞, 陈润邦, 陈宇奇, 等. 高低温循环老化协同硅脂溶胀对XLPE/SiR复合介质界面电荷特性的影响 [J/OL]. 高电压技术, 1-92024-09-21]. WANG Xia, CHEN Runbang, CHEN Yuqi, et al. Effect of high and low temperature cycle aging combined with silicone grease swelling on the interface charge charact-eristics of XLPE/SiR[J]. High Voltage Engineering, 1-9(in Chinese). [37] 李想玉, 韩晓东, 张福林, 等. 复合绝缘子芯棒与伞套界面胶粘剂选择及粘接工艺的确定[J]. 电瓷避雷器, 2012, (6): 7-13. doi: 10.3969/j.issn.1003-8337.2012.06.003LI Xiangyu, HAN Xiaodong, ZHANG Fulin, et al. The selection of the interface between composite insulator core rod and housing and the determination of the bonding process[J]. Insulators and Surge Arresters, 2012, (6): 7-13(in Chinese). doi: 10.3969/j.issn.1003-8337.2012.06.003 [38] 金维芳. 电介质物理学[M]. 北京: 机械工业出版社, 1997.JIN Weifang. Dielectric physics[M]. Beijing: Machinery Industry Press, 1997(in Chinese). [39] 张寒, 万保权, 许佐明, 等. 环氧胶浸纸套管绝缘特性的温度敏感性研究[J]. 电瓷避雷器, 2021, (2): 72-77.ZHANG Han, WAN Baoquan, XU Zuoming, et al. Temperature sensitivity of insulation characteristics of epoxy resin impregnated paper bushing[J]. Insulators and Surge Arresters, 2021, (2): 72-77(in Chinese). [40] 李秀峰, 彭云舜, 咸日常, 等. XLPE/OMMT纳米复合材料电导和击穿性能[J]. 高电压技术, 2017, 43(9): 2849-2856.LI Xiufeng, PENG Yunshun, XIAN Richang, et al. Conductivity and breakdown properties on cross-linked polyethylene/montmorillonite nanocomposites[J]. High Voltage Engineering, 2017, 43(9): 2849-2856(in Chinese). [41] 李果, 李秀峰, 申晋, 等. 交联行为对纳米复合电介质电导特性和电气强度的影响[J]. 绝缘材料, 2019, 52(3): 25-30,35.LI Guo, LI Xiufeng, SHEN Jin, et al. Effect of crosslinking behavior on conductivity characteristics and electric strength of nanocomposite dielectrics[J]. Insulat-ing Materials, 2019, 52(3): 25-30,35(in Chinese). [42] 董芸滋, 高嫄, 李秀峰, 等. 交联度对交联聚乙烯/有机化蒙脱土纳米复合材料拉伸性能和介电性能的影响[J]. 电工技术学报, 2023, 38(5): 1154-1165.DONG Yunzi, GAO Yuan, LI Xiufeng, et al. Effect of crosslinking degree on tensile and dielectric properties of cross-linked polyethylene/organic montmorillonite nano-composite material[J]. Transactions of China Electrote-chnical Society, 2023, 38(5): 1154-1165(in Chinese). [43] 范在乾, 咸日常, 边继辉, 等. 硫化体系对硅橡胶热老化性能的影响[J]. 复合材料学报, 2024, 41(3): 1259-1269.FAN Zaiqian, XIAN Richang, BIAN Jihui, et al. Effect of vulcanization system on thermal aging property of silicone rubber[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1259-1269(in Chinese).
计量
- 文章访问数: 32
- HTML全文浏览量: 19
- 被引次数: 0