留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热老化对三元乙丙橡胶自熔式绝缘理化及介电性能的影响

李昊泽 王强 李秀峰 韩圣斌 丁志鹏 董芸滋

李昊泽, 王强, 李秀峰, 等. 热老化对三元乙丙橡胶自熔式绝缘理化及介电性能的影响[J]. 复合材料学报, 2024, 43(0): 1-12.
引用本文: 李昊泽, 王强, 李秀峰, 等. 热老化对三元乙丙橡胶自熔式绝缘理化及介电性能的影响[J]. 复合材料学报, 2024, 43(0): 1-12.
LI Haoze, WANG Qiang, LI Xiufeng, et al. Effect of thermal aging on the physicochemical and dielectric properties of ethylene-propylene-diene monomer self-fusing insulation[J]. Acta Materiae Compositae Sinica.
Citation: LI Haoze, WANG Qiang, LI Xiufeng, et al. Effect of thermal aging on the physicochemical and dielectric properties of ethylene-propylene-diene monomer self-fusing insulation[J]. Acta Materiae Compositae Sinica.

热老化对三元乙丙橡胶自熔式绝缘理化及介电性能的影响

基金项目: 山东省自然科学基金项目(ZR2023ME129);校城融合发展计划项目(2021JSCG0009)
详细信息
    通讯作者:

    李秀峰,博士,副教授,硕士生导师,研究方向为电缆料及电缆附件关键问题与技术、纳米复合电介质特性及应用和电力设备绝缘结构优化设计 E-mail: lixiufeng0910@126.com

  • 中图分类号: TM215;TB332

Effect of thermal aging on the physicochemical and dielectric properties of ethylene-propylene-diene monomer self-fusing insulation

Funds: Natural Science Foundation of Shandong Province in China (ZR2023ME129); School City Integration Development Plan Project (2021JSCG0009)
  • 摘要: 本文研究了热老化对三元乙丙橡胶(EPDM)自熔式接头绝缘理化性能和介电性能的影响,分析了老化前后试样的分子结构、力学性能、微观结构及介电性能。结果表明:热老化后,EPDM绝缘的分子链发生氧化断裂反应,生成较多的含氧基团,使羰基指数增大。EPDM分子主链断裂造成的分子链柔顺性降低,及黏胶分子间的凝胶化过程,共同导致试样的储能模量和损耗模量升高,损耗因子降低。由于热老化破坏了试样的分子结构,使拉伸性能下降,但自熔式绝缘中的黏胶分子会与交联聚乙烯绝缘表面发生粘结,形成紧密的复合界面,使剥离强度提高。老化后的试样内部极性基团数量增多,转向极化增强,损耗增加。热老化过程中,分子间作用力对载流子的束缚力减弱和黏胶分子的溶胀作用,使载流子更容易跃迁参与导电,体积电导率增大;同时,EPDM分子结构的松散无序性,使电荷更容易迁移,自由电子数量增多,击穿场强降低。

     

  • 图  1  三元乙丙橡胶(EPDM)自熔式绝缘材料老化前后的红外光谱图

    Figure  1.  FTIR spectra of ethylene-propylene-diene monomer (EPDM) self-fusing insulation before and after aging

    图  2  EPDM热老化裂解过程示意图

    Figure  2.  Schematic diagram of EPDM thermal aging cracking process

    图  3  EPDM老化前后的动态力学性能,(a) 储能模量,(b) 损耗模量,(c) 损耗因子

    Figure  3.  DMA spectrum of EPDM before and after aging,(a) energy storage modulus,(b) energy consumption modulus,(c) loss factor

    图  4  EPDM老化前后的力学性能

    Figure  4.  Mechanical properties of EPDM before and after aging

    图  5  XLPE/EPDM复合绝缘界面老化前(a)后(b)的偏光显微镜图

    Figure  5.  PLM images of the XLPE/EPDM composite insulation interface before (a) and after (b) aging

    图  6  XLPE/EPDM复合绝缘界面老化前(a)后(b)的SEM图像

    Figure  6.  SEM images of XLPE/EPDM composite insulation interface before (a) and after (b) aging

    图  7  不同温度下EPDM的相对介电常数(a)和介质损耗角正切(b)

    Figure  7.  Relative permittivity (a) and dielectric loss tangent (b) of EPDM at different temperatures

    图  8  EPDM的lnγv~(1000/T)关系图

    Figure  8.  Relationship between lnγv of EPDM and 1000/T

    图  9  EPDM击穿场强的Weibull分布图

    Figure  9.  Weibull distribution diagram of breakdown field strength of EPDM

    表  1  EPDM老化前后的红外光谱指数

    Table  1.   FTIR spectra index of EPDM before and after aging

    Sample Methylene
    index M1
    Methyl
    index M2
    Carbonyl
    index C
    Before aging 0.96 1.58 1.35
    After aging 0.74 1.53 2.38
    下载: 导出CSV

    表  2  XLPE/EPDM老化前后的剥离性能

    Table  2.   Peeling performance of XLPE/EPDM before and after aging

    SamplePeeling force/NPeel strength/(N·cm−1)
    Before aging16.98.5
    After aging29.8-
    下载: 导出CSV

    表  3  EPDM的活化能

    Table  3.   Activation energy of EPDM

    SampleActivation energy/eV
    Before aging0.77
    After aging0.75
    下载: 导出CSV

    表  4  EPDM击穿场强的Weibull分布参数

    Table  4.   Weibull distribution parameters of breakdown field strength of EPDM

    SampleE0/(kV·mm−1)β
    Before aging30.0211.92
    After aging27.3511.27
    Notes: E0 represents the breakdown strength of the sample at 63.2% failure probability; β represents the degree of dispersion of data.
    下载: 导出CSV
  • [1] 董芸滋, 高嫄, 李秀峰, 等. 交联度对XLPE/OMMT纳米复合材料水树枝老化特性的影响[J]. 工程科学与技术, 2023, 55(4): 79-88.

    DONG Yunzi, GAO Yuan, LI Xiufeng, et al. Effect of crosslinking degree on water-tree aging characteristics of XLPE/OMMT nanocomposites[J]. Advanced Enginee-ring Sciences, 2023, 55(4): 79-88(in Chinese).
    [2] 张城城, 刘玉健, 范彩伟, 等. 抗氧剂对MPE-XLPE共混物水树枝特性的影响[J]. 复合材料学报, 2023, 40(6): 3331-3340.

    ZHANG Chengcheng, LIU Yujian, FAN Caiwei, et al. Effect of antioxidant on water tree characteristic of MPE-XLPE blends[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3331-3340(in Chinese).
    [3] 赵健军, 许庆重, 王文成, 等. 绝缘老化对电缆中间接头界面缺陷处电场分布的影响[J]. 绝缘材料, 2021, 54(7): 67-74.

    ZHAO Jianjun, XU Qingzhong, Wang Wencheng, et al. Influence of insulation ageing on electric field distribution at interface defects of cable joints[J]. Insulating Materials, 2021, 54(7): 67-74(in Chinese).
    [4] ZHANG Y F, NIE Y J, LUO B, et al. Optimal design of functionally graded power cable joint utilizing silicone rubber/carbon nanotube composites[J]. IEEE Access, 2021, 9: 123689-123703. doi: 10.1109/ACCESS.2021.3109487
    [5] 伊德伦, 郑莹莹, 蒋浩月, 等. 计及硅橡胶应力松弛的电缆接头界面压力演变仿真研究[J]. 高电压技术, 2024, 50(3): 1043-1052.

    YI Delun, ZHENG Yingying, JIANG Haoyue, et al. Simulation study of interfacial pressure evolution of cable joints considering stress relaxation of silicone rubber[J]. High Voltage Engineering, 2024, 50(3): 1043-1052(in Chinese).
    [6] 王子健, 周凯, 朱光亚, 等. 基于时频域转换法的配网电缆中间接头受潮诊断[J]. 高电压技术, 2022, 48(6): 2178-2186.

    WANG Zijian, ZHOU Kai, ZHU Guangya, et al. Moisture diagnosis method for cold-shrinkable intermediate joints of distribution cables based on time-frequency domain conversion[J]. High Voltage Engineering, 2022, 48(6): 2178-2186(in Chinese).
    [7] 于鑫, 狄健, 叶丽军, 等. 110 kV挤出模注式接头的开发及应用[J]. 绝缘材料, 2018, 51(5): 63-68.

    YU Xin, DI Jian, YE Lijun, et al. Development and application of 110 kV extrusion molded joint[J]. Insu-lating Materials, 2018, 51(5): 63-68(in Chinese).
    [8] 王若丞, 贺云逸, 康洪玮, 等. 电缆接头绝缘用硅橡胶热老化及超声特性[J]. 高电压技术, 2021, 47(9): 3181-3188.

    WANG Ruocheng, HE Yunyi, KANG Hongwei, et al. Thermal aging and ultrasonic characteristics of silicone rubber for cable joint insulation[J]. High Voltage Engineering, 2021, 47(9): 3181-3188(in Chinese).
    [9] LIU Y, WANG X. Research on property variation of silicone rubber and EPDM rubber under interfacial multi-stresses[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(6): 2027-2035. doi: 10.1109/TDEI.2019.008315
    [10] 杨晓红, 许进升, 周长省, 等. 三元乙丙橡胶热氧老化后的力学性能[J]. 北京理工大学学报, 2017, 37(2): 126-130.

    YANG Xiaohong, XU Jinsheng, ZHOU Changsheng, et al. Microcosmic structure and mechanics performance of EPDM rubber in hot-oxygen aging[J]. Transactions of Beijing Institute of Technology, 2017, 37(2): 126-130(in Chinese).
    [11] SONG J, WANG Z, JI H, et al. Mechanical behavior of aged EPDM insulation of high-voltage cable joints in thermal-oxidative environment [C] // Proceedings of 3rd International Symposium on Application of Materials Science and Energy Materials(SAMSE 2019), 2019: 221-225.
    [12] BOUGUEDAD D, MEKHALDI A, JBARA O, et al. Physico-chemical study of thermally aged EPDM used in power cables insulation[J]. IEEE Transactions on Dielec-trics and Electrical Insulation, 2015, 22(6): 3207-3215. doi: 10.1109/TDEI.2015.005227
    [13] 中华人民共和国国家发展和改革委员会. 额定电压35kV及以下挤包绝缘电缆用半导电屏蔽料: JB/T 10738—2007[S]. 北京: 机械工业出版社, 2007.

    National Development and Reform Commission. Semi-conductive shielding compound for power cables of rated voltages up to and including 35kV: JB/T 10738—2007 [S]. Beijing: Machinery Industry Press, 2007(in Chinese).
    [14] 中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶热空气加速老化和耐热试验: GB/T 3512—2014[S]. 北京: 中国标准出版社, 2014.

    Standardization Administration of the People’s Republic of China. Rubber, vulcanized or thermoplastic-Accelerated aging and heat resistance test-Air-over method: GB/T 3512—2014[S]. Beijing: China Standards Press, 2014(in Chinese).
    [15] 中国国家标准化管理委员会. 额定电压1 kV(Um=1.2 kV)到35 kV(Um=40.5 kV)挤包绝缘电力电缆及附件 第2部分: 额定电压6 kV(Um=7.2 kV)和30 kV(Um=36 kV)电缆: GB/T 12706.2—2020[S]. 北京: 中国标准出版社, 2020.

    Standardization Administration of the People’s Republic of China. Power cables with extruded insulation and their accessories for rated voltages from 1 kV(Um=1.2 kV) up to 35 kV(Um=40.5 kV)-Part 2: Cables for rated voltages from 6 kV(Um=7.2 kV) up to 30 kV(Um=36 kV): GB/T 12706.2−2020[S]. Beijing: China Standards Press, 2020(in Chinese).
    [16] 中国国家标准化管理委员会. 硫化橡胶或热塑性橡拉伸应力应变性能的测定: GB/T 528−2009[S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of the People’s Republic of China. Rubber, vulcanized or thermoplastic−Determ-ination of tensile stress-strain properties: GB/T 528−2009[S]. Beijing: China Standards Press, 2009(in Chinese).
    [17] 许庆重, 李秀峰, 孙光华, 等. 热老化对XLPE/OMMT纳米复合材料微观结构和力学性能的影响[J]. 绝缘材料, 2022, 55(10): 25-32.

    XU Qingzhong, LI Xiufeng, SUN Guanghua, et al. Effect of thermal ageing on microstructure and mechanical properties of XLPE/OMMT nanocomposites[J]. Insula-ting Materials, 2022, 55(10): 25-32(in Chinese).
    [18] 徐林, 刘曦非. 不饱和型降冰片烯-三元乙丙橡胶的交联机理[J]. 高分子材料科学与工程, 2021, 37(7): 123-130.

    XU Lin, LIU Xifei. Crosslinking mechanism of unsat-urated norbornene-EPDM rubber[J]. Polymer Materials Science and Engineering, 2021, 37(7): 123-130(in Chin-ese).
    [19] 曹海盛, 谢从珍, 王瑞, 等. 基于三相联合分析的XLPE温度频变热老化研究[J]. 绝缘材料, 2020, 53(8): 75-81.

    CAO Haisheng, XIE Congzhen, WANG Rui, et al. Study on temperature frequency-variable thermal ageing of XLPE based on three-phase joint analysis[J]. Insulating Materials, 2020, 53(8): 75-81(in Chinese).
    [20] 周凯, 陈泽龙, 李天华, 等. 运行老化XLPE电缆导体屏蔽层侧绝缘缺陷分析[J]. 高电压技术, 2020, 46(1): 187-194.

    ZHOU Kai, CHEN Zelong, LI Tianhua, et al. Insulation defects at the side of conductor screen layer in service-aged XLPE cables[J]. High Voltage Engineering, 2020, 46(1): 187-194(in Chinese).
    [21] NASKAR K, KOKOT D, NOORDERMEER J W M. Influence of various stabilizers on ageing of dicumyl peroxide-cured polypropylene/ethylene-propylene-diene thermoplastic vulcanizates[J]. Polymer Degradation and Stability, 2004, 85(2): 831-839. doi: 10.1016/j.polymdegradstab.2004.03.016
    [22] 刘英, 汪行, 陈嘉威. 界面多应力作用下乙丙橡胶的特性变化及破坏机理[J]. 西安交通大学学报, 2019, 53(10): 86-95. doi: 10.7652/xjtuxb201910012

    LIU Ying, WANG Xing, CHEN Jiawei. Performance change and failure mechanism of ethylene propylene-diene monomer under interfacial multi-stresses[J]. Journal of Xi’an Jiaotong university, 2019, 53(10): 86-95(in Chinese). doi: 10.7652/xjtuxb201910012
    [23] WANG W Z, QU B J. Photo-and thermo-oxidative degradation of photocrosslinked ethylene–propylene–diene terpolymer[J]. Polymer Degradation and Stability, 2003, 81(3): 531-537(in Chinese). doi: 10.1016/S0141-3910(03)00154-X
    [24] 谢大荣, 巫松桢. 电工高分子物理[M]. 西安: 西安交通大学出版社, 1990.

    XIE Darong, WU Songzhen. Electrical polymer physics [M]. Xi'an: Xi'an Jiaotong University Press, 1990(in Chinese).
    [25] 秦福宁, 邵光磊, 张忠蕾, 等. 电缆中间接头硅橡胶绝缘的理化特性研究[J]. 绝缘材料, 2020, 53(12): 44-49.

    QIN Funing, SHAO Guanglei, ZHANG Zhonglei, et al. Physical and chemical characteristics of silicone rubber insulation for cable intermediate joint[J]. Insulating Materials, 2020, 53(12): 44-49(in Chinese).
    [26] 王光照, 杨小慧, 王伟宏. 微纤化纤维素/线性低密度聚乙烯复合材料[J]. 复合材料学报, 2020, 37(1): 67-73.

    WANG Guangzhao, YANG Xiaohui, WANG weihong. Microfibrillated cellulose/linear low density polyethylene composite[J]. Acta Materiae Compositae Sinica, 2020, 37(1): 67-73(in Chinese).
    [27] 朱敏. 橡胶化学与物理[M]. 北京: 化学工业出版社, 1984.

    ZHU Min. Introduction to rubber chemistry and physics[M]. Beijing: Chemical Industry Press, 1984(in Chinese).
    [28] 熊光耀, 李圣鑫, 李含欣, 等. 基于纳米压入技术的老化橡胶表面力学行为[J]. 高分子材料科学与工程, 2021, 37(9): 109-115.

    XIONG Guangyao, LI Shengxin, LI Hanxin, et al. Surface mechanical behaviors of aging rubber by nanoindentation technology[J]. Polymer Materials Science and Engineer-ing, 2021, 37(9): 109-115(in Chinese).
    [29] 王霞, 王华楠, 陈飞鹏, 等. 涂覆硅脂对电缆附件绝缘溶胀机理及影响因素[J]. 高电压技术, 2020, 46(09): 3177-3186.

    WANG Xia, WANG Huanan, CHEN Penggei, et al. Insulation swelling mechanism and influencing factors of silicone grease coated in cable accessories[J]. High Voltage Engineering 2020, 46(09): 3177-3186.
    [30] 操卫康, 李喆, 张蓓, 等. 纳米MgO填充浓度和表面处理对纳米MgO/PP理化特性的影响[J]. 绝缘材料, 2016, 49(7): 14-19.

    CAO Weikang, LI Zhe, ZHANG Bei, et al. Influence of nano-MgO concentration and surface treatment on phy-sicochemical properties of nano-MgO/PP[J]. Insulating Materials, 2016, 49(7): 14-19(in Chinese).
    [31] 杨晨, 姜亚明, 项赫, 等. 热氧老化对纬编双轴向多层衬纱织物增强复合材料力学性能的影响[J]. 复合材料学报, 2023, 40(1): 96-108.

    YANG Chen, JIANG Yaming, XIANG He, et al. Effect of thermo-oxidative aging on the mechanical properties of multi-layered biaxial weft knitted fabric reinforced composites[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 96-108(in Chinese).
    [32] 唐黎明, 赵永强, 畅晓婕. 溶胀下丙烯腈含量影响丁腈橡胶摩擦性能的分子模拟[J]. 弹性体, 2023, 33(4): 31-35. doi: 10.3969/j.issn.1005-3174.2023.04.006

    TANG Liming, ZHAO Yongqiang, CHANG Xiaojie. Molecular simulation of effect of acrylonitrile content on friction properties of nitrile-butadiene rubber under swelling[J]. China Elastomerics, 2023, 33(4): 31-35(in Chinese). doi: 10.3969/j.issn.1005-3174.2023.04.006
    [33] 欧阳本红, 刘松华, 王诗航, 等. 高压交流电缆用交联聚乙烯绝缘料性能对比实验研究[J]. 中国电力, 2021, 54(4): 87-93.

    OUYANG Benhong, LIU Songhua, WANG Shihang, et al. Comparative experimental study of performance of crosslinked polyethylene insulation materials used for HVAC cables[J]. Electric Power, 2021, 54(4): 87-93(in Chinese).
    [34] KEMARI Y, MEKHALDI A, TEYSSEDRE G, et al. Correlations between structural changes and dielectric behavior of thermally aged XLPE[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(6): 1859-1866. doi: 10.1109/TDEI.2019.008189
    [35] LI X F, YANG Y M, WANG Q, et al. Study on the water-tree ageing characteristics of polyethylene/organic mont-morillonite and crosslinked polyethylene/organic mont-morillonite nanocomposites[J]. High Voltage, 2022, 8(2): 262-273.
    [36] 王霞, 陈润邦, 陈宇奇, 等. 高低温循环老化协同硅脂溶胀对XLPE/SiR复合介质界面电荷特性的影响 [J/OL]. 高电压技术, 1-9

    2024-09-21]. WANG Xia, CHEN Runbang, CHEN Yuqi, et al. Effect of high and low temperature cycle aging combined with silicone grease swelling on the interface charge charact-eristics of XLPE/SiR[J]. High Voltage Engineering, 1-9(in Chinese).
    [37] 李想玉, 韩晓东, 张福林, 等. 复合绝缘子芯棒与伞套界面胶粘剂选择及粘接工艺的确定[J]. 电瓷避雷器, 2012, (6): 7-13. doi: 10.3969/j.issn.1003-8337.2012.06.003

    LI Xiangyu, HAN Xiaodong, ZHANG Fulin, et al. The selection of the interface between composite insulator core rod and housing and the determination of the bonding process[J]. Insulators and Surge Arresters, 2012, (6): 7-13(in Chinese). doi: 10.3969/j.issn.1003-8337.2012.06.003
    [38] 金维芳. 电介质物理学[M]. 北京: 机械工业出版社, 1997.

    JIN Weifang. Dielectric physics[M]. Beijing: Machinery Industry Press, 1997(in Chinese).
    [39] 张寒, 万保权, 许佐明, 等. 环氧胶浸纸套管绝缘特性的温度敏感性研究[J]. 电瓷避雷器, 2021, (2): 72-77.

    ZHANG Han, WAN Baoquan, XU Zuoming, et al. Temperature sensitivity of insulation characteristics of epoxy resin impregnated paper bushing[J]. Insulators and Surge Arresters, 2021, (2): 72-77(in Chinese).
    [40] 李秀峰, 彭云舜, 咸日常, 等. XLPE/OMMT纳米复合材料电导和击穿性能[J]. 高电压技术, 2017, 43(9): 2849-2856.

    LI Xiufeng, PENG Yunshun, XIAN Richang, et al. Conductivity and breakdown properties on cross-linked polyethylene/montmorillonite nanocomposites[J]. High Voltage Engineering, 2017, 43(9): 2849-2856(in Chinese).
    [41] 李果, 李秀峰, 申晋, 等. 交联行为对纳米复合电介质电导特性和电气强度的影响[J]. 绝缘材料, 2019, 52(3): 25-30,35.

    LI Guo, LI Xiufeng, SHEN Jin, et al. Effect of crosslinking behavior on conductivity characteristics and electric strength of nanocomposite dielectrics[J]. Insulat-ing Materials, 2019, 52(3): 25-30,35(in Chinese).
    [42] 董芸滋, 高嫄, 李秀峰, 等. 交联度对交联聚乙烯/有机化蒙脱土纳米复合材料拉伸性能和介电性能的影响[J]. 电工技术学报, 2023, 38(5): 1154-1165.

    DONG Yunzi, GAO Yuan, LI Xiufeng, et al. Effect of crosslinking degree on tensile and dielectric properties of cross-linked polyethylene/organic montmorillonite nano-composite material[J]. Transactions of China Electrote-chnical Society, 2023, 38(5): 1154-1165(in Chinese).
    [43] 范在乾, 咸日常, 边继辉, 等. 硫化体系对硅橡胶热老化性能的影响[J]. 复合材料学报, 2024, 41(3): 1259-1269.

    FAN Zaiqian, XIAN Richang, BIAN Jihui, et al. Effect of vulcanization system on thermal aging property of silicone rubber[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1259-1269(in Chinese).
  • 加载中
计量
  • 文章访问数:  32
  • HTML全文浏览量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-16
  • 修回日期:  2024-09-30
  • 录用日期:  2024-10-16
  • 网络出版日期:  2024-10-26

目录

    /

    返回文章
    返回