Laser processing of small holes with large aspect ratio in SiCf/SiC composites
-
摘要: SiCf/SiC陶瓷基复合材料(SiCf/SiC复合材料)具有各向异性、高硬度和低导电性等特点,导致其大深径比小孔难以加工。飞秒激光加工和水导激光加工属于先进激光加工方法,具有加工质量可控、自动化加工、加工成本低等优势,是解决SiCf/SiC复合材料大深径比小孔的优选技术方案。采用了飞秒激光旋切制孔和水导激光制孔方法,在3 mm厚SiCf/SiC复合材料上加工出深径比为10的小孔。分析了小孔入口、出口、孔壁的形貌及物相,对比了小孔的孔径、孔壁粗糙度及加工效率。结果表明,激光加工的孔出口质量均优于入口质量,飞秒激光加工的小孔具有孔口锋利、圆度好、锥度小等优点,水导激光加工具有孔口光滑清洁、孔壁光洁、加工效率高等优点。针对SiCf/SiC陶瓷基复合材料耐热构件大深径比小孔加工需求,应综合考虑加工质量、加工效率、加工工况等因素,选择合适的制孔技术。Abstract: The processing of small holes with large aspect ratio in SiCf/SiC ceramic matrix composites (SiCf/SiC composites) are characterized by anisotropy, high hardness, and low electrical conductivity, which makes it difficult. Femtosecond laser processing and water-guided laser processing belong to the advanced laser processing methods, which have the advantages of controllable processing quality, automated processing, and low processing cost, and are the preferred technological solutions to solve the large aspect ratio of small holes in SiCf/SiC composites. Small holes with an aspect ratio of 10 are processed in SiCf/SiC composites by using femtosecond laser rotary drilling (FLRD) and water jet guided laser drilling (WJGLD). The morphology and physical phases of the entrance, exit, and wall of the small holes were analyzed, and the hole diameter, hole wall roughness, and processing efficiency of the small holes were compared. The results show that the exit quality of the holes processed by laser is better than the entrance quality, and the small holes processed by femtosecond laser have the advantages of sharp orifice, good roundness, and small taper, while the water guide laser processing has the advantages of clean orifices and hole walls, and high processing efficiency. To address the demand for small holes with large aspect ratios in heat-resistant components of SiCf/SiC composites, suitable drilling technology should be selected by considering factors such as processing quality, processing efficiency, and processing conditions.
-
表 1 飞秒激光旋切制孔参数
Table 1. Femtosecond laser rotary drilling parameters
Parameters Drilling Finishing DL/μm 200 300 P/W 8 6 f /kHz 50 50 F/(mm·min−1) 15 5 ap/μm 60 \ Note: DL is the diameter of laser knife, P is the laser power, f is the frequency, F is the feed speed, ap is the pith of helical path. 表 2 水导激光制孔参数
Table 2. Parameters of WJGLD
Parameters Value Dw/μm 50 p/MPa 10 P/W 17 f /kHz 6 F/(mm·min−1) 3 Notes:Dw is the diameter of the WJGL, p is the chamber pressure, P is the laser power, f is the frequency, F is the feed speed. -
[1] 高希光, 韩栋, 宋迎东, 等. 陶瓷基复合材料结构的动力学强度设计方法: 研究现状及展望[J]. 机械工程学报, 2021, 57(16): 235-247. doi: 10.3901/JME.2021.16.235GAO Xiguang, HAN Dong, SONG Yingdong, et al. Dynamic Strength Design Methods of Ceramic Matrix Composite Structures: Current Status and Future Prospects[J]. Journal of Mechanical Engineering, 2021, 57(16): 235-247(in Chinese). doi: 10.3901/JME.2021.16.235 [2] NASIRI N A, PATRA N, NI N, et al. Oxidation behaviour of SiC/SiC ceramic matrix composites in air[J]. Journal of the European Ceramic Society, 2016, 36(14): 3293-3302. doi: 10.1016/j.jeurceramsoc.2016.05.051 [3] 焦健, 孙世杰, 焦春荣, 等. SiCf/SiC复合材料涡轮导向叶片研究进展[J]. 复合材料学报, 2023, 8(8): 4342-4354.JIAO Jian, SUN Shijie, JIAO Chunrong, et al. Research progress of SiCf/SiC turbine guide vanes: A review[J]. Acta Materiae Compositae Sinica, 2023, 8(8): 4342-4354(in Chinese). [4] 刘巧沐, 黄顺洲, 何爱杰. 碳化硅陶瓷基复合材料在航空发动机上的应用需求及挑战[J]. 材料工程, 2019, 47(2): 1-10. doi: 10.11868/j.issn.1001-4381.2018.000979LIU Qiaomu, HUANG Shunzhou, HE Aijie. Application requirements and challenges of CMC-SiC composites on aero-engine[J]. Journal of Materials Engineering, 2019, 47(2): 1-10(in Chinese). doi: 10.11868/j.issn.1001-4381.2018.000979 [5] ZHANG X H, GAO H S, WEN Z X, et al. Effect of film cooling holes on the mechanical properties of 3D braided SiCf/SiC composites at 1350℃ in air[J]. Ceramics International, 2020, 46(6): 7982-7990. doi: 10.1016/j.ceramint.2019.12.020 [6] RAN Y, KANG R, DONG Z, et al. Ultrasonic assisted grinding force model considering anisotropy of SiCf/SiC composites[J]. International Journal of Mechanical Sciences, 2023, 250: 108311. doi: 10.1016/j.ijmecsci.2023.108311 [7] LI L, LI B, ZHANG R, et al. Geometric parameters measurement for the cooling holes of turbine blade based on microscopic image sequence topographical reconstruction[J]. Measurement, 2023, 210: 112562. doi: 10.1016/j.measurement.2023.112562 [8] AN Q, CHEN J, MING W, et al. Machining of SiC ceramic matrix composites: A review[J]. Chinese Journal of Aeronautics, 2021, 34(4): 540-567. doi: 10.1016/j.cja.2020.08.001 [9] GAVALDA DIAZ O, GARCIA LUNA G, LIAO Z, et al. The new challenges of machining Ceramic Matrix Composites (CMCs): Review of surface integrity[J]. International Journal of Machine Tools and Manufacture, 2019, 139: 24-36. doi: 10.1016/j.ijmachtools.2019.01.003 [10] YANG H, ZHAO G, NIAN Z, et al. Effect of PCD tool wear on surface morphology and material removal mechanisms in the micro-drilling of Cf/SiC composites: Experiment and simulation[J]. International Journal of Refractory Metals and Hard Materials, 2024, 119: 106562. doi: 10.1016/j.ijrmhm.2024.106562 [11] YANG H, ZHAO G, NIAN Z, et al. Investigation of in-plane and out-of-plane micro-hole drilling on 2D-Cf/SiC composites[J]. Ceramics International, 2024, 50(7): 10753-10773. doi: 10.1016/j.ceramint.2023.12.391 [12] XING Y, DENG J, ZHANG G, et al. Assessment in drilling of C/C-SiC composites using brazed diamond drills[J]. Journal of Manufacturing Processes, 2017, 26: 31-43. doi: 10.1016/j.jmapro.2017.01.006 [13] HUANG B, WANG W, JIANG R, et al. Experimental study on ultrasonic vibration–assisted drilling micro-hole of SiCf/SiC ceramic matrix composites[J]. The International Journal of Advanced Manufacturing Technology, 2022, 120(11-12): 8031-8044. doi: 10.1007/s00170-022-09186-0 [14] HUANG B, WANG W-H, XIONG Y-F, et al. Investigation of force modeling in ultrasonic vibration-assisted drilling SiCf/SiC ceramic matrix composites[J]. Journal of Manufacturing Processes, 2023, 96: 21-30. doi: 10.1016/j.jmapro.2023.04.040 [15] WANG J, ZHANG J, FENG P. Effects of tool vibration on fiber fracture in rotary ultrasonic machining of C/SiC ceramic matrix composites[J]. Composites Part B: Engineering, 2017, 129: 233-242. doi: 10.1016/j.compositesb.2017.07.081 [16] SUN D-R, WANG G, LI Y, et al. Laser drilling in silicon carbide and silicon carbide matrix composites[J]. Optics & Laser Technology, 2024, 170: 110166. [17] LIU C, ZHANG X, WANG G, et al. New ablation evolution behaviors in micro-hole drilling of 2.5D Cf/SiC composites with millisecond laser[J]. Ceramics International, 2021, 47(21): 29670-29680. doi: 10.1016/j.ceramint.2021.07.138 [18] WANG J, ZHANG Y, LIU Y, et al. Effect of SiC/SiC composites density on nanosecond-laser machining behaviors[J]. Ceramics International, 2023, 49(3): 5199-5208. doi: 10.1016/j.ceramint.2022.10.038 [19] LI W, ZHANG R, LIU Y, et al. Effect of different parameters on machining of SiC/SiC composites via pico-second laser[J]. Applied Surface Science, 2016, 364: 378-387. doi: 10.1016/j.apsusc.2015.12.089 [20] ZHAI Z, WEI C, ZHANG Y, et al. Investigations on the oxidation phenomenon of SiC/SiC fabricated by high repetition frequency femtosecond laser[J]. Applied Surface Science, 2020, 502: 144131. doi: 10.1016/j.apsusc.2019.144131 [21] LIU Y, ZHANG R, LI W, et al. Effect of machining parameter on femtosecond laser drilling processing on SiC/SiC composites[J]. The International Journal of Advanced Manufacturing Technology, 2017, 96(5-8): 1795-1811. [22] ZHAO J, WANG W, WANG R, et al. Machining millimeter-scale deep holes in SiCf/SiC material using femtosecond laser filamentation effect[J]. Materials Science: Advanced Composite Materials, 2018, 2(3): 1-9. [23] WANG J, CAO L, ZHANG Y, et al. Effect of mass transfer channels on flexural strength of C/SiC composites fabricated by femtosecond laser assisted CVI method with optimized laser power[J]. Journal of Advanced Ceramics, 2021, 10(2): 227-236. doi: 10.1007/s40145-020-0433-2 [24] SUBASI L, GOKLER M I, YAMAN U. A comprehensive study on water jet guided laser micro hole drilling of an aerospace alloy[J]. Optics & Laser Technology, 2023, 164: 109514. [25] 孙博宇, 乔红超, 赵吉宾, 等. 水导激光切割技术研究现状[J]. 光电工程, 2017, 44(11): 1039-1044.SUN Boyu, Qiao Hongchao, Zhao Jibin, et al. Current status of water-jet guided laser cutting technology[J]. Opto-Electronic Engineering, 2017, 44(11): 1039-1044(in Chinese). [26] 温秋玲, 杨野, 黄辉, 等. 激光复合加工硬脆性材料研究进展综述[J]. 机械工程学报, 2024, 60(11): 1-21.WEN Qiuling, YANG Ye, HUANG Hui, et al. Review of Research Progress in Laser-based Hybrid Machining of Hard and Brittle Materials[J]. Journal of Mechanical Engineering, 2024, 60(11): 1-21(in Chinese). [27] 罗潇, 刘小冲, 曾雨琪, 等. 陶瓷基复合材料构件内嵌孔加工工艺研究进展[J]. 复合材料学报, 2024, 41(8): 4015-4031.LUO Xiao, LIU Xiaochong, ZENG Yuqi, et al. Research progress on machining process of embedded holes in hot-section ceramic-matrix composite components[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 4015-4031(in Chinese). [28] HU T, YUAN S, WEI J, et al. Water jet guided laser grooving of SiCf/SiC ceramic matrix composites[J]. Optics & Laser Technology, 2024, 168: 109991. [29] WEI J, YUAN S, YANG S, et al. Waterjet-guided laser processing of SiC/SiC ceramic matrix composites to obtain high cleanliness and low oxidation damage characteristics surfaces[J]. Surface and Coatings Technology, 2024, 484: 130791. doi: 10.1016/j.surfcoat.2024.130791 [30] CHENG B, DING Y, LI Y, et al. Theoretical and Experimental Investigation on SiC/SiC Ceramic Matrix Composites Machining with Laser Water Jet[J]. Applied Sciences, 2022, 12(3): 1214. doi: 10.3390/app12031214 [31] CHENG B, DING Y, LI Y, et al. Coaxial helical gas assisted laser water jet machining of SiC/SiC ceramic matrix composites[J]. Journal of Materials Processing Technology, 2021, 293: 117067. doi: 10.1016/j.jmatprotec.2021.117067 [32] 徐俊杰. SiCf/SiC复合材料的水导激光加工工艺基础研究 [D]. 哈尔滨: 哈尔滨工业大学, 2019.XU Junjie. Basic research on the water-jet guided laser processing technology of SiCf/SiC composites [D]. Harbin: Harbin Institute of Technology, 2019(in Chinese). [33] 程柏. SiC 纤维增强陶瓷基复合材料的水导激光加工技术研究 [D]. 哈尔滨: 哈尔滨工业大学, 2022.CHENG Bai. Research on the laser water jet manufacturing technology of silicon carbide fiber reinforced ceramic matrix composites [D]. Harbin: Harbin Institute of Technology, 2022(in Chinese). [34] WU D, CAI X, QIN X, et al. Laser ablation behavior and mechanism of Cf/C–SiC composites under different laser energy densities[J]. Composites Part B: Engineering, 2024, 276: 111359. doi: 10.1016/j.compositesb.2024.111359 [35] ZHANG D, SUGIOKA K. Hierarchical microstructures with high spatial frequency laser induced periodic surface structures possessing different orientations created by femtosecond laser ablation of silicon in liquids[J]. Opto-Electronic Advances, 2019, 2(3): 190002. [36] 陈忠安, 包彬颖, 张广义, 等. CFRP复合材料水导激光切割损伤机理研究[J]. 中国机械工程, 2024: 1-12.CHEN Zhongan, BAO Binying, ZHANG Guangyi, et al. Study on the Damage Mechanism of Water jet guided Laser Cutting of CFRP[J]. China Mechanical Engineering, 2024: 1-12(in Chinese). [37] JING X, CHENG Z, NIU H, et al. Deformation and rupture behaviors of SiC/SiC under creep, fatigue and dwell-fatigue load at 1300 °C[J]. Ceramics International, 2019, 45(17): 21440-21447. doi: 10.1016/j.ceramint.2019.07.134
计量
- 文章访问数: 74
- HTML全文浏览量: 40
- 被引次数: 0