留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光加工SiCf/SiC陶瓷基复合材料大深径比小孔研究

董志刚 杨峰 邢光浩 康仁科 马广义 鲍岩

董志刚, 杨峰, 邢光浩, 等. 激光加工SiCf/SiC陶瓷基复合材料大深径比小孔研究[J]. 复合材料学报, 2024, 42(0): 1-14.
引用本文: 董志刚, 杨峰, 邢光浩, 等. 激光加工SiCf/SiC陶瓷基复合材料大深径比小孔研究[J]. 复合材料学报, 2024, 42(0): 1-14.
DONG Zhigang, YANG Feng, XING Guanghao, et al. Laser processing of small holes with large aspect ratio in SiCf/SiC composites[J]. Acta Materiae Compositae Sinica.
Citation: DONG Zhigang, YANG Feng, XING Guanghao, et al. Laser processing of small holes with large aspect ratio in SiCf/SiC composites[J]. Acta Materiae Compositae Sinica.

激光加工SiCf/SiC陶瓷基复合材料大深径比小孔研究

基金项目: 国家杰出青年科学基金(52325506)
详细信息
    通讯作者:

    鲍 岩,教授,博士生导师,研究方向为面向构件性能的超精密加工、难加工材料多能场复合加工、弱刚性构件精密加工等理论与技术研究 E-mail: baoy@dlut.edu.cn

  • 中图分类号: TB332

Laser processing of small holes with large aspect ratio in SiCf/SiC composites

Funds: National Natural Science Funds for Distinguished Young Scholar (52325506)
  • 摘要: SiCf/SiC陶瓷基复合材料(SiCf/SiC复合材料)具有各向异性、高硬度和低导电性等特点,导致其大深径比小孔难以加工。飞秒激光加工和水导激光加工属于先进激光加工方法,具有加工质量可控、自动化加工、加工成本低等优势,是解决SiCf/SiC复合材料大深径比小孔的优选技术方案。采用了飞秒激光旋切制孔和水导激光制孔方法,在3 mm厚SiCf/SiC复合材料上加工出深径比为10的小孔。分析了小孔入口、出口、孔壁的形貌及物相,对比了小孔的孔径、孔壁粗糙度及加工效率。结果表明,激光加工的孔出口质量均优于入口质量,飞秒激光加工的小孔具有孔口锋利、圆度好、锥度小等优点,水导激光加工具有孔口光滑清洁、孔壁光洁、加工效率高等优点。针对SiCf/SiC陶瓷基复合材料耐热构件大深径比小孔加工需求,应综合考虑加工质量、加工效率、加工工况等因素,选择合适的制孔技术。

     

  • 图  1  激光加工系统的示意图: (a) 飞秒激光; (b) 水导激光

    Figure  1.  Schematic diagram of laser processing system: (a) Femtosecond laser; (b) Water jet guided laser

    图  2  SiCf/SiC复合材料样件及形貌: (a)样件; (b)CT图; (c)截面

    Figure  2.  Samples and morphology of SiCf/SiC composites: (a) Sample;(b) CT image; (c) Cross-section

    图  3  飞秒激光旋切制孔示意图: (a)钻孔; (b)修孔

    Figure  3.  Schematic diagram of femtosecond laser rotary drilling: (a) Drilling; (b) Finishing

    图  4  SiCf/SiC复合材料孔的入口形貌

    Figure  4.  Hole entrance morphology of SiCf/SiC composites

    图  5  SiCf/SiC复合材料孔入口沉积物的拉曼光谱

    Figure  5.  Raman spectra of hole entrance deposits of SiCf/SiC composites

    图  6  SiCf/SiC复合材料孔的出口形貌

    Figure  6.  Hole exit morphology of SiCf/SiC composites

    图  7  SiCf/SiC复合材料孔的截面

    Figure  7.  Cross section of SiCf/SiC composites hole

    图  8  SiCf/SiC复合材料孔壁的形貌: (a) 孔入口区域; (b) 孔中间区域; (c) 孔出口区域

    Figure  8.  Morphology of the hole wall of SiCf/SiC composites: (a) Hole entrance region; (b) Hole middle region; (c) Hole exit region

    图  9  SiCf/SiC复合材料孔壁纤维区的形貌: (a) 90°纤维区; (b) 0°纤维区

    Figure  9.  Morphology of the fiber region in the hole wall of SiCf/SiC composites: (a) 90° fiber region; (b) 0° fiber region

    图  10  SiCf/SiC复合材料孔截面纤维区的形貌

    Figure  10.  Morphology of fiber region in the hole cross section of SiCf/SiC composites

    图  11  水导激光制孔示意图: (a) 盲孔阶段; (b) 通孔阶段

    Figure  11.  Schematic diagram of WJGLD: (a) Blind hole stage;(b) Through-hole stage

    图  12  SiCf/SiC复合材料孔的入口形貌

    Figure  12.  Hole entrance morphology of SiCf/SiC composites

    图  13  SiCf/SiC复合材料孔的出口形貌

    Figure  13.  Hole exit morphology of SiCf/SiC composites

    图  14  SiCf/SiC复合材料孔的截面

    Figure  14.  Cross section of SiCf/SiC composites hole

    图  15  SiCf/SiC复合材料孔壁90°纤维区的形貌

    Figure  15.  Morphology of the 90° fiber region in the hole wall of SiCf/SiC composites

    图  16  SiCf/SiC复合材料孔壁0°纤维区的形貌

    Figure  16.  Morphology of the 0° fiber region in the hole wall of SiCf/SiC composites

    图  17  SiCf/SiC复合材料孔截面纤维区和基体区的形貌

    Figure  17.  Morphology of the fiber and matrix regions in the hole cross section of SiCf/SiC composites

    图  18  SiCf/SiC复合材料孔的入口和出口形貌: (a) FLRD的形貌; (b) WJGLD的形貌

    Figure  18.  Entrance and exit morphology of SiCf/SiC composites holes: (a) Morphology of FLRD; (b) Morphology of WJGLD

    图  19  SiCf/SiC复合材料孔的入口和出口直径

    Figure  19.  Entrance and exit diameters of SiCf/SiC composites holes

    图  20  SiCf/SiC复合材料孔孔的锥度和出口圆度误差

    Figure  20.  Taper and exit roundness error of SiCf/SiC composites holes

    图  21  SiCf/SiC复合材料孔的轮廓:(a) FLRD的轮廓; (b) WJGLD的轮廓

    Figure  21.  Profile of SiCf/SiC composites holes: (a) Hole profile of FLRD,(b) Hole profile of WJGLD

    图  22  SiCf/SiC复合材料孔壁的粗糙度

    Figure  22.  Roughness of SiCf/SiC composites hole wall

    表  1  飞秒激光旋切制孔参数

    Table  1.   Femtosecond laser rotary drilling parameters

    Parameters Drilling Finishing
    DL/μm 200 300
    P/W 8 6
    f /kHz 50 50
    F/(mm·min−1) 15 5
    ap/μm 60 \
    Note: DL is the diameter of laser knife, P is the laser power, f is the frequency, F is the feed speed, ap is the pith of helical path.
    下载: 导出CSV

    表  2  水导激光制孔参数

    Table  2.   Parameters of WJGLD

    Parameters Value
    Dw/μm 50
    p/MPa 10
    P/W 17
    f /kHz 6
    F/(mm·min−1) 3
    Notes:Dw is the diameter of the WJGL, p is the chamber pressure, P is the laser power, f is the frequency, F is the feed speed.
    下载: 导出CSV
  • [1] 高希光, 韩栋, 宋迎东, 等. 陶瓷基复合材料结构的动力学强度设计方法: 研究现状及展望[J]. 机械工程学报, 2021, 57(16): 235-247. doi: 10.3901/JME.2021.16.235

    GAO Xiguang, HAN Dong, SONG Yingdong, et al. Dynamic Strength Design Methods of Ceramic Matrix Composite Structures: Current Status and Future Prospects[J]. Journal of Mechanical Engineering, 2021, 57(16): 235-247(in Chinese). doi: 10.3901/JME.2021.16.235
    [2] NASIRI N A, PATRA N, NI N, et al. Oxidation behaviour of SiC/SiC ceramic matrix composites in air[J]. Journal of the European Ceramic Society, 2016, 36(14): 3293-3302. doi: 10.1016/j.jeurceramsoc.2016.05.051
    [3] 焦健, 孙世杰, 焦春荣, 等. SiCf/SiC复合材料涡轮导向叶片研究进展[J]. 复合材料学报, 2023, 8(8): 4342-4354.

    JIAO Jian, SUN Shijie, JIAO Chunrong, et al. Research progress of SiCf/SiC turbine guide vanes: A review[J]. Acta Materiae Compositae Sinica, 2023, 8(8): 4342-4354(in Chinese).
    [4] 刘巧沐, 黄顺洲, 何爱杰. 碳化硅陶瓷基复合材料在航空发动机上的应用需求及挑战[J]. 材料工程, 2019, 47(2): 1-10. doi: 10.11868/j.issn.1001-4381.2018.000979

    LIU Qiaomu, HUANG Shunzhou, HE Aijie. Application requirements and challenges of CMC-SiC composites on aero-engine[J]. Journal of Materials Engineering, 2019, 47(2): 1-10(in Chinese). doi: 10.11868/j.issn.1001-4381.2018.000979
    [5] ZHANG X H, GAO H S, WEN Z X, et al. Effect of film cooling holes on the mechanical properties of 3D braided SiCf/SiC composites at 1350℃ in air[J]. Ceramics International, 2020, 46(6): 7982-7990. doi: 10.1016/j.ceramint.2019.12.020
    [6] RAN Y, KANG R, DONG Z, et al. Ultrasonic assisted grinding force model considering anisotropy of SiCf/SiC composites[J]. International Journal of Mechanical Sciences, 2023, 250: 108311. doi: 10.1016/j.ijmecsci.2023.108311
    [7] LI L, LI B, ZHANG R, et al. Geometric parameters measurement for the cooling holes of turbine blade based on microscopic image sequence topographical reconstruction[J]. Measurement, 2023, 210: 112562. doi: 10.1016/j.measurement.2023.112562
    [8] AN Q, CHEN J, MING W, et al. Machining of SiC ceramic matrix composites: A review[J]. Chinese Journal of Aeronautics, 2021, 34(4): 540-567. doi: 10.1016/j.cja.2020.08.001
    [9] GAVALDA DIAZ O, GARCIA LUNA G, LIAO Z, et al. The new challenges of machining Ceramic Matrix Composites (CMCs): Review of surface integrity[J]. International Journal of Machine Tools and Manufacture, 2019, 139: 24-36. doi: 10.1016/j.ijmachtools.2019.01.003
    [10] YANG H, ZHAO G, NIAN Z, et al. Effect of PCD tool wear on surface morphology and material removal mechanisms in the micro-drilling of Cf/SiC composites: Experiment and simulation[J]. International Journal of Refractory Metals and Hard Materials, 2024, 119: 106562. doi: 10.1016/j.ijrmhm.2024.106562
    [11] YANG H, ZHAO G, NIAN Z, et al. Investigation of in-plane and out-of-plane micro-hole drilling on 2D-Cf/SiC composites[J]. Ceramics International, 2024, 50(7): 10753-10773. doi: 10.1016/j.ceramint.2023.12.391
    [12] XING Y, DENG J, ZHANG G, et al. Assessment in drilling of C/C-SiC composites using brazed diamond drills[J]. Journal of Manufacturing Processes, 2017, 26: 31-43. doi: 10.1016/j.jmapro.2017.01.006
    [13] HUANG B, WANG W, JIANG R, et al. Experimental study on ultrasonic vibration–assisted drilling micro-hole of SiCf/SiC ceramic matrix composites[J]. The International Journal of Advanced Manufacturing Technology, 2022, 120(11-12): 8031-8044. doi: 10.1007/s00170-022-09186-0
    [14] HUANG B, WANG W-H, XIONG Y-F, et al. Investigation of force modeling in ultrasonic vibration-assisted drilling SiCf/SiC ceramic matrix composites[J]. Journal of Manufacturing Processes, 2023, 96: 21-30. doi: 10.1016/j.jmapro.2023.04.040
    [15] WANG J, ZHANG J, FENG P. Effects of tool vibration on fiber fracture in rotary ultrasonic machining of C/SiC ceramic matrix composites[J]. Composites Part B: Engineering, 2017, 129: 233-242. doi: 10.1016/j.compositesb.2017.07.081
    [16] SUN D-R, WANG G, LI Y, et al. Laser drilling in silicon carbide and silicon carbide matrix composites[J]. Optics & Laser Technology, 2024, 170: 110166.
    [17] LIU C, ZHANG X, WANG G, et al. New ablation evolution behaviors in micro-hole drilling of 2.5D Cf/SiC composites with millisecond laser[J]. Ceramics International, 2021, 47(21): 29670-29680. doi: 10.1016/j.ceramint.2021.07.138
    [18] WANG J, ZHANG Y, LIU Y, et al. Effect of SiC/SiC composites density on nanosecond-laser machining behaviors[J]. Ceramics International, 2023, 49(3): 5199-5208. doi: 10.1016/j.ceramint.2022.10.038
    [19] LI W, ZHANG R, LIU Y, et al. Effect of different parameters on machining of SiC/SiC composites via pico-second laser[J]. Applied Surface Science, 2016, 364: 378-387. doi: 10.1016/j.apsusc.2015.12.089
    [20] ZHAI Z, WEI C, ZHANG Y, et al. Investigations on the oxidation phenomenon of SiC/SiC fabricated by high repetition frequency femtosecond laser[J]. Applied Surface Science, 2020, 502: 144131. doi: 10.1016/j.apsusc.2019.144131
    [21] LIU Y, ZHANG R, LI W, et al. Effect of machining parameter on femtosecond laser drilling processing on SiC/SiC composites[J]. The International Journal of Advanced Manufacturing Technology, 2017, 96(5-8): 1795-1811.
    [22] ZHAO J, WANG W, WANG R, et al. Machining millimeter-scale deep holes in SiCf/SiC material using femtosecond laser filamentation effect[J]. Materials Science: Advanced Composite Materials, 2018, 2(3): 1-9.
    [23] WANG J, CAO L, ZHANG Y, et al. Effect of mass transfer channels on flexural strength of C/SiC composites fabricated by femtosecond laser assisted CVI method with optimized laser power[J]. Journal of Advanced Ceramics, 2021, 10(2): 227-236. doi: 10.1007/s40145-020-0433-2
    [24] SUBASI L, GOKLER M I, YAMAN U. A comprehensive study on water jet guided laser micro hole drilling of an aerospace alloy[J]. Optics & Laser Technology, 2023, 164: 109514.
    [25] 孙博宇, 乔红超, 赵吉宾, 等. 水导激光切割技术研究现状[J]. 光电工程, 2017, 44(11): 1039-1044.

    SUN Boyu, Qiao Hongchao, Zhao Jibin, et al. Current status of water-jet guided laser cutting technology[J]. Opto-Electronic Engineering, 2017, 44(11): 1039-1044(in Chinese).
    [26] 温秋玲, 杨野, 黄辉, 等. 激光复合加工硬脆性材料研究进展综述[J]. 机械工程学报, 2024, 60(11): 1-21.

    WEN Qiuling, YANG Ye, HUANG Hui, et al. Review of Research Progress in Laser-based Hybrid Machining of Hard and Brittle Materials[J]. Journal of Mechanical Engineering, 2024, 60(11): 1-21(in Chinese).
    [27] 罗潇, 刘小冲, 曾雨琪, 等. 陶瓷基复合材料构件内嵌孔加工工艺研究进展[J]. 复合材料学报, 2024, 41(8): 4015-4031.

    LUO Xiao, LIU Xiaochong, ZENG Yuqi, et al. Research progress on machining process of embedded holes in hot-section ceramic-matrix composite components[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 4015-4031(in Chinese).
    [28] HU T, YUAN S, WEI J, et al. Water jet guided laser grooving of SiCf/SiC ceramic matrix composites[J]. Optics & Laser Technology, 2024, 168: 109991.
    [29] WEI J, YUAN S, YANG S, et al. Waterjet-guided laser processing of SiC/SiC ceramic matrix composites to obtain high cleanliness and low oxidation damage characteristics surfaces[J]. Surface and Coatings Technology, 2024, 484: 130791. doi: 10.1016/j.surfcoat.2024.130791
    [30] CHENG B, DING Y, LI Y, et al. Theoretical and Experimental Investigation on SiC/SiC Ceramic Matrix Composites Machining with Laser Water Jet[J]. Applied Sciences, 2022, 12(3): 1214. doi: 10.3390/app12031214
    [31] CHENG B, DING Y, LI Y, et al. Coaxial helical gas assisted laser water jet machining of SiC/SiC ceramic matrix composites[J]. Journal of Materials Processing Technology, 2021, 293: 117067. doi: 10.1016/j.jmatprotec.2021.117067
    [32] 徐俊杰. SiCf/SiC复合材料的水导激光加工工艺基础研究 [D]. 哈尔滨: 哈尔滨工业大学, 2019.

    XU Junjie. Basic research on the water-jet guided laser processing technology of SiCf/SiC composites [D]. Harbin: Harbin Institute of Technology, 2019(in Chinese).
    [33] 程柏. SiC 纤维增强陶瓷基复合材料的水导激光加工技术研究 [D]. 哈尔滨: 哈尔滨工业大学, 2022.

    CHENG Bai. Research on the laser water jet manufacturing technology of silicon carbide fiber reinforced ceramic matrix composites [D]. Harbin: Harbin Institute of Technology, 2022(in Chinese).
    [34] WU D, CAI X, QIN X, et al. Laser ablation behavior and mechanism of Cf/C–SiC composites under different laser energy densities[J]. Composites Part B: Engineering, 2024, 276: 111359. doi: 10.1016/j.compositesb.2024.111359
    [35] ZHANG D, SUGIOKA K. Hierarchical microstructures with high spatial frequency laser induced periodic surface structures possessing different orientations created by femtosecond laser ablation of silicon in liquids[J]. Opto-Electronic Advances, 2019, 2(3): 190002.
    [36] 陈忠安, 包彬颖, 张广义, 等. CFRP复合材料水导激光切割损伤机理研究[J]. 中国机械工程, 2024: 1-12.

    CHEN Zhongan, BAO Binying, ZHANG Guangyi, et al. Study on the Damage Mechanism of Water jet guided Laser Cutting of CFRP[J]. China Mechanical Engineering, 2024: 1-12(in Chinese).
    [37] JING X, CHENG Z, NIU H, et al. Deformation and rupture behaviors of SiC/SiC under creep, fatigue and dwell-fatigue load at 1300 °C[J]. Ceramics International, 2019, 45(17): 21440-21447. doi: 10.1016/j.ceramint.2019.07.134
  • 加载中
计量
  • 文章访问数:  91
  • HTML全文浏览量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-15
  • 修回日期:  2024-08-12
  • 录用日期:  2024-08-17
  • 网络出版日期:  2024-09-16

目录

    /

    返回文章
    返回