留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

FRP约束型钢混凝土柱-钢筋混凝土环梁节点震后轴压性能评估

田时雨 任凤鸣 伍峻磊 莫金旭 赖楚麟

田时雨, 任凤鸣, 伍峻磊, 等. FRP约束型钢混凝土柱-钢筋混凝土环梁节点震后轴压性能评估[J]. 复合材料学报, 2022, 39(11): 5343-5354. doi: 10.13801/j.cnki.fhclxb.20220822.001
引用本文: 田时雨, 任凤鸣, 伍峻磊, 等. FRP约束型钢混凝土柱-钢筋混凝土环梁节点震后轴压性能评估[J]. 复合材料学报, 2022, 39(11): 5343-5354. doi: 10.13801/j.cnki.fhclxb.20220822.001
TIAN Shiyu, REN Fengming, WU Junlei, et al. Evaluation of axial compressive performance of FRP-confined steel-reinforced concrete column-to-reinforced concrete ring beam joint with seismic damage[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5343-5354. doi: 10.13801/j.cnki.fhclxb.20220822.001
Citation: TIAN Shiyu, REN Fengming, WU Junlei, et al. Evaluation of axial compressive performance of FRP-confined steel-reinforced concrete column-to-reinforced concrete ring beam joint with seismic damage[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5343-5354. doi: 10.13801/j.cnki.fhclxb.20220822.001

FRP约束型钢混凝土柱-钢筋混凝土环梁节点震后轴压性能评估

doi: 10.13801/j.cnki.fhclxb.20220822.001
基金项目: 国家自然科学基金(52178125;51878189);广州市科技计划项目(202102010510)
详细信息
    通讯作者:

    任凤鸣,博士,教授,博士生导师,研究方向为FRP-钢-混凝土组合结构性能与设计方法 E-mail: rfm@gzhu.edu.cn

  • 中图分类号: TU398.9

Evaluation of axial compressive performance of FRP-confined steel-reinforced concrete column-to-reinforced concrete ring beam joint with seismic damage

  • 摘要: 对2个具有不同环梁配筋率的纤维增强树脂复合材料(FRP)约束型钢混凝土(FCSRC)柱-钢筋混凝土(RC)梁节点震损试件进行轴压试验,结合有限元模拟和理论分析,对震损试件的轴压性能进行分析和评估。结果表明:震损试件在轴压荷载下的破坏均由玻璃纤维增强树脂复合材料(Glass fiber reinforced polymer,GFRP)管破裂引起,表明所设计的两个试件在震损后依然满足“强节点,弱构件”的设计原则;当环梁配筋率由1.4%增大到2.5%时,试件的屈服荷载和初始刚度变化不大,而峰值荷载和屈服后刚度分别增加了7.3%和60.2%,极限变形和延性系数分别减小了10.4%和8.5%;所建立的有限元模型可以较好地模拟震损试件的轴压行为;所提出的理论计算公式能够较准确地预测震损试件的轴压承载力,同时具有一定的安全储备。

     

  • 图  1  纤维增强树脂复合材料(FRP)约束型钢混凝土(FCSRC)柱-钢筋混凝土(RC)梁节点

    Figure  1.  Joint of fiber reinforced polymer (FRP)-confined steel-reinforced concrete (FCSRC) column-to-reinforced concrete (RC) beam

    图  2  试件截面尺寸及配筋

    GFRP—Glass fiber reinforced polymer; φ—Diameter; M-4, M-5—4, 5 layers of ring bars in the ring beam

    Figure  2.  Details of specimens

    图  3  抗震性能试验装置

    Figure  3.  Test set-up of seismic performance experiment

    图  4  FCSRC柱-RC梁抗震性能试验荷载-位移曲线

    Figure  4.  Load-displacement curves of FCSRC column-to-RC beam in seismic performance experiment

    图  5  FCSRC柱-RC梁抗震性能试验破坏模态

    Figure  5.  Failure modes of FCSRC column-to-RC beam in seismic performance experiment

    图  6  FCSRC柱-RC梁抗震性能试验荷载-环梁应变曲线

    R1—Strain of ring bars at near the beam; R2—Strain of ring bars in the middle of the joint

    Figure  6.  Load-strain curves for the ring beam of FCSRC column-to-RC beam in seismic performance experiment

    图  7  轴压试验装置

    LVDT—Linear variable differential transformer

    Figure  7.  Test set-up of axial compressive test

    图  8  M-4试验现象

    Figure  8.  Experimental phenomenon of M-4

    图  9  M-5试验现象

    Figure  9.  Experimental phenomenon of M-5

    图  10  FCSRC柱-RC环梁节点轴向荷载-位移曲线

    FEA—Finite element analysis

    Figure  10.  Axial load-displacement curves of FCSRC column-to-RC ring beam joint

    图  11  FCSRC柱-RC环梁节点轴向位移-应变曲线

    1-4—Section 1-4 in Fig.7(b); H—Hoop strain; V—Axial strain

    Figure  11.  Axial displacement-strain curves of FCSRC column-to-RC ring beam joint

    图  12  FCSRC柱-RC环梁节点FEA模型

    Figure  12.  FEA model of FCSRC column-to-RC ring beam joint

    图  13  FCSRC柱-RC环梁节点有限元模型验证

    RC—Type of beams; 4, 5—4, 5 layers of ring bars in the ring beam; 0.4—Axial load ratio

    Figure  13.  Verification of FEA model of FCSRC column-to-RC ring beam joint

    图  14  GFRP管环向应变

    LE—Strain; LE11—Hoop strain; SNEG—Face with negative normal direction of elements

    Figure  14.  Hoop strain distribution of GFRP tubes

    图  15  25 mm的FCSRC柱-RC环梁节点试件轴向应变分布

    Figure  15.  Axial strain distribution of 25 mm FCSRC column-to-RC ring beam joint specimens

    图  16  RC环梁钢筋应力

    Figure  16.  Reinforcement stress of RC ring beam

    图  17  FCSRC柱内置型钢应力

    S—Stress

    Figure  17.  Stress of encased steel in FCSRC columns

    表  1  钢材力学性能

    Table  1.   Mechanical properties of steel

    Type of steelThickness or diameter/mmfy/MPafu/MPaEs/GPa
    Steel bar8306456211
    10459627200
    12448609201
    14422612208
    22418591205
    Steel plate16286411191
    Note: fy, fu, Es—Yield strength, ultimate strength and elastic modulus of steel, respectively.
    下载: 导出CSV

    表  2  FCSRC柱-RC环梁节点试验、有限元和理论分析结果

    Table  2.   Results of experiment, finite element analysis and theoretical analysis for FCSRC column-to-RC ring beam joint

    Fy/kNΔy/mmFp/kNΔp/mmFu/kNΔu/mmμk0/(kN·mm−1)ks/(kN·mm−1)FFEA/kNFthe/kN
    M-4935110.151108032.32940836.023.551129781125610723
    M-592589.981189131.071010732.273.2311531251204210723
    Notes: Fy, Fp, Fu—Yield load, peak load and ultimate load of the specimen, respectively; Δy, Δp, Δu—Displacement corresponding to Fy, Fp, Fu; μ—Ductility coefficient; k0—Initial stiffness of the specimen; ks—Post-yield stiffness of the specimen; FFEA, Fthe—Maximum load-bearing capacity calculated by FEA and theory.
    下载: 导出CSV
  • [1] 张剑, 周储伟, 艾军, 等. 高性能碳-玻璃纤维布加固混凝土梁的非线性响应[J]. 复合材料学报, 2017, 34(7):1617-1623. doi: 10.13801/j.cnki.fhclxb.20160926.001

    ZHANG Jian, ZHOU Chuwei, AI Jun, et al. Nonlinear response analysis of concrete beam reinforced with high performance CF-GF sheet[J]. Acta Materiae Compositae Sinica,2017,34(7):1617-1623(in Chinese). doi: 10.13801/j.cnki.fhclxb.20160926.001
    [2] 李腾, 宁志华, 吴嘉瑜. CFRP加固钢板的粘结截面剥离破坏[J]. 复合材料学报, 2021, 38(12):4090-4105.

    LI Teng, NING Zhihua, WU Jiayu. Interfacial debonding failure of CFRP-strengthened steel structures[J]. Acta Materiae Compositae Sinica,2021,38(12):4090-4105(in Chinese).
    [3] POHORYLES D A, MELO J, ROSSETTO T, et al. Seismic retrofit schemes with FRP for deficient RC beam-column joints: State-of-the-art review[J]. Journal of Composites for Construction,2019,23(4):03119001. doi: 10.1061/(ASCE)CC.1943-5614.0000950
    [4] TENG J G, YU T, WONG Y L, et al. Hybrid FRP-concrete-steel tubular columns: Concept and behavior[J]. Construction and Building Materials,2007,21(4):846-854. doi: 10.1016/j.conbuildmat.2006.06.017
    [5] HU Y M, YU T, TENG J G. FRP-confined circular concrete-filled thin steel tubes under axial compression[J]. Journal of Composites for Construction,2011,15(5):850-860. doi: 10.1061/(ASCE)CC.1943-5614.0000217
    [6] YU T, HU Y M, TENG J G. FRP-confined circular concrete-filled steel tubular columns under cyclic axial compression[J]. Journal of Constructional Steel Research,2014,94:33-48. doi: 10.1016/j.jcsr.2013.11.003
    [7] YE Y Y, ZHU D H, ZENG J J, et al. Rectangular double-tube concrete columns with an internal elliptical high-strength steel tube: Concrete and behavior[J]. Engineering Structures,2020,216:110742.
    [8] XIE W, CHEN Y, HAN S, et al. Research on I steel reinforced concrete-filled GFRP tubular short columns[J]. Thin-Walled Structures,2017,120:282-296. doi: 10.1016/j.tws.2017.08.031
    [9] KARIMI K, TAIT M J, El-DAKHAKHNI W W. Testing and modeling of a novel FRP-encased steel-concrete compo-site column[J]. Composite Structures,2011,93(5):1463-1473. doi: 10.1016/j.compstruct.2010.11.017
    [10] YU T, LIN G, ZHANG S S. Compressive behavior of FRP-confined concrete-encased steel columns[J]. Composite Structures,2016,154:493-506. doi: 10.1016/j.compstruct.2016.07.027
    [11] ZAKAIB S, FAM A. Flexural performance and moment connection of concrete-filled GFRP tube-encased steel I-Sections[J]. Journal of Composites for Construction,2012,16(5):604-613. doi: 10.1061/(ASCE)CC.1943-5614.0000288
    [12] REN F M, LIANG Y W, HO J C M, et al. Behaviour of FRP tube-concrete-encased steel composite columns[J]. Composite Structures,2020,241:112139. doi: 10.1016/j.compstruct.2020.112139
    [13] CHEN G M, LAN Z H, XIONG M X, et al. Compressive behavior of FRP-confined steel-reinforced high strength concrete columns[J]. Engineering Structures,2020,220:110990. doi: 10.1016/j.engstruct.2020.110990
    [14] XIONG M X, XU Z, CHEN G M, et al. FRP-confined steel-reinforced recycled aggregate concrete columns: Concept and behaviour under axial compression[J]. Composite Structures,2020,246:112408. doi: 10.1016/j.compstruct.2020.112408
    [15] REN F M, WU D, CHEN G, et al. Slender FRP-confined steel-reinforced RAC columns under eccentric compression: Buckling behavior and design calculation models[J]. Engineering Structures,2021,246:113059. doi: 10.1016/j.engstruct.2021.113059
    [16] REN F M, TIAN S Y, MA W, et al. Seismic performance of FRP-confined steel-reinforced RAC columns[J]. Compo-site Structures,2021,51(6):115077. doi: DOI:10.1016/j.compstruct.2021.115077
    [17] 田时雨, 任凤鸣, 陈光明. 复材新结构梁柱节点: 研究现状及展望[J]. 工业建筑, 2021, 51(6):186-197.

    TIAN Shiyu, REN Fengming, CHEN Guangming. Beam-to-column joint of new structures incorporating FRP: Current status and prospects[J]. Industrial Construction,2021,51(6):186-197(in Chinese).
    [18] REN F M, TIAN S Y, GONG L, et al. Seismic performance of a ring beam joint connecting FTCES column and RC/ESRC beam with NSC[J]. Journal of Building Engineering, 2022: 105366(in press). https://doi.org/10.1016/j.jobe.2022.105366.
    [19] 王艳云, 叶献国, 蒋庆, 等. 基于性能的钢筋混凝土框架结构震后损失评估[J]. 工程抗震与加固改造, 2016, 38(5):16-20, 43. doi: 10.16226/j.issn.1002-8412.2016.05.003

    WANG Yanyun, YE Xianguo, JIANG Qing. Performance-based seismic loss assessment in RC structure[J]. Earthquake Resistant Engineering and Retrofitting,2016,38(5):16-20, 43(in Chinese). doi: 10.16226/j.issn.1002-8412.2016.05.003
    [20] 许圆圆. 钢筋混凝土框架结构震后残余变形对其抗震性能影响的研究[D]. 西安: 西安建筑科技大学, 2017.

    XU Yuanyuan. Study on the residual deformation after earthquake of reinforced concrete frame structure for future seismic performance[D]. Xi’an: Xi’an University of Architecture and Technology, 2017(in Chinese).
    [21] CHEN Q, CAI J, BRADFORD M A, et al. Seismic behaviour of a through-beam connection between concrete-filled steel tubular columns and reinforced concrete beams[J]. Engineering Structures,2014,80:24-39. doi: 10.1016/j.engstruct.2014.08.036
    [22] American Society of Testing Materials. Standard test method for compressive strength of cylindrical concrete specimens: C39/C39 M-18[S]. West Conshohocken: ASTM International, 2018.
    [23] American Society of Testing Materials. Standard test method for static modulus of elasticity and poisson’s ratio of concrete in compression: C469/C469 M-14[S]. West Conshohocken: ASTM International, 2014.
    [24] 吴智深, 汪昕, 吴刚. FRP增强工程结构体系[M]. 北京: 科学出版社, 2017.

    WU Zhishen, WANG Xin, WU Gang. FRP reinforced engi-neering structural systems[M]. Beijing: Science Press, 2017(in Chinese).
    [25] XIE P. Behavior of large-scale hybrid FRP-concrete-steel double-skin tubular columns subjected to concentric and eccentric compression[D]. Hong Kong: The Hong Kong Polytechnic University, 2018.
    [26] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 金属材料拉伸试验第1部分: 室温试验方法: GB/T 228.1—2010[S]. 北京: 中国标准出版社, 2011.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of China. Metallic materials-Tensile testing-Part 1: Method of test at room temperature: GB/T 228.1—2010[S]. Beijing: Standards Press of China, 2011(in Chinese).
    [27] 中华人民共和国住房和城乡建设部. 建筑抗震试验规程: JGJ/T 101—2015[S]. 北京: 中国建筑工业出版社, 2015.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Specification for seismic test of buildings: JGJ/T 101—2015[S]. Beijing: China Architecture and Building Press, 2015(in Chinese).
    [28] 冯鹏, 强翰霖, 叶列平. 材料、构件、结构的“屈服点”定义与讨论[J]. 工程力学, 2017, 34(3):36-46. doi: 10.6052/j.issn.1000-4750.2016.03.0192

    FENG Peng, QIANG Hanlin, YE Lieping. Discussion and definition on yield points of materials, members and structures[J]. Engineering Mechanics,2017,34(3):36-46(in Chinese). doi: 10.6052/j.issn.1000-4750.2016.03.0192
    [29] FERROTTO M F, FISCHERB O, CAVALERI L. A strategy for the finite element modeling of FRP-confined concrete columns subjected to preload[J]. Engineering Structures,2018,173:1054-1067. doi: 10.1016/j.engstruct.2018.07.047
    [30] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB 50010—2010[S]. 北京: 中国建筑工业出版社, 2015.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for design of concrete structures: GB 50010—2010[S]. Beijing: China Architecture and Building Press, 2015(in Chinese).
    [31] TENG J G, JIANG T, LAM L, et al. Refinement of a design-oriented stress-strain model for FRP-confined concrete[J]. Journal of Composites for Construction,2009,13:269-278. doi: 10.1061/(ASCE)CC.1943-5614.0000012
    [32] MANDER J B, PRIESTLEY M J N, PARK R. Theoretical stress-strain model for confined concrete[J]. Journal of Structural Engineering,1988,114(8):1804-1826. doi: 10.1061/(ASCE)0733-9445(1988)114:8(1804)
    [33] BAI Y, NIE J G, CAI C S. New connection system for confined concrete columns and beams. II: Theoretical modeling[J]. Journal of Structural Engineering,2008,134(12):1800-1809. doi: 10.1061/(ASCE)0733-9445(2008)134:12(1800)
    [34] CHEN Q J, CAI J, BRADFORD M A. Axial compressive behavior of through-beam connections between concrete-filled steel tubular columns and reinforced concrete beams[J]. Journal of Structural Engineering,2015,141(10):04015016. doi: 10.1061/(ASCE)ST.1943-541X.0001249
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  830
  • HTML全文浏览量:  419
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-30
  • 修回日期:  2022-07-19
  • 录用日期:  2022-08-06
  • 网络出版日期:  2022-08-22
  • 刊出日期:  2022-11-01

目录

    /

    返回文章
    返回