留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

玻纤复材固废粗纤维增强混凝土的力学性能

邹祺祺 陈建飞 付兵 滕锦光

邹祺祺, 陈建飞, 付兵, 等. 玻纤复材固废粗纤维增强混凝土的力学性能[J]. 复合材料学报, 2024, 43(0): 1-13.
引用本文: 邹祺祺, 陈建飞, 付兵, 等. 玻纤复材固废粗纤维增强混凝土的力学性能[J]. 复合材料学报, 2024, 43(0): 1-13.
ZOU Qiqi, CHEN Jianfei, FU Bing, et al. Mechanical properties of concrete reinforced with macro fibres recycled from waste GFRP[J]. Acta Materiae Compositae Sinica.
Citation: ZOU Qiqi, CHEN Jianfei, FU Bing, et al. Mechanical properties of concrete reinforced with macro fibres recycled from waste GFRP[J]. Acta Materiae Compositae Sinica.

玻纤复材固废粗纤维增强混凝土的力学性能

基金项目: 国家自然科学基金 (52178218;52150710542;52178212);深圳市科技计划资助 (KCXST20221021111409023)
详细信息
    通讯作者:

    陈建飞,博士,教授,博士生导师,研究方向为土木及海洋工程 E-mail: chenjf3@sustech.edu.cn

    付兵,博士,教授,博士生导师,研究方向为绿色高性能土木工程材料及其结构 E-mail: fubing@jnu.edu.cn

  • 中图分类号: TU528.572;TB332

Mechanical properties of concrete reinforced with macro fibres recycled from waste GFRP

Funds: National Natural Science Foundation of China (52178218; 52150710542; 52178212); Shenzhen Science and Technology Program (KCXST20221021111409023)
  • 摘要: 树脂基纤维增强复合材料(简称“复材”)具有轻质、高强、耐腐蚀等突出优点,广泛应用于建筑、交通、能源、航空航天及体育等行业。复合材料生产过程和寿命终端产生了大量的复材固体废弃物,其中95%以上为玻璃纤维增强复合材料(简称“玻纤复材”)。玻璃纤维附加值较低且力学性能易在回收处理后显著降低,因此玻纤复材固废的回收经济性不强。本研究团队此前提出了通过机械切割将玻纤复材固废加工成粗纤维,并用于制备粗纤维混凝土(Macro fibre reinforced concrete, MFRC)。本文通过一系列轴压和劈拉试验,研究粗纤维体积掺量、厚度、长度对两种配比混凝土的力学性能的影响。试验结果表明,粗纤维的掺入能显著提升混凝土的劈拉强度,体积掺量为1.5%时,配比二混凝土的劈拉强度提高40%。评估了现有FRC劈拉强度预测公式对MFRC劈拉强度的预测效果,并基于试验结果提出了粗纤维混凝土劈拉强度预测公式。

     

  • 图  1  玻纤复材风机叶片的粗纤维化方法

    Figure  1.  Mechanical processing of a wind turbine blade into macro fibres

    图  2  粗纤维表面的粗糙纹理

    Figure  2.  Rough texture of macro fibre surface

    图  3  拉伸破坏后的粗纤维试件

    Figure  3.  Macro fibre specimens after tensile failure

    图  4  试验装置

    Figure  4.  Test setups

    图  5  粗纤维掺入对混凝土坍落度的影响

    Figure  5.  Effect of macro fibres on concrete slump value

    图  6  MFRC轴压试件典型破坏模态

    Figure  6.  Typical failure modes of MFRC cylinders under compression

    图  7  MFRC轴压强度

    Figure  7.  Compressive strength of MFRC

    图  8  MFRC轴压应力-应变曲线

    Figure  8.  Compressive stress-strain curves of MFRC

    图  9  MFRC劈拉试件典型破坏模态

    Figure  9.  Typical failure modes of MFRC splitting tensile test specimens

    图  10  MFRC劈拉强度

    Figure  10.  Splitting tensile strength of MFRC

    图  11  MFRC劈拉强度实验值和预测值的比较

    Figure  11.  Predicted vs test values of MFRC splitting tensile strength

    表  1  回收粗纤维统计参数

    Table  1.   Statistical properties of recycled macro fibres

    Designation MF-1 MF-2 MF-3 MF-4 MF-5
    Nominal dimensions/mm 90×4.5×0.5 90×4.5×1.2 90×4.5×2.2 60×4.5×0.5 30×4.5×0.5
    Length/mm Average 91.20 90.57 87.60 58.25 33.30
    Standard deviation 1.94 4.56 2.97 1.94 1.20
    Width/mm Average 4.49 4.57 4.57 4.63 4.81
    Standard deviation 0.43 0.36 0.75 0.80 0.48
    Thickness/mm Average 0.54 1.26 2.26 0.54 0.50
    Standard deviation 0.16 0.26 0.53 0.19 0.12
    Tensile strength/MPa Average 554
    Standard deviation 135
    Elastic modulus/GPa Average 37.7
    Standard deviation 7.3
    下载: 导出CSV

    表  2  试件设计

    Table  2.   Specimen design

    No. Mix Water/cement ratio Fibre length/mm Fibre thickness/mm Fibre volume fraction/% No. of specimens
    Compression Splitting
    1-1 S1 W0.32 L0 V0%T0 0.32 - - 0 3 3
    1-2 S1 W0.32 L90 V0.5%T0.5 0.32 90 0.5 0.5 3 3
    1-3 S1 W0.32 L90 V1%T0.5 0.32 90 0.5 1 3 3
    1-4 S1 W0.32 L90 V1.5%T0.5 0.32 90 0.5 1.5 3 3
    1-5 S1 W0.32 L90 V2%T0.5 0.32 90 0.5 2 3 3
    2-1 S2 W0.32 L90 V1.5%T1.2 0.32 90 1.2 1.5 3 3
    2-2 S2 W0.32 L90 V1.5%T2.2 0.32 90 2.2 1.5 3 3
    2-3 S2 W0.32 L60 V1.5%T0.5 0.32 60 0.5 1.5 3 3
    2-4 S2 W0.32 L30 V1.5%T0.5 0.32 30 0.5 1.5 3 3
    2-5 S2 W0.47 L90 V1.5%T0.5 0.47 90 0.5 1.5 3 3
    2-6 S2 W0.47 L0 V0%T0 0.47 - - 0 3 3
    下载: 导出CSV

    表  3  混凝土基体配合比

    Table  3.   Mix proportions of concrete matrix

    MixStrength gradeFresh water/
    Cement ratio
    Fresh water/
    (kg·m−3)
    Cement/
    (kg·m−3)
    Fine Aggregate/
    (kg·m−3)
    Coarse Aggregate/
    (kg·m−3)
    Water reducer/%
    1C600.321605007959700.45
    2C400.4718539571510750.19
    下载: 导出CSV

    表  4  MFRC轴压实验结果

    Table  4.   Key results of MFRC compression tests

    No. Group fc,m/ MPa CoV/ % εco,m/ % CoV/ % Em/ GPa CoV/ % vm CoV/ %
    1-1 S1 W0.32 L0 V0%T0 51.7 2.1 0.223 13.7 35.5 5.9 0.18 6.2
    1-2 S1 W0.32 L90 V0.5%T0.5 46.0 6.4 0.175 10.6 36.2 0.7 0.19 0.0
    1-3 S1 W0.32 L90 V1%T0.5 49.1 4.7 0.183 3.8 35.4 3.6 0.20 5.0
    1-4 S1 W0.32 L90 V1.5%T0.5 37.4 5.3 0.167 9.0 32.7 6.8 0.19 11.2
    1-5 S1 W0.32 L90 V2%T0.5 38.0 7.3 0.194 6.2 28.6 6.7 0.17 3.5
    2-1 S2 W0.32 L90 V1.5%T1.2 74.5 1.6 0.264 4.7 39.7 1.2 0.17 0.0
    2-2 S2 W0.32 L90 V1.5%T2.2 65.5 1.2 0.245 11.9 39.5 1.9 0.21 4.8
    2-3 S2 W0.32 L60 V1.5%T0.5 57.4 1.0 0.236 16.2 37.1 5.4 0.19 6.0
    2-4 S2 W0.32 L30 V1.5%T0.5 60.2 2.7 0.208 1.7 40.2 2.5 0.19 5.3
    2-5 S2 W0.47 L90 V1.5%T0.5 50.9 2.9 0.272 0.7 32.4 4.6 0.19 16.6
    2-6 S2 W0.47 L0 V0%T0 50.1 2.4 0.218 7.2 36.0 2.9 0.22 16.2
    Note: fc,m = Average compressive strength; εco,m = Average value of strain at compressive strength; Em = Average value of modulus of elasticity in compression; vm = Average Poisson's ratio; CoV = Coefficient of variation.
    下载: 导出CSV

    表  5  纤维混凝土劈拉强度预测模型

    Table  5.   Models for predicting the splitting tensile strength of FRC

    Source Parameters Equation Note
    WAFA and ASHOUR [39] $ f_{\rm{c}}^{\prime},{V_{\rm{f}}} $ $ {f_{\rm{spf}}} = 0.58{(f_{\rm{c}}^{\prime})^{0.5}} + 3.02{V_{\rm{f}}} $ $ f_{\rm{c}}^{\prime} \leqslant 100\;{\text{MPa}} $
    BAE et al. [41] $ f_{\rm{c}}^{\prime},{V_{\rm{f}}},L,{d_{\rm{f}}} $ $ {f_{\rm{spf}}} = 0.83{(f_{\rm{c}}^{\prime})^{0.47}}\left(\dfrac{{ - 2}}{{1 + {{(0.125 Ri)}^{0.8}}}} + 3\right) $ $ \begin{gathered} Ri{\text{ = }}{V_{\rm{f}}}L/{d_{\rm{f}}} \\ f_{\rm{c}}^{\prime} \leqslant 150\;{\text{MPa}} \\ \end{gathered} $
    SONG et al. [40] $ f_{\rm{c}}^{},{V_{\rm{f}}} $ $ {f_{\rm{spf}}} = 0.63{({f_{c} })^{0.5}} + 3.01{V_{\rm{f}}} - 0.02{V_{\rm{f}} }^2 $ $ {f_{\rm{c}}} \leqslant 100\;{\text{MPa}} $
    AL AZZAWI and SARSAM [42] $ f_{\rm{c}}^{},{V_{\rm{f}}},L,{d_{\rm{f}}},{b_{\rm{f}} } $ $ {f_{\rm{spf}}} = 0.47{(f_{\rm{c}}^{})^{0.5}} + 4.2 F $ $ \begin{gathered} F{\text{ = }}{V_{\rm{f}}}{{\text{b}}_{\rm{f}}}L/{d_{\rm{f}}} \\ 41 \leqslant f_{\rm{c}}^{} \leqslant 115\;{\text{MPa}} \\ \end{gathered} $
    MUSMAR [43] $ f_{\rm{cf} }^{},{V_{\rm{f}} },L,{d_{\rm{f}} } $ $ {f_{{s} {pf} }} = {({f_{\rm{cf} }})^{0.5}}\left(0.6 + 0.4{V_{\rm{f}}}\dfrac{L}{{{d_{\rm{f}} }}}\right) $ $ 4 \leqslant {f_{\rm{cf} }} \leqslant 120\;{\text{MPa}} $
    EL DIN et al. [44] $ f_{\rm{cf} }^{},{V_{\rm{f}} },L,{d_{\rm{f}} },{b_{\rm{f}}} $ $ {f_{\rm{spf} }} = 0.095\left[{f_{\rm{cf} }} + 10\sqrt F \left(3 - \dfrac{{20}}{{{f_{\rm{cf} }}}}\right)\right] $ $ F{\text{ = }}{V_{\rm{f}} }{{\text{b}}_{\rm{f}}}L/{d_{\rm{f}}} $
    LE HOANG [45] $ f_{\rm{cf} }^{},{V_{\rm{f}}},L,{d_{\rm{f}}},{b_{\rm{f}}} $ $ {f_{\rm{spf}}} = {({f_{\rm{cf} }})^{0.5}}\left(0.94{V_{\rm{f}} }\dfrac{L}{{{d_{\rm{f}}}}}{b_{\rm{f}} } + 0.67\right) $ $ 120 \leqslant {f_{\rm{cf} }} \leqslant 200\;{\text{MPa}} $
    Notes: fc= Characteristic compressive strength of plain concrete; fc = Measured compressive strength of plain concrete; fcf = Measured compressive strength of FRC.
    下载: 导出CSV

    表  6  FRC模型对MFRC劈拉强度的预测效果

    Table  6.   Evaluation of FRC models for predicting the splitting tensile strength of MFRC

    Source Predicted/Test IAE/%
    Average SD CoV/%
    WAFA and ASHOUR [39] 0.83 0.14 16 19.8
    BAE et al. [41] 1.32 0.14 10 30.5
    SONG et al. [40] 0.98 0.16 16 12.6
    AL AZZAWI and SARSAM [42] 0.92 0.13 15 13.5
    MUSMAR [43] 1.19 0.12 10 18.5
    EL DIN et al. [44] 1.28 0.16 13 27.5
    LE HOANG [45] 1.34 0.13 10 33.5
    Equation (5) 1.00 0.08 8 6.0
    Equation (6) 1.02 0.15 15 7.4
    Notes: SD—Standard deviation; IAE—Integral absolute error.
    下载: 导出CSV
  • [1] DAS T K, GHOSH P, DAS N C. Preparation, development, outcomes, and application versatility of carbon fiber-based polymer composites: a review[J]. Advanced Composites and Hybrid Materials, 2019, 2(2): 214-233. doi: 10.1007/s42114-018-0072-z
    [2] COLLINS M, CULEBRAS M, REN G. Chapter 8 - The use of lignin as a precursor for carbon fiber–reinforced composites [M]//Puglia D, Santulli C, Sarasini F. Micro and Nanolignin in Aqueous Dispersions and Polymers. Limerick, Ireland: Elsevier, 2022: 237-250.
    [3] MENG F, MCKECHNIE J, TURNER T, et al. Environmental aspects of use of recycled carbon fiber composites in automotive applications[J]. Environmental Science & Technology, 2017, 51(21): 12727-12736.
    [4] VIJAY N, RAJKUMARA V, BHATTACHARJEE P. Assessment of composite waste disposal in aerospace industries[J]. Procedia Environmental Sciences, 2016, 35: 563-570. doi: 10.1016/j.proenv.2016.07.041
    [5] 张建川, 张前峰, 蔡红军. 风力发电复合材料叶片废弃物的几种处理方法分析[J]. 材料科学与工程学报, 2012, 30: 473-482.

    ZHANG J C, ZHANG Q F, CAI H J. Analysis on treatment methods of composite blade wastes of wind turbines[J]. Journal of Materials Science & Engineering, 2012, 30: 473-482(in Chinese).
    [6] GHARDE S, KANDASUBRAMANIAN B. Mechanothermal and chemical recycling methodologies for the Fibre Reinforced Plastic (FRP)[J]. Environmental Technology & Innovation, 2019, 14: 100311.
    [7] HALLIWELL S. FRPs - The environmental agenda[J]. Advances in Structural Engineering, 2010, 13: 783-791. doi: 10.1260/1369-4332.13.5.783
    [8] JOB S. Recycling glass fibre reinforced composites - History and progress[J]. Reinforced Plastics, 2013, 57: 19-23. doi: 10.1016/S0034-3617(13)70151-6
    [9] BROEKEL J, SCHARR G. The specialties of fiber-reinforced plastics in terms of product lifecycle management[J]. Journal of Materials Processing Technology, 2005, 162-163: 725-729. doi: 10.1016/j.jmatprotec.2005.02.226
    [10] MEIRA CASTRO A C, CARVALHO J, RIBEIRO M, et al. An integrated recycling approach for GFRP pultrusion wastes: Recycling and reuse assessment into new composite materials using Fuzzy Boolean Nets[J]. Journal of Cleaner Production, 2013, 66: 420-430.
    [11] OLIVEUX G, DANDY L O, LEEKE G A. Current status of recycling of fibre reinforced polymers: Review of technologies, reuse and resulting properties[J]. Progress in Materials Science, 2015, 72: 61-99. doi: 10.1016/j.pmatsci.2015.01.004
    [12] YAZDANBAKHSH A, BANK L. A critical review of research on reuse of mechanically recycled FRP production and end-of-life waste for construction[J]. Polymers, 2014, 6(6): 1810-1826. doi: 10.3390/polym6061810
    [13] LIU Y, FARNSWORTH M, TIWARI A. A review of optimisation techniques used in the composite recycling area: State-of-the-art and steps towards a research agenda[J]. Journal of Cleaner Production, 2017, 140: 1775-1781. doi: 10.1016/j.jclepro.2016.08.038
    [14] MEYER L O, SCHULTE K, GROVE NIELSEN E. CFRP-recycling following a pyrolysis route: Process optimization and potentials[J]. Journal of Composite Materials, 2009, 43(9): 1121-1132. doi: 10.1177/0021998308097737
    [15] PIMENTA S, PINHO S T. The effect of recycling on the mechanical response of carbon fibres and their composites[J]. Composite Structures, 2012, 94(12): 3669-3684. doi: 10.1016/j.compstruct.2012.05.024
    [16] YANG J, LIU J, LIU W, et al. Recycling of carbon fibre reinforced epoxy resin composites under various oxygen concentrations in nitrogen-oxygen atmosphere[J]. Journal of Analytical and Applied Pyrolysis, 2015, 112: 253-261. doi: 10.1016/j.jaap.2015.01.017
    [17] PIMENTA S, PINHO S. Recycling carbon fibre reinforced polymers for structural applications - technology review and market outlook[J]. Waste Management, 2011, 31(2): 378-392. doi: 10.1016/j.wasman.2010.09.019
    [18] JOB S, LEEKE G, MATIVENGA P, et al. Composites recycling - Where are we now?[R]. Berkhamsted, UK: Composites UK Ltd, 2016.
    [19] TITTARELLI F, SHAH S. Effect of low dosages of waste GRP dust on fresh and hardened properties of mortars: Part 1[J]. Construction and Building Materials, 2013, 47: 1532-1538. doi: 10.1016/j.conbuildmat.2013.06.043
    [20] ALAM M S, SLATER E, BILLAH M. Green concrete made with RCA and FRP scrap aggregate: fresh and hardened properties[J]. Journal of Materials in Civil Engineering, 2013, 25(12): 1783-1794. doi: 10.1061/(ASCE)MT.1943-5533.0000742
    [21] ASOKAN P, OSMANI M, PRICE A D F. Assessing the recycling potential of glass fibre reinforced plastic waste in concrete and cement composites[J]. Journal of Cleaner Production, 2009, 17(9): 821-829. doi: 10.1016/j.jclepro.2008.12.004
    [22] MASTALI M, DALVAND A, SATTARIFARD A R. The impact resistance and mechanical properties of reinforced self-compacting concrete with recycled glass fibre reinforced polymers[J]. Journal of Cleaner Production, 2016, 124: 312-324. doi: 10.1016/j.jclepro.2016.02.148
    [23] GARCíA D, VEGAS I, CACHO I. Mechanical recycling of GFRP waste as short-fiber reinforcements in microconcrete[J]. Construction and Building Materials, 2014, 64: 293-300. doi: 10.1016/j.conbuildmat.2014.02.068
    [24] CRIADO M, DíAZ I, BASTIDAS J M, et al. Effect of recycled glass fiber on the corrosion behavior of reinforced mortar[J]. Construction and Building Materials, 2014, 64: 261-269. doi: 10.1016/j.conbuildmat.2014.04.049
    [25] MOHAMMADHOSSEINI H, AWAL A, YATIM J. The impact resistance and mechanical properties of concrete reinforced with waste polypropylene carpet fibres[J]. Construction and Building Materials, 2017, 143: 147-157. doi: 10.1016/j.conbuildmat.2017.03.109
    [26] FU B, LIU K C, CHEN J F, et al. Concrete reinforced with macro fibres recycled from waste GFRP[J]. Construction and Building Materials, 2021, 310: 125063. doi: 10.1016/j.conbuildmat.2021.125063
    [27] YUAN H, LIN W L, YOU X M, et al. A cost-efficient UHPC incorporated with coarse aggregates and macro fibres recycled from waste GFRP[J]. Journal of Building Engineering, 2023, 73: 106786. doi: 10.1016/j.jobe.2023.106786
    [28] FU B, XU G T, PENG W S, et al. Performance enhancement of recycled coarse aggregate concrete by incorporating with macro fibers processed from waste GFRP[J]. Construction and Building Materials, 2024, 411: 134166. doi: 10.1016/j.conbuildmat.2023.134166
    [29] FU B, LIN L B, ZHOU X, et al. Effect of incorporating recycled macro fibres on the properties of ultra-high-performance seawater sea-sand concrete[J]. Journal of Building Engineering, 2024, 83: 108460. doi: 10.1016/j.jobe.2024.108460
    [30] XU G T, LIU M J, XIANG Y, et al. Valorization of macro fibers recycled from decommissioned turbine blades as discrete reinforcement in concrete[J]. Journal of Cleaner Production, 2022, 379: 134550. doi: 10.1016/j.jclepro.2022.134550
    [31] YOU X M, LIN L B, FU B, et al. Ultra-high performance concrete reinforced with macro fibres recycled from waste GFRP composites[J]. Case Studies in Construction Materials, 2023, 18: e02120. doi: 10.1016/j.cscm.2023.e02120
    [32] ASTM. Standard test method for tensile properties of polymer matrix composite materials: D3039/D3039M-14: D3039/D3039M-14 [S]. Philadelphia, USA: ASTM, 2017.
    [33] YUAN H, FU X H, FAN Y C, et al. Flexural performance of layered macro fiber reinforced concrete beams[J]. Construction and Building Materials, 2022, 357: 129314. doi: 10.1016/j.conbuildmat.2022.129314
    [34] 中华人民共和国行业标准. 普通混凝土配合比设计规程: JGJ55-2011[S]. 北京: 中国建筑工业出版社, 2011.

    Industry standard of the People's Republic of China. Specification for mix proportion design of ordinary concrete: JGJ55-2011[S]. Beijing: China Architecture and Building Press, 2011. (in Chinese)
    [35] ASTM. Standard test method for compressive strength of cylindrical concrete specimens: C39/C39M−14a[S]. West Conshohocken, PA: ASTM, 2015.
    [36] ASTM. Standard test method for static modulus of elasticity and Poisson’s ratio of concrete in compression: C469/C469M−14[S]. West Conshohocken, PA: ASTM, 2014.
    [37] ASTM. Standard test method for splitting tensile strength of cylindrical concrete specimens: C496/C496M−11[S]. West Conshohocken, PA: ASTM, 2011.
    [38] WILLE K, EL TAWIL S, NAAMAN A E. Properties of strain hardening ultra high performance fiber reinforced concrete (UHP-FRC) under direct tensile loading[J]. Cement and Concrete Composites, 2014, 48: 53-66. doi: 10.1016/j.cemconcomp.2013.12.015
    [39] WAFA F, ASHOUR S. Mechanical properties of high-strength fiber reinforced concrete[J]. ACI Materials Journal, 1992, 89: 449-455.
    [40] SONG P S, HWANG S J C, MATERIALS B. Mechanical properties of high-strength steel fiber-reinforced concrete[J]. Construction and Building Materials, 2004, 18(9): 669-673. doi: 10.1016/j.conbuildmat.2004.04.027
    [41] BAE B I, CHOI H K, LEE M S, et al. Indirect tensile strength of UHSC reinforced with steel fibres and its correlation with compressive strength[J]. Magazine of Concrete Research, 2017, 69(15): 772-786. doi: 10.1680/jmacr.15.00545
    [42] AL AZZAWI Z, SARSAM K. Mechanical properties of high-strength fiber reinforced concrete[J]. Engineering and Technology Journal, 2010, 28: 2442. doi: 10.30684/etj.28.12.13
    [43] MUSMAR M. Tensile strength of steel fiber reinforced concrete[J]. Contemporary Engineering Sciences, 2013, 6: 225-237. doi: 10.12988/ces.2013.3531
    [44] EL DIN H, MOHAMED H, KHATER M, et al. Effect of steel fibers on behavior of ultra high performance concrete[C]// First International Interactive Symposium on UHPC, Des Moines, IA, USA: 2016: 1-10.
    [45] LE HOANG A. Evaluation of the splitting tensile strength of ultra-high performance concrete[C]// Serna P, Llano-Torre, A. , Martí-Vargas, J. R. , Navarro-Gregori, J. Fibre Reinforced Concrete: Improvements and Innovations: RILEM-fib International Symposium on FRC (BEFIB). Berlin/Heidelberg, Germany: Springer, 2021: 1149-1160.
    [46] THOMAS J, RAMASWAMY A. Mechanical properties of steel fiber-reinforced concrete[J]. Journal of Materials in Civil Engineering, 2007, 19(5): 385-392. doi: 10.1061/(ASCE)0899-1561(2007)19:5(385)
    [47] NARAYANAN R, DARWISH I Y S. Use of steel fibers as shear reinforcement[J]. ACI Structural Journal, 1987, 84(23): 216-227.
    [48] OH Y H. Evaluation of flexural strength for normal and high strength concrete with hooked steel fibers[J]. Journal of the Korea Concrete Institute, 2008, 20(4): 531-539. doi: 10.4334/JKCI.2008.20.4.531
    [49] JSCE. Standard specifications for concrete structures – design[S]. Tokyo, Japan: JSCE, 2007.
    [50] FIB. Model code for concrete structures 2010[S]. Lausanne, Switzerland: FIB, 2013.
    [51] ACI. Building code requirements for structural concrete (ACI 318-14) and commentary (ACI 318R-14)[S]. Farmington Hills, MI, USA: ACI, 2014.
    [52] ACI. ACI 363R-10: Report on high-strength concrete[R]. Farmington Hills, MI, USA: ACI, 2010.
    [53] CHU S H, LI L G, KWAN A K H. Fibre factors governing the fresh and hardened properties of steel FRC[J]. Construction and Building Materials, 2018, 186(20): 1228-1238.
  • 加载中
计量
  • 文章访问数:  47
  • HTML全文浏览量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-26
  • 修回日期:  2024-09-06
  • 录用日期:  2024-09-18
  • 网络出版日期:  2024-10-24

目录

    /

    返回文章
    返回