留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

温度效应对高吸水性树脂内养护PVA纤维混凝土轴拉软化特性的影响

谢发祥 曹文豪 金子恒 陈徐东

谢发祥, 曹文豪, 金子恒, 等. 温度效应对高吸水性树脂内养护PVA纤维混凝土轴拉软化特性的影响[J]. 复合材料学报, 2024, 42(0): 1-15.
引用本文: 谢发祥, 曹文豪, 金子恒, 等. 温度效应对高吸水性树脂内养护PVA纤维混凝土轴拉软化特性的影响[J]. 复合材料学报, 2024, 42(0): 1-15.
XIE Faxiang, CAO Wenhao, JIN Ziheng, et al. Axial tensile softening characteristics of PVA fiber concrete cured in super absorbent polymer under temperature effects[J]. Acta Materiae Compositae Sinica.
Citation: XIE Faxiang, CAO Wenhao, JIN Ziheng, et al. Axial tensile softening characteristics of PVA fiber concrete cured in super absorbent polymer under temperature effects[J]. Acta Materiae Compositae Sinica.

温度效应对高吸水性树脂内养护PVA纤维混凝土轴拉软化特性的影响

基金项目: 国家自然科学基金面上项目(51979090)
详细信息
    通讯作者:

    金子恒,硕士生,研究方向为新型混凝土材料力学性能 E-mail: 1651234439@qq.com

  • 中图分类号: TU528

Axial tensile softening characteristics of PVA fiber concrete cured in super absorbent polymer under temperature effects

Funds: National Natural Science Foundation of China (51979090)
  • 摘要: 为研究不同温度下高吸水性树脂(Super Absorbent Polymer, SAP)内养护聚乙烯醇(Polyvinyl Alcohol, PVA)纤维混凝土试件的轴拉软化特性与内在断裂机制,采用MTS万能试验机进行单轴拉伸试验,分析了混凝土的轴拉力学性能、破坏形态、应力-位移曲线、断裂能、临界裂缝和特征长度的变化规律。根据试验曲线,采用Hordijk和Li等提出的软化模型拟合,分析得到相关参数规律及混凝土软化特性。试验结果表明,混凝土试件在薄弱处拉伸断裂,且断裂位置沿轴向随机分布;随着温度的升高,应力-位移曲线峰后软化段更加平缓,应力下降速度变慢;混凝土的断裂能随着温度的升高总体不断减小,特征长度介于970.6~2110.2 mm之间,随着PVA纤维掺量的增加总体先增后减,临界裂缝长度则随着温度的升高总体不断增大。研究结果表明,温度效应对混凝土强度、断裂性能及SAP与PVA纤维的协同作用影响显著,造成混凝土破坏模式、内在断裂机制的改变;加入适量的SAP和PVA纤维能够改善混凝土试件的抗裂性能和韧性,而过多掺量的PVA纤维会加快混凝土在高温下的损伤;通过对比发现,Hordijk模型能够更好的模拟不同温度下内养护纤维混凝土轴拉试验的软化段曲线。

     

  • 图  1  试验升温曲线图

    Figure  1.  Experimental heating curve

    图  2  混凝土试件在高温下的轴拉破坏模式

    Figure  2.  Axial tensile failure mode of concrete specimens at varying temperatures

    图  3  SAP内养护PVA纤维混凝土在不同温度下宏观与微观断裂面形态

    Figure  3.  Macroscopic and microscopic fracture surface morphology of PVA fiber concrete cured in SAP at different temperatures

    图  4  不同温度与纤维掺量下SAP内养护PVA纤维混凝土轴拉试验应力-位移曲线图

    Figure  4.  Stress-displacement curve of axis tensile test of PVA fiber concrete cured in SAP with different temperatures and fiber dosages

    图  5  不同纤维掺量下SAP内养护PVA纤维混凝土力学性能与温度变化图

    Figure  5.  Plot of mechanical properties of PVA fiber concrete cured in SAP versus temperature change with different fiber contents

    图  6  裂缝张开位移计算图

    Figure  6.  Calculation diagram of crack opening displacement

    图  7  极限裂缝宽度的确定方法

    Figure  7.  Determination method of the limit crack width

    图  8  不同温度与纤维掺量下SAP内养护PVA纤维混凝土轴拉试验软化段曲线图

    Figure  8.  The softening curves of axis tensile test of PVA fiber concrete cured in SAP with different temperatures and fiber dosages

    图  9  不同试验条件下SAP内养护PVA纤维混凝土断裂能、特征长度和临界裂缝长度变化趋势

    Figure  9.  Trends of fracture energy, characteristic length and critical fracture length of PVA fiber concrete cured in SAP under different test conditions

    图  10  不同温度与纤维掺量下SAP内养护PVA纤维混凝土软化段Hordijk[44]模型与Li[42]模型拟合参数变化规律

    Figure  10.  Fitted parameters of Hordijk[44] model and Li[42] model for softening section of PVA fiber concrete cured in SAP at different temperatures and fiber mixtures

    图  11  不同温度下0.20%PVA/C混凝土试件拟合结果与试验结果对比

    Figure  11.  Comparison between fitting and experimental results of 0.20%PVA/C concrete specimens at different temperatures

    表  1  混凝土试件组分配合比(kg/m3)

    Table  1.   Mix proportions of concrete specimens(kg/m3)

    Item Water Cement Sand Coarse aggregate Water reducer SAP PVA Water-cement ratio Internal conservation
    water quality
    C 155 480 640 1160 1.2 0.000 0.000 0.323 0.0
    0.05%PVA/C 155 480 640 1160 1.2 1.116 0.645 0.323 27.9
    0.10%PVA/C 155 480 640 1160 1.2 1.116 1.290 0.323 27.9
    0.15%PVA/C 155 480 640 1160 1.2 1.116 1.935 0.323 27.9
    0.20%PVA/C 155 480 640 1160 1.2 1.116 2.580 0.323 27.9
    Notes: In the specimens of polyvinyl alcohol (PVA) fiber concrete cured in super absorbent polymer (SAP), a%PVA/C—PVA fiber volume fraction admixture of specimen is a%. The dosage of SAP of item C is 0, other items are 1.116 kg/m3.
    下载: 导出CSV

    表  2  不同温度与纤维掺量下SAP内养护PVA纤维混凝土断裂能、特征长度和临界裂缝长度平均值

    Table  2.   Average values of fracture energy, characteristic length and critical crack length of PVA fiber concrete cured in SAP with different temperatures and fiber dosages

    Item Fracture energy GF/(N·mm−1) Characteristic length Lch/mm Critical Crack length wc/mm
    C-25°C 0.287 1341.945 0.535
    C-200°C 0.251 1328.076 0.650
    C-300°C 0.242 1245.240 0.720
    C-400°C 0.226 1355.680 0.826
    0.05%PVA/C-25°C 0.341 2110.220 0.731
    0.05%PVA/C-200°C 0.290 1687.029 0.908
    0.05%PVA/C-300°C 0.249 1698.376 0.960
    0.05%PVA/C-400°C 0.225 1990.315 1.077
    0.10%PVA/C-25°C 0.310 1762.373 0.639
    0.10%PVA/C-200°C 0.251 1552.835 0.682
    0.10%PVA/C-300°C 0.212 1407.621 0.869
    0.10%PVA/C-400°C 0.167 1953.715 0.989
    0.15%PVA/C-25°C 0.297 1579.185 0.583
    0.15%PVA/C-200°C 0.248 1229.602 0.633
    0.15%PVA/C-300°C 0.206 1316.608 0.733
    0.15%PVA/C-400°C 0.163 1001.284 0.851
    0.20%PVA/C-25°C 0.295 1167.763 0.502
    0.20%PVA/C-200°C 0.243 1070.596 0.574
    0.20%PVA/C-300°C 0.198 970.560 0.639
    0.20%PVA/C-400°C 0.167 1845.660 0.785
    下载: 导出CSV

    表  3  不同温度与纤维掺量下SAP内养护PVA纤维混凝土软化段模型参数平均值汇总表

    Table  3.   Summary of the average values of softening segment model parameters of PVA fiber concrete cured in SAP at different temperatures and fiber dosages

    Item Hordijk[44]model Li[42]model
    c1 c2 R2 k n R2
    C-25°C 3.048 6.967 0.999 0.0288 0.906 0.990
    C-200°C 4.125 8.429 0.998 0.0184 0.764 0.996
    C-300°C 3.797 6.590 0.983 0.0227 0.647 0.982
    C-400°C 4.209 7.020 0.987 0.0279 0.613 0.994
    0.05%PVA/C-25°C 3.700 7.447 0.983 0.0234 0.745 0.976
    0.05%PVA/C-200°C 4.326 7.086 0.990 0.0301 0.591 0.995
    0.05%PVA/C-300°C 4.758 7.955 0.992 0.0341 0.649 0.993
    0.05%PVA/C-400°C 3.655 5.698 0.990 0.0381 0.814 0.992
    0.10%PVA/C-25°C 4.970 9.000 0.990 0.0179 0.724 0.990
    0.10%PVA/C-200°C 4.291 8.533 0.990 0.0160 0.738 0.992
    0.10%PVA/C-300°C 2.678 2.608 0.996 0.0156 0.458 0.983
    0.10%PVA/C-400°C 4.360 5.950 0.998 0.0471 0.621 0.993
    0.15%PVA/C-25°C 4.988 9.639 0.997 0.0138 0.705 0.993
    0.15%PVA/C-200°C 3.530 7.170 0.996 0.0186 0.783 0.983
    0.15%PVA/C-300°C 2.812 7.064 0.997 0.0295 0.906 0.987
    0.15%PVA/C-400°C 1.728 5.391 0.978 0.0227 1.070 0.956
    0.20%PVA/C-25°C 6.203 10.890 0.959 0.0097 0.647 0.960
    0.20%PVA/C-200°C 3.060 6.766 0.994 0.0174 0.854 0.982
    0.20%PVA/C-300°C 4.330 8.557 0.981 0.0174 0.690 0.978
    0.20%PVA/C-400°C 3.367 5.520 0.998 0.0371 0.689 0.994
    Notes: c1c2—the fitted parameters of Hordijk[44]model; kn—the fitted parameters of Li[42]model; R2—The degree of fitting.
    下载: 导出CSV
  • [1] 马耀邦. SAP混凝土力学性能试验研究[D]. 天津: 天津大学, 2015.

    MA Yaobang. Experimental study on mechanical properties of SAP concrete [D]. Tianjin: Tianjin University, 2015(in Chinese).
    [2] 李兆丰, 顾正彪, 洪雁. 淀粉接枝丙烯酸类超强吸水剂的结构、吸水机理和商业应用[J]. 化学与粘合, 2004, (3): 155-158. doi: 10.3969/j.issn.1001-0017.2004.03.012

    LI Zhaofeng, GU Zhengbiao, HONG Yan. Structure, Water Absorbing Mechanism and commercial Application ofAcrylic Acid Grafted Starch Super Water Absorbent Agent[J]. Chemistry and Adhesion, 2004, (3): 155-158(in Chinese). doi: 10.3969/j.issn.1001-0017.2004.03.012
    [3] KANG S H, HONG S G, MOON J. The effect of superabsorbent polymer on various scale of pore structure in ultra-high performance concrete[J]. Construction and Building Material, 2018, 172: 29-40. doi: 10.1016/j.conbuildmat.2018.03.193
    [4] 申爱琴, 杨景玉, 郭寅川, 等. SAP内养生水泥混凝土综述[J]. 交通运输工程学报, 2021, 21(4): 31.

    SHEN Aiqin, YANG Jingyu, GUO Yinchuan, et al. Review on Cement Concrete Internally Cured by SAP[J]. Journal of Traffic and Transportation Engineering, 2021, 21(4): 31(in Chinese).
    [5] Jensen O M, Hansen P F. Water-entrained cement-based materials: I. Principles and theoretical background[J]. Cement & Concrete Research, 2001, 31(4): 647-654.
    [6] Jensen O M, Hansen P F. Water-entrained cement-based materials: II. Experimental observations[J]. Cement & Concrete Research, 2002, 32(6): 973-978.
    [7] LIU J, SHI C, MA X, et al. An overview on the effect of internal curing on shrinkage of high performance cement-based materials[J]. Construction and Building Materials, 2017, 146: 702-712. doi: 10.1016/j.conbuildmat.2017.04.154
    [8] Wehbe Y, Ghahremaninezhad A. Combined effect of shrinkage reducing admixtures (SRA) and superabsorbent polymers (SAP) on the autogenous shrinkage, hydration and properties of cementitious materials[J]. Construction and Building Materials, 2017, 138: 151-162. doi: 10.1016/j.conbuildmat.2016.12.206
    [9] Chindasiriphan P, Yokota H, Pimpakan P. Effect of fly ash and superabsorbent polymer on concrete self-healing ability[J]. Construction and Building Materials. 2020, 233(UNSP 116975).
    [10] YAO Y, ZHU Y, YANG Y. Incorporation superabsorbent polymer (SAP) particles as controlling pre-existing flaws to improve the performance of engineered cementitious composites (ECC)[J]. Construction and Building Materials, 2012, 28(1): 139-145. doi: 10.1016/j.conbuildmat.2011.08.032
    [11] 丁以兵, 詹炳根, 黄其海, 等. 自养护作用下的高性能混凝土抗冻与抗渗性能[J]. 合肥工业大学学报: 自然科学版, 2007, 30(5): 4.

    DING Yibing, ZHAN Binggen, HUANG Qihai, et al. Study of Frost Resistance and Impermeability of High-performance Concrete under Self-curing[J]. Journal of Hefei University of Technology, 2007, 30(5): 4(in Chinese).
    [12] A L S, B R C E M, C G A, et al. Development of mortars containing superabsorbent polymer[J]. Construction and Building Materials, 2015, 95: 575-584. doi: 10.1016/j.conbuildmat.2015.07.173
    [13] ESTEVES L P, LUKO IŪT I, SNIEN J. Hydration of cement with superabsorbent polymers[J]. Journal of Thermal Analysis & Calorimetry, 2014, 118(2): 1385-1393.
    [14] KLEMM A J, SIKORA K S. The effect of Superabsorbent Polymers (SAP) on microstructure and mechanical properties of fly ash cementitious mortars[J]. Construction and Building Materials, 2013, 49(dec.): 134-143.
    [15] NESTLE N, KÜHN A, FRIEDEMANN K, et al. Water balance and pore structure development in cementitious materials in internal curing with modified superabsorbent polymer studied by NMR[J]. Microporous & Mesoporous Materials, 2009, 125(1-2): 51-57.
    [16] QIN X, SHEN A, LYU Z, et al. Research on water transport behaviors and hydration characteristics of internal curing pavement concrete[J]. Construction and Building Materials, 2020, 248(3): 118714.
    [17] YANG J, GUO Y, SHEN A, et al. Research on drying shrinkage deformation and cracking risk of pavement concrete internally cured by SAPs[J]. Construction and Building Materials, 2019, 227: 116705. doi: 10.1016/j.conbuildmat.2019.116705
    [18] 李曈, 张晓东, 范锦泽, 等. 高吸水树脂玄武岩纤维混凝土力学性能试验研究[J]. 玻璃钢/复合材料, 2019, (12): 29-33.

    LI Tong, ZHANG Xiaodong, FAN Jinze, et al. Experimental Study on the Mechanical Properties of Super Absorbent Resin Basalt Fiber Concrete[J]. Fiber Reinforced Plastics/Composites, 2019, (12): 29-33(in Chinese).
    [19] XIE F. Combined compression-shear performance and failure criteria of internally cured concrete with super absorbent polymer[J]. Construction and Building Materials. 2021, 266(A).
    [20] HASHOLT M T, JENSEN O M, KOVLER K, et al. Can superabsorent polymers mitigate autogenous shrinkage of internally cured concrete without compromising the strength?[J]. Construction and Building Materials, 2012, 31: 226-230. doi: 10.1016/j.conbuildmat.2011.12.062
    [21] Romualdi J P, Ramey M, Sanday S C. Prevention and control of cracking by use of short random fibers[J]. Special Publication, 1968, 20: 179-204.
    [22] DING Y, ZHANG F, Torgal F, et al. Shear behaviour of steel fibre reinforced self-consolidating concrete beams based on the modified compression field theory[J]. Composite Structures, 2012, 94(8): 2440-2449. doi: 10.1016/j.compstruct.2012.02.025
    [23] Eik M, Puttonen J, Herrmann H. An orthotropic material model for steel fibre reinforced concrete based on the orientation distribution of fibres[J]. Composite Structures, 2015, 121(mar.): 324-336.
    [24] Kwan A K H, Chu S H. Direct tension behaviour of steel fibre reinforced concrete measured by a new test method[J]. Engineering Structures, 2018, 176: 324-336. doi: 10.1016/j.engstruct.2018.09.010
    [25] 蒋玉川. 普通强度高性能混凝土的高温性能特征[D]. 北京: 北京交通大学, 2007.

    JIANG Yuchuan. Characteristics of Normal-strength High-performance Concrete Exposed to High Temperature [D]. Beijing: Beijing Jiaotong University, 2007(in Chinese).
    [26] 沈才华, 钱晋, 陈晓峰, 等. 纤维掺量对PVA纤维混凝土力学参数的影响及压缩韧性指标的计算方法[J]. 硅酸盐通报, 2020, 39(10): 9.

    SHEN Caihua, QIAN Jin, CHEN Xiaofeng, et al. Influence of Fiber Content on Mechanical Parameters of PVA Fiber Concrete and Method for Calculating Compression Toughness Index[J]. Bulletin of The Chinese Ceramic Society, 2020, 39(10): 9(in Chinese).
    [27] 蒋津, 洪丽, 高鹏, 等. 高强高模PVA纤维增强混凝土宏观力学性能的试验研究[J]. 合肥工业大学学报(自然科学版), 2019, 42(6): 785-790.

    JIANG Jin, HONG Li, GAO Peng, et al. Experimental research on macroscopic mechanical properties of high strength and high modulus PVA fiber reinforced concrete[J]. Journal of Hefei University of Technology, 2019, 42(6): 785-790(in Chinese).
    [28] 白文琦, 吕晶, 杜强, 等. PVA纤维增强型水泥基复合材料高温后力学性能试验[J]. 建筑科学与工程学报, 2015, 32(4): 86-91. doi: 10.3969/j.issn.1673-2049.2015.04.013

    BAI Wenqi, LV Jing, DU Qiang, et al. Experiment on Mechanical Behaviors of PVA Fiber Reinforced Cementitious Composite After High Temperature[J]. Journal of Architecture and Civil Engineering, 2015, 32(4): 86-91(in Chinese). doi: 10.3969/j.issn.1673-2049.2015.04.013
    [29] 谢发祥, 金子恒, 曹文豪, 等. 不同温度下SAP-PVA纤维增强混凝土轴拉损伤本构模型[J]. 复合材料学报, 2024, 42: 1-12.

    XIE Faxiang, JIN Ziheng, CAO Wenhao, et al. Constitutive model of SAP-PVA fiber reinforced concrete under axial tensile damage at different temperatures[J]. Acta Materiae Compositae Sinica, 2024, 42: 1-12(in Chinese).
    [30] JIN Z, XIE F, CAI D, et al. Experimental study on fracture and acoustic emission properties of internally cured concrete with super absorbent polymer subjected to high temperature[J]. Journal of Building Engineering, 2023, 77: 107471. doi: 10.1016/j.jobe.2023.107471
    [31] KOVLER K, JENSEN O M. Activities of RILEM Technical Committee: Internal Curing of Concrete and Anticipated Research [C]. ACI Fall 2007 Convention. 2007.
    [32] Powers T C, Brownyard T L. Studies of the physical properties of hardened Portland cement paste [C]. Journal Proceedings. 1946, 43(9): 101-132.
    [33] CHEN Y, XU L, XUAN W, et al. Experimental study on four-point cyclic bending behaviours of concrete with high density polyethylene granules[J]. Construction and Building Materials, 2019, 201: 691-701. doi: 10.1016/j.conbuildmat.2018.12.191
    [34] 吴瑾, 陈徐东, 张忠诚. 湿筛混凝土循环拉伸和循环拉压力学特性[J]. 建筑材料学报. 2023: 1-19.

    WU Jin, CHEN Xudong, ZHANG Zhongcheng. Cyclic Tensile and Cyclic Tensile Stress Properties of Wet-screened Concrete[J]. Journal of Building Materials, 2023: 1-19(in Chinese).
    [35] 陈峰. 玄武岩纤维水泥土抗拉性能试验研究[J]. 深圳大学学报: 理工版, 2016, 33(2): 188.

    CHEN Feng. Experiment research on tensile strength of basalt fiber cement-soil[J]. Journal of Shenzhen University(Science & Engineering), 2016, 33(2): 188(in Chinese).
    [36] 周筑宝. 最小耗能率原理及其在固体力学中的某些应用[J]. 湘潭大学自然科学学报, 1993, 15(4): 7.

    ZHOU Zhubao. Principle of Least Rate of Energy Consumption and some Applications of its in Solid Mechanics[J]. Natural Science Journal of Xiangtan University, 1993, 15(4): 7(in Chinese).
    [37] A Y N C, B X L, B W S. Compressive strength and pore structure of high-performance concrete after exposure to high temperature up to 800°C[J]. Cement & Concrete Research, 2000, 30(2): 247-251.
    [38] Standards S. Eurocode 2: Design Of Concrete Structures - Part 1-2: General Rules - Structural Fire Design[J]. 2004.
    [39] VISO J R D, CARMONA J R, RUIZ G. Shape and size effects on the compressive strength of high-strength concrete[J]. Cement & Concrete Research, 2008, 38(3): 386-395.
    [40] A. , HILLERBORG, AND, et al. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements - ScienceDirect[J]. Cement & Concrete Research, 1976, 6(6): 773-781.
    [41] Bazant Z P. Crack band model for fracture of geomaterials [M]. Unknown Host Publication Title. AA Balkema, 1982: 1137-1152.
    [42] LI Q, DUAN Y, WANG G. Behaviour of large concrete specimens in uniaxial tension[J]. Magazine of Concrete Research, 2002, 54(5): 385-391. doi: 10.1680/macr.2002.54.5.385
    [43] 田华轩, 宁英杰, 陈徐东, 等. 混凝土轴拉软化曲线及其尺寸效应研究[J]. 混凝土, 2022, (3): 43-48. doi: 10.3969/j.issn.1002-3550.2022.03.010

    TIAN Huaxuan, NING Yingjie, CHEN Xudong, et al. Study on Softening Curve and Size Effect of Concrete under Uniaxial Tension[J]. Concrete, 2022, (3): 43-48(in Chinese). doi: 10.3969/j.issn.1002-3550.2022.03.010
    [44] HORDIJK D A. Local Approach to Fatigue of Concrete [D]. Delft University of Technology, 1993.
  • 加载中
计量
  • 文章访问数:  55
  • HTML全文浏览量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-15
  • 录用日期:  2024-06-11
  • 网络出版日期:  2024-06-18

目录

    /

    返回文章
    返回