留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硫氧基团修饰以增强NiFe-S/NF电极在碱性海水OER稳定性

蔡家阳 曲德智 苏萍萍 何雄

蔡家阳, 曲德智, 苏萍萍, 等. 硫氧基团修饰以增强NiFe-S/NF电极在碱性海水OER稳定性[J]. 复合材料学报, 2024, 42(0): 1-10.
引用本文: 蔡家阳, 曲德智, 苏萍萍, 等. 硫氧基团修饰以增强NiFe-S/NF电极在碱性海水OER稳定性[J]. 复合材料学报, 2024, 42(0): 1-10.
CAI Jiayang, QU Dezhi, SU Pingping, et al. Sulfur-oxygen group modification to enhance NiFe-S/NF electrode OER stability in alkaline seawater[J]. Acta Materiae Compositae Sinica.
Citation: CAI Jiayang, QU Dezhi, SU Pingping, et al. Sulfur-oxygen group modification to enhance NiFe-S/NF electrode OER stability in alkaline seawater[J]. Acta Materiae Compositae Sinica.

硫氧基团修饰以增强NiFe-S/NF电极在碱性海水OER稳定性

基金项目: 国家自然科学基金青年科学基金项目(2209028));广西科技基地和人才专项(AD21075032);广西高校中青年教师科研基础能力提升项目(2021 KY0359);研究生教育创新计划项目(GKYC202236)
详细信息
    通讯作者:

    曲德智,博士,副教授,研究方向:功能高分子材料,电催化材料, E-mail:qudezhi199166@outlook.com

  • 中图分类号: TB333; TQ426.82

Sulfur-oxygen group modification to enhance NiFe-S/NF electrode OER stability in alkaline seawater

Funds: National Natural Science Foundation of China Youth Science Fund Project (2209028)); Guangxi Science and Technology Base and Talent Special Project (AD21075032); Guangxi Universities and Colleges Young and Middle-aged Teachers' Scientific Research Basic Ability Enhancement Project (2021 KY0359); and Graduate Student Education Innovation Plan Project (GKYC202236)
  • 摘要: 直接电解海水是一种更绿色、可持续性更高的氢能生产源途径。然而海水电解需要面临海水中有害离子的毒害,特别是海水中高浓度Cl引发的析氯反应(CER),会对阳极析氧反应(OER)产生干扰。因此采用有效的Cl屏蔽策略来提高催化剂的OER性能和长期电解寿命,是大范围开发海水制氢关键所在。本文采用一步水热硫化法在泡沫镍(NF)基底上成功制备可用于海水电解的NiFe-S/NF电催化剂。值得注意的是,NiFe-S/NF在碱性淡水(1 mol/L KOH +超纯水)和海水(1 mol/L KOH +海水)中分别需要237和248 mV便可轻松达到100 mA/cm2,并具有超过100 h的海水电解耐久度(100 mA/cm2)。这得益于硫化物中的硫在OER过程中氧化为硫氧阴离子,这些阴离子会吸附在电极表面,一方面加速电催化剂的OER过程,另一方面通过静电斥力形成Cl排斥层,从而提升催化剂性能和寿命。本研究为高效、经济开发海水制氢提供了可行性较高的策略。

     

  • 图  1  NiFe/泡沫镍(NF)和NiFe-S/NF的(a)XRD图和(b)拉曼光谱图

    Figure  1.  (a) XRD, and (b) Raman spectrum of NiFe/nickel foam (NF) and NiFe-S/NF

    图  2  NiFe/NF的(a,b)SEM图,NiFe-S/NF的(c,d)SEM,(e)TEM图,(f)HRTEM图和(g-j)元素分布图

    Figure  2.  (a, b) SEM images of NiFe/NF, (c, d) SEM images, (e) TEM image, (f) HRTEM image, and (g-j) elemental distributions of NiFe-S/NF

    图  3  NiFe/NF和NiFe-S/NF的(a)N2吸附/解吸等温线和(b)孔径曲线。

    Figure  3.  (a) N2 adsorption/desorption isotherms and (b) pore size profiles of NiFe/NF and NiFe-S/NF

    图  4  NiFe/NF和NiFe-S/NF CV激活前后的(a)Ni 2p,(b)Fe 2p光谱,NiFe-S/NFCV激活前后的(c)S 2p和(d)O 1 s光谱

    Figure  4.  (a) Ni 2p, (b) Fe 2p spectra of NiFe/NF and NiFe-S/NF before and after CV activation, (c) S 2p and (d) O 1 s spectra before and after NiFe-S/NFCV activation

    图  5  NF,NiFe/NF和NiFe-S/NF样品的(a)LSV极化曲线图,(b)10 mA/cm2、100 mA/cm2下的过电位性能图,(c)Tafel斜率图,(d)EIS图,(e)NiFe-S/NF在不同扫速下的CV图和(f)所有样品的Cdl图。

    Figure  5.  (a) LSV polarization curves, (b) overpotential at 10 and 100 mA/cm2, (c) Tafel slope, (d) electrochemical impedance test of NF, NiFe/NF and NiFe-S/NF, (e) CV curves of NiFe-S/NF at different scan rates, and (f) Cdl plot of all samples.

    图  6  NiFe/NF和NiFe-S/NF在碱性淡水/海水中的(a)LSV极化曲线,(b)法拉第析氧效率,(c)稳定性测试图,(d)性能与稳定性结果图,NiFe-S/NF海水稳定性测试后的(e)SEM图和(f)XRD图

    Figure  6.  (a) LSV polarization curves, (b) Faraday oxygen precipitation efficiency, (c) stability test plots, (d) performance versus stability results plots for NiFe/NF and NiFe-S/NF in alkaline freshwater/seawater, (e) SEM and (f) XRD of NiFe-S/NF after seawate stability test

    图  7  NiFe/NF和NiFe-S/NF在不同电位下的拉曼光谱图

    Figure  7.  Raman spectra of (a) NiFe/NF and (b) NiFe-S/NF at different potentials

    表  1  NiFe-S/NF与最近报道的催化剂对海水OER催化性能比较

    Table  1.   Comparison of NiFe-S/NF and recently reported catalysts for seawater OER performance

    Catalystelectrolyteoverpotentialstabilityoxygen evolution
    efficiency
    References
    NiFe-S/NF1 mol/L KOH + Seawater248 mV at 100 mA/cm2100 h at 100 mA/cm292.1%This work
    S-NiFe-Pi/NFF1 mol/L KOH + Seawater450 mV at 100 mA/cm2100 h at 500 mA/cm286.6%[33]
    MnOx/NiFe-LDH/NF1 mol/L KOH + Seawater276 mV at 100 mA/cm270 h at 50 mA/cm2About 90%[36]
    CoPx@FeOOH1 mol/L KOH + Seawater283 mV at 100 mA/cm280 h at 500 mA/cm292.3%[37]
    NiFeCo-LDH1 mol/L KOH + Seawater304 mV at 100 mA/cm280 h at 100 mA/cm294%[38]
    Fe-Ni(OH)2/Ni3S2 @NF1 mol/L KOH + 0.5 mol/L NaCl320 mV at 10 mA/cm227 h at 100 mA/cm2Slight decline[39]
    BZ-NiFe-LDH/CC1 mol/L KOH Seawater300 mV at 100 mA/cm2100 h at 0.5 A/cm272%[40]
    (NiFeCoV)S21 mol/L KOH + Seawater299 mV at 100 mA/cm250 h at 100 mA/cm2Slight decline[10]
    Fe-Co-S/Cu2O/Cu1 mol/L KOH + Seawater440 mV at 200 mA/cm270 h at 100 mA/cm270%[41]
    Notes: S-NiFe-Pi/NFF is S-modified NiFe-phosphate hierarchical hollow microspheres; NFF is NiFe foam; MnOx/NiFe-LDH/NF is the ultrathin MnOx film-covered NiFe-layered double-hydroxide nanosheet array; NF is nickel foam; BZ is benzoate intercalation; CC is carbon cloth; -0.05 M is 0.05 mmol/L thiourea.
    下载: 导出CSV
  • [1] JIANG N, SHI S, CUI Y, et al. Effect of phosphorization temperature on the structure and hydrogen evolution reaction performance of nickel cobalt phosphide electrocatalysts[J]. Catalysis Communications, 2022, 171(1): 106507.
    [2] 曾庆乐, 刘小超, 刘超, 等. Co2Ni1O4/不锈钢复合材料的制备及其 电催化析氧性能[J]. 复合材料学报, 2021, 38(11): 3764-3774.

    ZENG Qingle, LIU Xiaochao, LIU Chao, et al. Preparation of Co2Ni1O4/stainless steel composites and their electrocatalytic oxygen precipitation properties[J]. Journal of Composite Materials, 2021, 38(11): 3764-3774. (in China
    [3] WANG H, CHEN L, TAN L, et al. Electrodeposition of NiFe-layered double hydroxide layer on sulfur-modified nickel molybdate nanorods for highly efficient seawater splitting[J]. Journal of Colloid and Interface Science, 2022, 613(1): 349-358.
    [4] 涂言言, 赵子涵, 孙一强. FeOOH-Ni(OH)2复合材料的制备及其电催化析氧性能[J]. 复合材料学报, 2020, 37(8): 1944-1950.

    TU Yanyan, ZHAO Zihan, SUN Yqiang. Preparation of FeOOH-Ni(OH)2 composites and their electrocatalytic oxygen precipitation properties[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 1944-1950. (in China
    [5] BANDAL HA, JADHAV AR, TAMBOLI AH, et al. Bimetallic iron cobalt oxide self-supported on Ni-Foam: An efficient bifunctional electrocatalyst for oxygen and hydrogen evolution reaction[J]. Electrochimica Acta, 2017, 249(20): 253-262.
    [6] YANG Y, MENG H, YAN S, et al. The in-situ construction of NiFe sulfide with nanoarray structure on nickel foam as efficient bifunctional electrocatalysts for overall water splitting[J]. Journal of Alloys and Compounds, 2021, 874(5): 159874.
    [7] KITIPHATPIBOON N, CHEN M, FENG C, et al. Modification of spinel MnCo2O4 nanowire with NiFe-layered double hydroxide nanoflakes for stable seawater oxidation[J]. Journal of Colloid and Interface Science, 2023, 632(15): 54-64.
    [8] . LIU H, SHEN W, JIN H, et al. High-performance alkaline seawater electrolysis with anomalous chloride promoted oxygen evolution reaction. Angewandte Chemie International Edition[J]. 2023, 62(46): e202311674.
    [9] YU Y, CHEN X, LI J, et al. Ni-based heterostructure with protective phosphide layer to enhance the oxygen evolution reaction for the seawater electrolysis[J]. International Journal of Hydrogen Energy, 2024, 51(2): 1373-1380.
    [10] FENG C, CHEN M, ZHOU Y, et al. High-entropy NiFeCoV disulfides for enhanced alkaline water/seawater electrolysis[J]. Journal of Colloid and Interface Science, 2023, 645: 724-734. doi: 10.1016/j.jcis.2023.04.172
    [11] CHANG J, WANG G, YANG Z, et al. Dual-doping and synergism toward high-performance seawater electrolysis[J]. Advanced Materials, 2021, 33(33): 2101425. doi: 10.1002/adma.202101425
    [12] MA M, GE R, JI X, et al. Benzoate anions-intercalated layered nickel hydroxide nanobelts array: an earth-abundant electrocatalyst with greatly enhanced oxygen evolution activity[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(11): 9625-9629.
    [13] XU H, ZHANG W-D, LIU J, et al. Intercalation-induced partial exfoliation of NiFe LDHs with abundant active edge sites for highly enhanced oxygen evolution reaction[J]. Journal of Colloid and Interface Science, 2022, 607(1): 1353-1361.
    [14] XUE Y AND SUN M. Engineering hierarchical NiFe-layered double hydroxides derived phosphosulfide for high-efficiency hydrogen evolving electrocatalysis[J]. International Journal of Hydrogen Energy, 2019, 44(31): 16378-16386. doi: 10.1016/j.ijhydene.2019.04.258
    [15] NADERI A, YONG X, KARAMAD M, et al. Ternary cobalt–iron sulfide as a robust electrocatalyst for water oxidation: a dual effect from surface evolution and metal doping[J]. Applied Surface Science, 2021, 542: 148681. doi: 10.1016/j.apsusc.2020.148681
    [16] ZHAO C-X, LIU J-N, WANG C, et al. An anionic regulation mechanism for the structural reconstruction of sulfide electrocatalysts under oxygen evolution conditions[J]. Energy & Environmental Science, 2022, 15(8): 3257-3264.
    [17] LEE M, OH H-S, CHO MK, et al. Activation of a Ni electrocatalyst through spontaneous transformation of nickel sulfide to nickel hydroxide in an oxygen evolution reaction[J]. Applied Catalysis B: Environmental, 2018, 233(5): 130-135.
    [18] XUE Y, LIU M, QIN Y, et al. Ultrathin NiFeS nanosheets as highly active electrocatalysts for oxygen evolution reaction[J]. Chinese Chemical Letters, 2022, 33(8): 3916-3920. doi: 10.1016/j.cclet.2021.11.085
    [19] CAI J, HE X, DONG Q, et al. Employing shielding effect of intercalated cinnamate anion in NiFe LDH for stable and efficient seawater oxidation[J]. Surfaces and Interfaces, 2024, 51(1): 104772.
    [20] YU M, LI J, LIU F, et al. Anionic formulation of electrolyte additive towards stable electrocatalytic oxygen evolution in seawater splitting[J]. Journal of Energy Chemistry, 2022, 72(1): 361-369.
    [21] FAN H, MA Y, CHEN W, et al. Facile one-step electrodeposition of two-dimensional nickel-iron bimetallic sulfides for efficient electrocatalytic oxygen evolution[J]. Journal of Alloys and Compounds, 2022, 894(12): 162533.
    [22] ZHAO Y, SUN T, YIN Q, et al. Discovery of a new intercalation-type anode for high-performance sodium ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(25): 15371-15377. doi: 10.1039/C9TA03753E
    [23] KUANG Y, KENNEY MJ, MENG Y, et al. Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels[J]. Proceedings of the National Academy of Sciences, 2019, 116(14): 6624-6629. doi: 10.1073/pnas.1900556116
    [24] WEN Q, YANG K, HUANG D, et al. Schottky heterojunction nanosheet array achieving high-current-density oxygen evolution for industrial water splitting electrolyzers[J]. Advanced Energy Materials, 2021, 11(46): 2102353. doi: 10.1002/aenm.202102353
    [25] HUANG Y, JIANG L-W, LIU H, et al. Electronic structure regulation and polysulfide bonding of Co-doped (Ni, Fe)1+xS enable highly efficient and stable electrocatalytic overall water splitting[J]. Chemical Engineering Journal, 2022, 441(1): 136121.
    [26] SUN J-P, ZHAO Z, LI J, et al. Recent advances in electrocatalytic seawater splitting[J]. Rare Metals, 2023, 42(3): 751-768. doi: 10.1007/s12598-022-02168-x
    [27] YANG Y, ZHANG S, SONG Z, et al. Interfacial configuration of heterogeneous NiFe–sulfide as a highly electrocatalytic selective oxygen evolution reaction electrode toward seawater electrolysis[J]. RSC advances, 2022, 12(44): 28623-28628. doi: 10.1039/D2RA04253C
    [28] ZHANG M, ZHOU W, YAN X, et al. Sodium dodecyl sulfate intercalated two-dimensional nickel-cobalt layered double hydroxides to synthesize multifunctional nanomaterials for supercapacitors and electrocatalytic hydrogen evolution[J]. Fuel, 2023, 333(1): 126323.
    [29] CHENG F, FENG X, CHEN X, et al. Synergistic action of Co-Fe layered double hydroxide electrocatalyst and multiple ions of sea salt for efficient seawater oxidation at near-neutral pH[J]. Electrochimica Acta, 2017, 251(10): 336-343.
    [30] LI T, ZHAO X, SENDEKU MG, et al. Phosphate-decorated Ni3Fe-LDHs@CoPx nanoarray for near-neutral seawater splitting[J]. Chemical Engineering Journal, 2023, 460(15): 141413.
    [31] WANG J, MA X, QU F, et al. Fe-doped Ni2P nanosheet array for high-efficiency electrochemical water oxidation[J]. Inorganic chemistry, 2017, 56(3): 1041-1044. doi: 10.1021/acs.inorgchem.6b02808
    [32] DONG Y-Y, MA D-D, WU X-T, et al. Electron-withdrawing anion intercalation and surface sulfurization of NiFe-layered double hydroxide nanoflowers enabling superior oxygen evolution performance[J]. Inorganic Chemistry Frontiers, 2020, 7(1): 270-276. doi: 10.1039/C9QI01367A
    [33] SONG S, WANG Y, TIAN X, et al. S-modified NiFe-phosphate hierarchical hollow microspheres for efficient industrial-level seawater electrolysis[J]. Journal of Colloid and Interface Science, 2023, 633(1): 668-678.
    [34] YIN D, JIN Z, LIU M, et al. Microwave-assisted synthesis of the cobalt-iron phosphates nanosheets as an efficient electrocatalyst for water oxidation[J]. Electrochimica Acta, 2018, 260: 420-429. doi: 10.1016/j.electacta.2017.12.007
    [35] SHI Y, DU W, ZHOU W, et al. Unveiling the promotion of surface-adsorbed chalcogenate on the electrocatalytic oxygen evolution reaction[J]. Angewandte Chemie International Edition, 2020, 59(50): 22470-22474. doi: 10.1002/anie.202011097
    [36] WANG Z, WANG C, YE L, et al. MnO x film-coated NiFe-LDH nanosheets on Ni foam as selective oxygen evolution electrocatalysts for alkaline seawater oxidation[J]. Inorg Chem, 2022, 61: 15256-15265. doi: 10.1021/acs.inorgchem.2c02579
    [37] WU L, YU L, MCELHENNY B, et al. Rational design of core-shell-structured CoPx@FeOOH for efficient seawater electrolysis[J]. Appl Catal B-Environ, 2021, 294(5): 120256.
    [38] PARK YS, JEONG J-Y, JANG MJ, et al. Ternary layered double hydroxide oxygen evolution reaction electrocatalyst for anion exchange membrane alkaline seawater electrolysis[J]. J Energy Chem, 2022, 75(1): 127-134.
    [39] CUI B, HU Z, LIU C, ET AL. Heterogeneous lamellar-edged Fe-Ni(OH)2/Ni3S2 nanoarray for efficient and stable seawater oxidation[J]. Nano Res, 2021, 14: 1149-1155. doi: 10.1007/s12274-020-3164-3
    [40] . ZHANG L, LIANG J, YUE L, et al. Benzoate anions-intercalated NiFe-layered double hydroxide nanosheet array with enhanced stability for electrochemical seawater oxidation[J]. Nano Research Energy, 2022, 1(30).
    [41] SUN J, SONG P, ZHOU H, et al. A surface configuration strategy to hierarchical Fe-Co-S/Cu2O/Cu electrodes for oxygen evolution in water/seawater splitting[J]. Appl Surf Sci, 2021, 567(30): 150757.
    [42] LIAO H, LUO T, TAN P, et al. Unveiling role of sulfate ion in nickel-iron (oxy) hydroxide with enhanced oxygen-evolving performance[J]. Advanced Functional Materials, 2021, 31(38): 2102772. doi: 10.1002/adfm.202102772
    [43] QIN X, LUO J, YU Z, et al. Electrochemical surface reconstruction of Prussian blue-modified nickel sulfide to form iron-nickel bilayer hydroxyl oxides for efficient and stable oxygen evolution reaction processes[J]. Journal of Colloid and Interface Science, 2023, 652: 23-33. doi: 10.1016/j.jcis.2023.08.070
  • 加载中
计量
  • 文章访问数:  31
  • HTML全文浏览量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-12
  • 修回日期:  2024-09-06
  • 录用日期:  2024-09-15
  • 网络出版日期:  2024-09-27

目录

    /

    返回文章
    返回