留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

棉织物的荷叶仿生结构改性及其负离子功能

欧阳琹雯 廖海燕 李肖滨 生俊露 黄锦波 张惠芳

欧阳琹雯, 廖海燕, 李肖滨, 等. 棉织物的荷叶仿生结构改性及其负离子功能[J]. 复合材料学报, 2024, 42(0): 1-10.
引用本文: 欧阳琹雯, 廖海燕, 李肖滨, 等. 棉织物的荷叶仿生结构改性及其负离子功能[J]. 复合材料学报, 2024, 42(0): 1-10.
OUYANG Qinwen, Liao Haiyan, LI Xiaobin, et al. Lotus-effect biomimetic modification of the cotton fabric and its negative ion functionality[J]. Acta Materiae Compositae Sinica.
Citation: OUYANG Qinwen, Liao Haiyan, LI Xiaobin, et al. Lotus-effect biomimetic modification of the cotton fabric and its negative ion functionality[J]. Acta Materiae Compositae Sinica.

棉织物的荷叶仿生结构改性及其负离子功能

基金项目: 国家自然科学基金项目(51803075);浙江省自然科学基金探索项目(LY20E030010);浙江省博士后科研择优资助项目(ZJ2023134);嘉兴市青年科技人才专项(2023AY40012);浙江省大学生科技创新活动计划(2024R417A004).
详细信息
    通讯作者:

    生俊露,工学博士,副教授,硕士生导师,研究方向为功能纳米纤维材料。 E-mail:shengjunlu@126.com

  • 中图分类号: TS195.6; TB332

Lotus-effect biomimetic modification of the cotton fabric and its negative ion functionality

Funds: National Natural Science Foundation of China (No. 51803075); Zhejiang Provincial Natural Science Foundation of China (No. LY20E030010); Postdoctoral Science Preferential Funding of Zhejiang Province (No. ZJ2023134); Jiaxing Youth Science and Technology Talent Project (No. 2023AY40012); Science and Technology Innovation Program for college students in Zhejiang Province (No. 2024R417A004).
  • 摘要: 为使棉织物获得良好的负离子释放效果,并且满足棉织物应用于汽车内饰时功能化的需求,在净化环境的同时能够具备自清洁功能。本文采用氨基改性聚硅氧烷(AMP)进行无氟疏水整理使棉织物由亲水变为疏水,同时在棉织物表面形成一层粘连结构,引入电气石(TM)颗粒仿生构筑了荷叶表面的微突结构。当AMP的浓度为4 wt%、TM浓度为4 wt%,改性织物综合性能最佳:接触角达到145.8°,透湿量为5428 g/(m2·24h),透气量为434.2 mm/s,断裂强力为175.6 N,负离子释放量为1640个/cm3。继续增加TM浓度到8 wt%时,接触角达到150.3°,织物表面呈现超疏水特性。此外,4 wt% AMP+4 wt% TM改性棉织物的耐久性测试表明,经过干摩擦50次后仍然具有较高的接触角(142.4°),平磨20次后负离子释放量有所提升,为2108个/cm3。本文通过对棉织物进行疏水-负离子复合涂层整理,使其具有一定的自清洁性能且负离子释放量达到了较高水平,使得该材料在汽车内饰领域具有广阔的应用前景。

     

  • 图  1  经过4 wt% 氨基改性聚硅氧烷(AMP)疏水改性前后棉织物的SEM图对比:(a)棉织物(x500)、(b)棉织物(x2000)、(c)经疏水整理后的棉织物(x500)、(d)经疏水整理后的棉织物(x2000)

    Figure  1.  Comparison of SEM images of cotton fabric before and after 4 wt% amino-modified polysiloxane (AMP) hydrophobic modification: (a) cotton fabric (x500), (b) cotton fabric (x2000), (c) cotton fabric after hydrophobic treatment (x500), (d) cotton fabric after hydrophobic treatment (x2000)

    图  2  不同浓度 AMP 疏水改性的棉织物的(a)接触角、(b)抗弯刚度

    Figure  2.  (a) Contact angle and (b) bending stiffness of hydrophobic modified cotton fabrics with different concentrations of AMP

    图  3  不同浓度的TM复合整理后棉织物的SEM图片:(a) 1 wt%、(b) 2 wt%、(c) 4 wt%、(d) 6 wt%、(e) 8 wt%

    Figure  3.  SEM images of cotton fabric with different concentrations of TM composite finishing: (a) 1 wt%, (b) 2 wt%, (c) 4 wt%, (d) 6 wt%, (e) 8 wt%

    图  4  不同电气石浓度复合整理后棉织物的力学性能

    Figure  4.  Mechanical properties of cotton fabric after composite finishing with different tourmaline concentration

    图  5  棉织物的红外光谱图对比

    Figure  5.  Comparison of infrared spectrograms of cotton fabrics

    图  6  不同种类的电气石二层整理后棉织物的性能:(a)透气量,透湿量、(b)接触角、(c)性能展示

    Figure  6.  Performance of pure cotton fabric treated with two layers of different types of electrical stones: (a) breathability, moisture permeability, (b) contact angle, (c) performance display

    图  7  整理前后棉织物的负离子释放量:(a)棉织物、(b)4 wt% AMP、(c)4 wt% AMP+1 wt% TM、(d)4 wt% AMP+2 wt% TM、(e)4 wt% AMP+4 wt% TM、(f)4 wt% AMP+6 wt% TM、(g)4 wt% AMP+8 wt% TM

    Figure  7.  Negative ion released of pure cotton fabric before and after finishing: (a) Pure cotton fabric, (b) 4 wt% AMP, (c) 4 wt% AMP+1 wt% TM, (d) 4 wt% AMP+2 wt% TM, (e) 4 wt% AMP+4 wt% TM, (f) 4 wt% AMP+6 wt% TM, (g) 4 wt% AMP+8 wt% TM

    图  8  不同摩擦次数后4 wt% AMP+4 wt% TM样品的电镜和接触角:(a)干摩10次、(b)干摩20次、(c)干摩30次、(d)干摩50次、(e)湿摩10次、(f)湿摩20次、(g)湿摩30次、(h)湿摩50次

    Figure  8.  Electron microscopy and contact Angle of 4 wt% AMP+4 wt% TM sample after different friction times: (a) dry rubbing 10 times, (b) dry grinding 20 times, (c) dry grinding 30 times, (d) dry grinding 50 times, (e) wet grinding 10 times, (f) wet grinding 20 times, (g) wet grinding 30 times, (h) wet grinding 50 times

    表  1  平磨20次后样品的接触角、负离子释放量

    Table  1.   Contact Angle and negative ion released of the sample after 20 times of flat grinding

    Sample WCA/(°) Negative ion rleased/
    (ions·cm−3)
    4 wt% AMP+4 wt% TM 132.3 ± 4.1 2108 ± 118
    Notes: The samples in the table are cotton fabrics finished by the 4 wt% AMP+4 wt% TM composite coating. After plain grinding for 20 times, different tests were carried out. Where WCA is the water contact angle of the samples; Negative ion released is the number of negative ions excited by the sample per unit volume space.
    下载: 导出CSV
  • [1] 滕越, 胡海蓉. 纺织品负离子功能市场发展及趋势研究[J]. 针织工业, 2023, (10): 88-92. doi: 10.3969/j.issn.1000-4033.2023.10.019

    TENG Yue, HU Hairong. Research on the Development and Trends of Textile Negative Ion Function Market[J]. Knitting Industry, 2023, (10): 88-92(in Chinese). doi: 10.3969/j.issn.1000-4033.2023.10.019
    [2] 杨述斌, 刘敏, 曹学, 等. 负离子功能纺织品的研究及应用[J]. 纺织科技进展, 2020, (8): 1-3+7. doi: 10.3969/j.issn.1673-0356.2020.08.003

    YANG Shubin, LIU Min, CAO Xue et al. Research and application of negative ion functional textiles[J]. Progress in Textile Science and Technology, 2020, (8): 1-3+7(in Chinese). doi: 10.3969/j.issn.1673-0356.2020.08.003
    [3] MARGAUX C, JAIME G, LUCIA C, et al. Influence of the type of binder used in the treatment of cotton fabric with montmorillonite particles on the release of negative ions[J]. Polymers, 2022, 14(22): 4945-4945. doi: 10.3390/polym14224945
    [4] ZHANG J S, DING H H. Preparation and properties of negative ion functional cotton knitted fabric[J]. Journal of Engineered Fibers and Fabrics, 2021, 16: 1-7.
    [5] GUO R H, ZHONG K C, PENG F Z, et al. Modification of nano tourmaline surface treatment agent and its performance on negative ion release[J]. Computers Materials & Continua, 2018, 57(1): 145-150.
    [6] LIU Y, RUI Y Y, YU B Y, et al. Study on the negative oxygen ion release behavior and mechanism of tourmaline composites[J]. Materials Chemistry and Physics, 2024, 313 128779.
    [7] 丁慧慧, 蒋孝峰, 王薇, 等. 纺织品整理用超细电气石粉的制备与表征[J]. 毛纺科技, 2020, 48(12): 24-27.

    DING Huihui, JIANG Xiaofeng, WANG Wei et al. Preparation and characterization of ultrafine tourmaline powder for textile finishing[J]. Woolen Textile Science and Technology, 2019, 48(12): 24-27(in Chinese).
    [8] 程健. 电气石水性浆料的制备及在棉织物整理中的应用研究[D]. 浙江理工大学, 2016.

    CHENG J. Study on preparation of tourmaline water-based paste and its application in cotton fabric finishing [D]. Zhejiang Sci-Tech University, 2016(in Chinese).
    [9] CHEN Y P, DU Z C, ZHANG J Y, et al. Personal microenvironment management by smart textiles with negative oxygen ions releasing and radiative cooling performance[J]. ACS Nano, 2023, 17(14): 13269-13277. doi: 10.1021/acsnano.3c00820
    [10] 董飞逸. 负离子空气净化装饰织物的开发与性能研究[D]. 西安工程大学, 2016.

    DONG Feiyi. Development and properties of decorative fabric for air purification with negative ions [D]. Xi an Polytechnic University, 2016(in Chinese).
    [11] 赵丽娟, 刘元强, 蔡伟邦, 等. 功能织物在家居装饰设计中的应用现状[J]. 染整技术, 2023, 45(12): 7-12. doi: 10.3969/j.issn.1005-9350.2023.12.002

    ZHAO Lijuan, LIU Yuanqiang, CAI Weibang, et al. Application status of functional fabric in home decoration design[J]. Dyeing and Finishing Technology, 2023, 45(12): 7-12(in Chinese). doi: 10.3969/j.issn.1005-9350.2023.12.002
    [12] 吴双全. 负离子功能汽车内饰面料的开发及应用[J]. 上海纺织科技, 2020, 48(07): 17-19.

    WU Shuangquan. Development and application of anion functional Automotive Interior Fabric[J]. Shanghai Textile Science and Technology, 2019, 48(07): 17-19(in Chinese).
    [13] CHEN T, PENG C H, LIN Z Y, et al. Hierarchical structure coating modified cotton fabric with superhydrophobic and flame-retardant performances[J]. Progress in Organic Coatings, 2024, 186: 108038. doi: 10.1016/j.porgcoat.2023.108038
    [14] DENG S S, WANG F, WANG M H, et al. Integrating multifunctional highly efficient flame-retardant coatings with superhydrophobicity, antibacterial property on cotton fabric[J]. International Journal of Biological Macromolecules, 2023, 253: 127022. doi: 10.1016/j.ijbiomac.2023.127022
    [15] MOHAMMADIPOUR R N, SHAHLA S, ZAHRA S, et al. Multifunctional carbonized Zn-MOF coatings for cotton fabric: Unveiling synergistic effects of superhydrophobic, oil-water separation, self-cleaning, and UV protection features[J]. Surface and Coatings Technology, 2023, 475: 130194. doi: 10.1016/j.surfcoat.2023.130194
    [16] ZHONG L, CUN Z. Robust superhydrophobic cotton fabrics based on nano-silica particles hybrid epoxy resin: self-cleaning, anti-fouling, anti-abrasion and oil–water separation[J]. Textile Research Journal, 2023, 93(21-22): 4994-5006. doi: 10.1177/00405175231190651
    [17] WU J M, HU Z W, LU W G, et al. Fabricating self-stratifying coating for superhydrophobic cotton textile[J]. Journal of Applied Polymer Science, 2021, 139(17): 52008.
    [18] MOHAMED M E, ABDEINABEY B A, et al. Fabrication of durable superhydrophobic/oleophilic cotton fabric for highly efficient oil/water separation[J]. Water Science and Technology, 2020, 83(1): 90-99.
    [19] WANG J Q, LI Y, TIAN H Y, et al. Waterproof and breathable membranes of waterborne fluorinated polyurethane modified electrospun polyacrylonitrile fibers[J]. RSC Advances, 2014, 4(105): 61068-61076. doi: 10.1039/C4RA09129A
    [20] 赵美蓉, 周惠言, 康文倩, 等. 超疏水表面制备方法的比较[J]. 复合材料学报, 2021, 38(2): 361-379.

    ZHAO Meirong, ZHOU Huiyan, KANG Wenqian, et al. Comparison of methods for fabricating superhydrophobic surface[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 361-379(in Chinese).
    [21] LIU R L, HE P P, XIAO Z W, et al. Preparation and characterization of fluorine-free superhydrophobic and uv-resistant cotton fabric[J]. Journal of Physics: Conference Series, 2022, 2329(1): 012047. doi: 10.1088/1742-6596/2329/1/012047
    [22] LUIS A M, RAFAEL Z, MARTA B, et al. Achieving superhydrophobic surfaces with tunable roughness on building materials via nanosecond laser texturing of silane/siloxane coatings[J]. Journal of Building Engineering, 2022, 58: 104979. doi: 10.1016/j.jobe.2022.104979
    [23] GONG X, YU J, XIAO Y, et al. Biomimetic and durably superhydrophobic nanofibrous membranes for high performance waterproof and breathable textiles[J]. Advanced Functional Materials, 2024, 34(26): 2316030. doi: 10.1002/adfm.202316030
    [24] RAJARAM S S, BAIRU S, SUSMITA S K, et al. Development of self-cleaning superhydrophobic cotton fabric through silica/PDMS composite coating[J]. Surface Topography: Metrology and Properties, 2023, 11(4): 045004. doi: 10.1088/2051-672X/ad0452
    [25] GULBUSTON Y K, IRODA A N, RASHID T K, et al. Effects of weave structure and water-repellent compositions’ formulation on the hydrophobicity property of cotton fabric[J]. Textile Research Journal, 2023, 93(19-20): 4503-4517. doi: 10.1177/00405175231176496
    [26] 丁子寒, 邱华. 纳米二氧化硅改性水性聚氨酯防水透湿涂层织物的制备及其性能[J]. 纺织学报, 2021, 42(03): 130-135.

    DING Zihan, QIU Hua. Preparation and properties of waterborne polyurethane coated fabric modified by nano-silica[J]. Journal of Textile Science, 2019, 42(03): 130-135(in Chinese).
    [27] 杜丽萍. 改性氨基硅油的制备及其织物整理应用[D]. 苏州大学, 2010.

    DU Liping. Preparation of modified amino silicone oil and its application in fabric finishing [D]. Soochow University, 2010(in Chinese).
    [28] 张立传, 周学山, 全凤玉, 等. 氨基硅油柔软剂的研究进展[J]. 合成纤维, 2010, 39(5): 16-20. doi: 10.3969/j.issn.1001-7054.2010.05.005

    ZHANG Lichuan, ZHOU Xueshan, QUAN Fengyu, et al. Research progress of amino silicone oil softeners[J]. Synthetic Fibers, 2010, 39(5): 16-20(in Chinese). doi: 10.3969/j.issn.1001-7054.2010.05.005
    [29] 史书真. 纯棉织物的负离子功能性整理方法研究[D]. 青岛大学, 2015.

    SHI Shuzhen. Research on negative ion functional finishing method of pure cotton fabric [D]. Qingdao University, 2015(in Chinese).
    [30] 潘家炎. 疏水性聚硅氧烷的合成及其构建的超分子研究[D]. 陕西科技大学, 2019.

    PAN Jiayan. Synthesis of hydrophobic polysiloxanes and supramolecular construction [D]. Shaanxi University of Science and Technology, 2019(in Chinese).
    [31] LI S W, QUAN H, AI L, et al. Facile preparation of superhydrophobic cotton fabric using silicone oil and inorganic nanoparticles[J]. AATCC Journal of Research, 2023, 10(1): 51-59. doi: 10.1177/24723444221132312
    [32] WANG Y F, VIJAY B, ZAMAN M K, et al. A facile approach to develop multifunctional cotton fabrics with hydrophobic, self-cleaning and UV protection properties using ZnO particles and fluorocarbon[J]. The Journal of The Textile Institute, 2022, 113(10): 2238-2248. doi: 10.1080/00405000.2021.1975905
    [33] 项雪雪, 刘娜, 郭佳祺, 等. 电气石涂层涤纶织物用于致热绷带的制备及性能[J]. 上海纺织科技, 2023, 51(4): 48-51+63.

    Xiang Xuexue, Liu Na, Guo Jiaqi, et al. Preparation and properties of tourmaline-coated polyester fabric for thermal bandage[J]. Shanghai Textile Science and Technology, 2023, 51(4): 48-51+63(in Chinese).
    [34] 刘宇, 王丽莉, 王琪. 纺织品负离子发生量检测方法分析[J]. 中国纤检, 2021, (5): 56-58. doi: 10.3969/j.issn.1671-4466.2021.05.014

    LIU Yu, WANG Lili, WANG Qi. Analysis on detection method of negative ion occurrence in textile[J]. China Fiber Inspection, 2021, (5): 56-58(in Chinese). doi: 10.3969/j.issn.1671-4466.2021.05.014
    [35] 中国国家标准化管理委员会(标准制定单位). 纺织品 负离子发生量的检测和评价: GB/T 30128—2013 [S]. 北京: 中国标准出版社, 2014.

    Standardization Administration of the People’s Republic of China. Detection and evaluation of the amount of negative ions occurring in textiles: GB/T 30128—2013[S]. Beijing: China Standards Press, 2014(in Chinese).
  • 加载中
计量
  • 文章访问数:  50
  • HTML全文浏览量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-04
  • 修回日期:  2024-07-15
  • 录用日期:  2024-07-26
  • 网络出版日期:  2024-08-13

目录

    /

    返回文章
    返回