留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳化钛-二氧化锰/热塑性聚氨酯纳米复合材料的制备及阻燃性能

施永乾 马苏宁 杨晔 刘川 叶娅婷

施永乾, 马苏宁, 杨晔, 等. 碳化钛-二氧化锰/热塑性聚氨酯纳米复合材料的制备及阻燃性能[J]. 复合材料学报, 2022, 39(10): 4561-4571. doi: 10.13801/j.cnki.fhclxb.20211012.001
引用本文: 施永乾, 马苏宁, 杨晔, 等. 碳化钛-二氧化锰/热塑性聚氨酯纳米复合材料的制备及阻燃性能[J]. 复合材料学报, 2022, 39(10): 4561-4571. doi: 10.13801/j.cnki.fhclxb.20211012.001
SHI Yongqian, MA Suning, YANG Ye, et al. Preparation and flame retardancy of titanium carbide-manganese dioxide/thermoplastic polyurethane nanocomposites[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4561-4571. doi: 10.13801/j.cnki.fhclxb.20211012.001
Citation: SHI Yongqian, MA Suning, YANG Ye, et al. Preparation and flame retardancy of titanium carbide-manganese dioxide/thermoplastic polyurethane nanocomposites[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4561-4571. doi: 10.13801/j.cnki.fhclxb.20211012.001

碳化钛-二氧化锰/热塑性聚氨酯纳米复合材料的制备及阻燃性能

doi: 10.13801/j.cnki.fhclxb.20211012.001
基金项目: 国家自然科学基金(52173070)
详细信息
    通讯作者:

    施永乾,博士,副教授,硕士生导师,研究方向为阻燃高分子复合材料设计与应用 E-mail:shiyq1986@fzu.edu.cn

  • 中图分类号: TB332

Preparation and flame retardancy of titanium carbide-manganese dioxide/thermoplastic polyurethane nanocomposites

  • 摘要: 热塑性聚氨酯(TPU)具有优良的性能,现已广泛应用于生产生活的各个领域。但该材料是一种有机高分子材料,具有高度易燃性,且燃烧时会发生熔融滴落现象,同时产生大量CO、CO2、NOx等有毒、窒息性气体,限制了TPU的应用。将层状碳化钛(Ti3C2Tx)与二氧化锰(MnO2)通过界面调控技术制备为MXene(一类二维无机化合物,碳化钛是其中的一种)基杂化阻燃剂(Ti3C2Tx-MnO2),然后再引入TPU材料形成MXene/TPU基杂化物纳米复合材料(Ti3C2Tx-MnO2/TPU),利用TGA、XRD、SEM等进行检测。结果显示,在Ti3C2Tx-MnO2/TPU纳米复合材料中,700℃时炭渣含量最大程度提高91.89%,总热释放量(THR)、总烟释放量(TSR)、CO释放总量(CO TY)和CO2释放总量(CO2 TY)相较于纯TPU分别最大程度降低了28.62%、33.41%、34.12%和29.77%。通过分析,MXene基杂化阻燃剂中Ti3C2Tx氧化为TiO2,并与MnO2协同催化成炭,大幅度提高纳米复合材料燃烧后炭层连续性和致密性,阻隔热量、阻挡氧气进入并抑制烟气释放。

     

  • 图  1  阻燃剂层状碳化钛(Ti3C2Tx)-MnO2及其热塑性聚氨酯(TPU)纳米复合材料的制备路线图

    Figure  1.  Preparation route of layered titanium carbide (Ti3C2Tx)-MnO2 flame retardant and thermoplastic polyurethane (TPU) nanocomposites

    NPs—Nanoparticles

    图  2  阻燃剂Ti3AlC2、Ti3C2Tx、MnO2和Ti3C2Tx-MnO2的XRD图谱

    Figure  2.  XRD patterns of Ti3AlC2, Ti3C2Tx, MnO2 and Ti3C2Tx-MnO2 flame retardants

    图  3  TPU纳米复合材料N2氛围下的热重曲线 (a) 和热重微分曲线 (c),以及空气氛围下的热重曲线 (b) 和热重微分曲线 (d)

    Figure  3.  Thermogravimetric (a) and thermogravimetric differential (c) curves in N2, as well as thermogravimetric (b) and thermogravimetric differential (d) curves in air of TPU nanocomposites

    图  4  TPU纳米复合材料的热释放速率 (a)、总热释放量 (b)、烟释放速率 (c) 和总烟释放量 (d) 曲线

    Figure  4.  Heat release rate (a), total heat release (b), smoke production rate (c), and total smoke release (d) curves of TPU nanocomposites

    图  5  TPU纳米复合材料的CO释放速率 (a)、总CO释放量 (b)、CO2释放速率 (c) 和总CO2释放量 (d) 曲线

    Figure  5.  CO production rate (a), total yield of CO (b), CO2 production rate (c) and total yield of CO2 (d) curves of TPU nanocomposites

    图  6  锥形量热仪测试后样品炭渣的数码照片:(a) TPU;(b) MnO2/TPU;(c) Ti3C2Tx/TPU;(d) Ti3C2Tx-MnO2-0.5/TPU;(e) Ti3C2Tx-MnO2-1.0/TPU;(f) Ti3C2Tx-MnO2-2.0/TPU

    Figure  6.  Digital photo of carbon residues of samples after cone calorimeter test: (a) TPU; (b) MnO2/TPU; (c) Ti3C2Tx/TPU; (d) Ti3C2Tx-MnO2-0.5/TPU; (e) Ti3C2Tx-MnO2-1.0/TPU; (f) Ti3C2Tx-MnO2-2.0/TPU

    图  7  锥形量热仪测试(CCT)后TPU纳米复合材料炭渣的XRD图谱

    Figure  7.  XRD patterns of carbon residues of TPU nanocomposites after cone calorimeter test (CCT)

    图  8  锥形量热仪测试后TPU纳米复合材料炭渣的SEM图像:((a1), (a2)) TPU;((b1), ( b2)) MnO2/TPU;((c1), (c2)) Ti3C2Tx/TPU;((d1), (d2)) Ti3C2Tx-MnO2-0.5/TPU;((e1), (e2)) Ti3C2Tx-MnO2-1.0/TPU;((f1), (f2)) Ti3C2Tx-MnO2-2.0/TPU

    Figure  8.  SEM images of carbon residues of TPU nanocomposites after CCT: ((a1), (a2)) TPU; ((b1), (b2)) MnO2/TPU; ((c1), (c2)) Ti3C2Tx/TPU; ((d1), (d2)) Ti3C2Tx-MnO2-0.5/TPU; ((e1), (e2)) Ti3C2Tx-MnO2-1.0/TPU; ((f1), (f2)) Ti3C2Tx-MnO2-2.0/TPU

    表  1  TPU纳米复合材料配方表

    Table  1.   Recipe list of TPU nanocomposites

    No.SampleTPU/gTi3C2Tx-MnO2/gTi3C2Tx/gMnO2/g
    1#TPU60.0000.0000.0000.000
    2#Ti3C2Tx-2.0/TPU58.8000.0001.2000.000
    3#MnO2-2.0/TPU58.8000.0000.0001.200
    4#Ti3C2Tx-MnO2-2.0/TPU58.8001.2000.0000.000
    5#Ti3C2Tx-MnO2-1.0/TPU59.4000.6000.0000.000
    6#Ti3C2Tx-MnO2-0.5/TPU59.7000.3000.0000.000
    下载: 导出CSV

    表  2  TPU纳米复合材料的热降解行为

    Table  2.   Thermal degradation behavior of TPU nanocomposites

    SampleT−5%/℃T−50%/℃Tmax/℃Residual yield/wt%
    Step1Step2
    TPU319.9392.4340.3404.85.92
    Ti3C2Tx-2.0/TPU305.9400.4329.9409.67.80
    MnO2-2.0/TPU257.1310.6275.7311.69.04
    Ti3C2Tx-MnO2-2.0/TPU295.3376.1396.0349.311.36
    Ti3C2Tx-MnO2-1.0/TPU296.2373.2323.1378.710.51
    Ti3C2Tx-MnO2-0.5/TPU310.1392.4344.9405.54.47
    Notes: T−5%—Corresponding temperature at 5wt% weight loss; T−50%—Corresponding temperature when the material is reduced to 50wt%; Tmax—Temperature corresponding to the maximum mass loss rate.
    下载: 导出CSV

    表  3  TPU纳米复合材料在热流密度为35 kW/m2的情况下锥形量热仪测试数据

    Table  3.   Conical calorimeter test data of the TPU nanocomposites under the heat flux of 35 kW/m2

    SampleTTI/
    s
    PHRR/
    (kW·m−2)
    THR/
    (MJ·m−2)
    PSPR/
    (m2·s−1)
    TSR/
    (m2·m−2)
    PCOPR/
    (g·s−1)
    PCO2PR/
    (g·s−1)
    CO TY/
    (kg·kg−1)
    CO2 TY/
    (kg·kg−1)
    TPU6392085.60.639108.40.00850.500.8549.38
    (Error)±5±65±9.4±0.04±1073.6±0.0005±0.03±0.07±5.62
    Ti3C2Tx-2.0/TPU5588369.10.787528.60.00760.480.9239.60
    MnO2-2.0/TPU2994066.30.957447.30.01030.530.5339.14
    Ti3C2Tx-MnO2-0.5/TPU4776461.10.456576.80.00560.420.5637.90
    Ti3C2Tx-MnO2-1.0/TPU3889168.10.446065.60.00710.490.6135.17
    Ti3C2Tx-MnO2-2.0/TPU3995561.10.396285.80.00700.510.6634.68
    Notes: TTI—Time to ignite; PHRR—Peak of heat release rate; THR—Total heat release; PSPR—Peak of smoke production rate; TSR—Total smoke release; PCOPR—Peak of carbon monoxide production rate; PCO2PR—Peak of carbon dioxide production rate; CO TY—Total yield of carbon monoxide; CO2 TY—Total yield of carbon dioxide.
    下载: 导出CSV
  • [1] 魏健. 热塑性聚氨酯弹性体(TPU)的合成及性能研究[D]. 青岛: 青岛科技大学, 2020.

    WEI Jian. Study on synthesis and performance of thermoplastic polyurethane elastomer (TPU)[D]. Qingdao: Qingdao University of Science & Technology, 2020(in Chinese).
    [2] 徐建林, 安静, 康成虎, 等. 热塑性聚氨酯弹性体对聚对苯二甲酸丁二醇酯基阻燃复合材料性能的影响[J]. 复合材料学报, 2021, 38(8):2586-2594.

    XU Jianlin, AN Jing, KANG Chenghu, et al. The effect of thermoplastic polyurethane elastomer on the properties of polybutylene terephthalate-based flame-retardant composites[J]. Acta Materiae Compositae Sinica,2021,38(8):2586-2594(in Chinese).
    [3] 朱雨露. 石墨烯、氮化碳基杂化物的制备及其聚氨酯阻燃性能的研究 [D]. 合肥: 中国科学技术大学, 2017.

    ZHU Yulu. Preparation of graphene and carbon nitride-based hybrids and research on the flame retardant properties of polyurethane[D]. Hefei: University of Science and Technology of China, 2017(in Chinese).
    [4] DONG Y, GUI Z, HU Y, et al. The influence of titanate nanotube on the improved thermal properties and the smoke suppression in poly(methyl methacrylate)[J]. Journal of Hazardous Materials,2012, 209:34-39.
    [5] WANG D, ZHANG Q, ZHOU K, et al. The influence of manganese-cobalt oxide/graphene on reducing fire hazards of poly(butylene terephthalate)[J]. Journal of Hazardous Materials,2014,278:391-400. doi: 10.1016/j.jhazmat.2014.05.072
    [6] 高野, 张胜, 谷晓昱, 等. 磷钼酸基离子液体和水滑石对膨胀阻燃热塑性聚氨酯弹性体复合材料性能的影响[J]. 复合材料学报, 2022, 39(2): 568-576.

    GAO Ye, ZHANG Sheng, GU Xiaoyu, et al. Effect of phosphomolybdic acid-based ionic liquid and hydrotalcite on the properties of intumescent flame-retardant thermoplastic polyurethane elastomer composites[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 568-576(in Chinese).
    [7] 张雨山, 高春娟, 蔡荣华. 溴系阻燃剂的应用研究及发展趋势[J]. 化学工业与工程, 2009, 26(5):460-466.

    ZHANG Yushan, GAO Chunjuan, CAI Ronghua. Application research and development trend of brominated flame retardants[J]. Chemical Industry and Engineering,2009,26(5):460-466(in Chinese).
    [8] 苏明, 张胜, 谷晓昱, 等. APP/MAH-C_9协效阻燃聚醚型TPU的研究[J]. 塑料工业, 2018, 46(9):81-83, 103. doi: 10.3969/j.issn.1005-5770.2018.09.019

    SU Ming, ZHANG Sheng, GU Xiaoyu, et al. Study on APP/MAH-C_9 synergistic flame retardant polyether TPU[J]. China Plastics Industry,2018,46(9):81-83, 103(in Chinese). doi: 10.3969/j.issn.1005-5770.2018.09.019
    [9] CHEN X, MA C, JIAO C, Enhancement of flame-retardant performance of thermoplastic [J]. Polymer Degradation and Stability, 2016, 129: 275-285.
    [10] WANG W, CHEN X, GU Y, et al. Synergistic fire safety effect between nano-CuO and ammonium polyphosphate in thermoplastic polyurethane elastomer[J]. Journal of Thermal Analysis and Calorimetry,2017,131(3):3175-3183.
    [11] ZHANG S, LIU X, JIN X, et al. The novel application of chitosan: Effects of cross-linked chitosan on the fire performance of thermoplastic polyurethane[J]. Carbohydrate Polymers,2018,189:313-321. doi: 10.1016/j.carbpol.2018.02.034
    [12] JIAO C, ZHAO X, SONG W, et al. Synergistic flame retardant and smoke suppression effects of ferrous powder with ammonium polyphosphate in thermoplastic polyurethane composites[J]. Journal of Thermal Analysis and Calorimetry,2015,120(2):1173-1181. doi: 10.1007/s10973-014-4377-z
    [13] HUANG G, SONG P, LIU L, et al. Fabrication of multifunctional graphene decorated with bromine and nano-Sb2O3 towards high-performance polymer nanocomposites[J]. Carbon,2016,98:689-701. doi: 10.1016/j.carbon.2015.11.063
    [14] WANG B, SHENG H, SHI Y, et al. The influence of zinc hydroxystannate on reducing toxic gases (CO, NOx and HCN) generation and fire hazards of thermoplastic polyurethane composites[J]. Journal of Hazardous Materials,2016,314:260-269. doi: 10.1016/j.jhazmat.2016.04.029
    [15] WANG J, ZHANG D, ZHANG Y, et al. Construction of multifunctional boron nitride nanosheet towards reducing toxic volatiles (CO and HCN) generation and fire hazard of thermoplastic polyurethane[J]. Journal of Hazardous Materials,2019,362:482-494. doi: 10.1016/j.jhazmat.2018.09.009
    [16] SHI Y, WANG L, FU L, et al. Sodium alginate-templated synthesis of g-C3N4/carbon spheres/Cu ternary nanohybrids for fire safety application[J]. Journal of Colloid and Interface Science,2019,539:1-10. doi: 10.1016/j.jcis.2018.12.051
    [17] WANG J, HU Y, CAI W, et al. Atherton–Todd reaction assisted synthesis of functionalized multicomponent MoSe2/CNTs nanoarchitecture towards the fire safety enhancement of polymer[J]. Composites Part A: Applied Science and Manufacturing,2018,112:271-282. doi: 10.1016/j.compositesa.2018.06.013
    [18] HOU Y, DUAN L, GUI Z, et al. An infiltration method to synthesize thermoplastic polyurethane composites based on size-controlled graphene foams[J]. Composites Part A: Applied Science and Manufacturing,2017,97:67-75. doi: 10.1016/j.compositesa.2017.02.023
    [19] LIM G P, SOON C F, MORSIN M, et al. Synthesis, characterization and antifungal property of Ti3C2Tx MXene nanosheets[J]. Ceramics International,2020,46(12):20306-20312. doi: 10.1016/j.ceramint.2020.05.118
    [20] HAI Y, JIANG S, ZHOU C, et al. Fire-safe unsaturated polyester resin nanocomposites based on MAX and MXene: A comparative investigation of their properties and mechanism of fire retardancy[J]. Dalton Transactions,2020,49(18):5803-5814. doi: 10.1039/D0DT00686F
    [21] PAN Y, FU L, ZHOU Q, et al. Flammability, thermal stability and mechanical properties of polyvinyl alcohol nanocomposites reinforced with delaminated Ti3C2Tx (MXene)[J]. Polymer Composites,2019,41(1):210-218.
    [22] ZHI W Q, XIANG S L, BIAN R J, et al. Study of MXene-filled polyurethane nanocomposites prepared via an emulsion method[J]. Composites Science and Technology,2018,168:404-411.
    [23] WANG S, GAO R, ZHOU K. The influence of cerium dioxide functionalized reduced graphene oxide on reducing fire hazards of thermoplastic polyurethane nanocomposites[J]. Journal of Colloid and Interface Science,2019,536:127-134. doi: 10.1016/j.jcis.2018.10.052
    [24] CHEN X, WANG W, LI S. Synthesis of TPU TiO2 nanocomposites by molten blending method[J]. Journal of Thermal Analysis and Calorimetry,2018,132:793-803. doi: 10.1007/s10973-017-6944-6
    [25] 李书典, 郑德山, 郭峰. 二氧化锰催化氧化性能的研究进展[J]. 现代化工, 2020, 40(3):52-56.

    LI Shudian, ZHENG Deshan, GUO Feng. Research progress on catalytic oxidation performance of manganese dioxide[J]. Modern Chemical Industry,2020,40(3):52-56(in Chinese).
    [26] SHI Y, LIU C, LIU L, et al. Strengthening, toughing and thermally stable ultra-thin MXene nanosheets/polypropylene nanocomposites via nanoconfinement[J]. Chemical Engineering Journal,2019,378:122267.
    [27] LIU C, WU W, SHI Y, et al. Creating MXene/reduced graphene oxide hybrid towards highly fire safe thermoplastic polyurethane nanocomposites[J]. Composites Part B: Engineering,2020,203:108486.
    [28] YU B, TAWIAH B, WANG L Q, et al. Interface decoration of exfoliated MXene ultra-thin nanosheets for fire and smoke suppressions of thermoplastic polyurethane elastomer[J]. Journal of Hazardous Materials,2019,374:110-119. doi: 10.1016/j.jhazmat.2019.04.026
    [29] LIU G, ZOU J, TANG Q, et al. Surface modified Ti3C2 MXene nanosheets for tumor targeting photothermal/photodynamic/chemo synergistic therapy[J]. ACS Applied Materials & Interfaces,2017,9(46):40077-40086.
    [30] 崔锦峰, 王心远, 郭永亮, 等. P元素杂化本征阻燃热塑性聚氨酯弹性体的制备及其性能研究[J]. 功能材料, 2015, 46(8):8050-8054. doi: 10.3969/j.issn.1001-9731.2015.08.011

    CUI Jinfeng, WANG Xinyuan, GUO Yongliang. Study on preparation and properties of P-element hybrid intrinsic flame retardant thermoplastic polyurethane elastomer[J]. Journal of Functional Materials,2015,46(8):8050-8054(in Chinese). doi: 10.3969/j.issn.1001-9731.2015.08.011
    [31] FANG F, HUO S, SHEN H, et al. A bio-based ionic complex with different oxidation states of phosphorus for reducing flammability and smoke release of epoxy resins[J]. Composites Communications,2020,17:104-108.
    [32] TANG G, LIU X, ZHOU L, et al. Steel slag waste combined with melamine pyrophosphate as a flame retardant for rigid polyurethane foams[J]. Advanced Powder Technology,2020,31(1):279-286. doi: 10.1016/j.apt.2019.10.020
    [33] YU B, XING W, GUO W, et al. Thermal exfoliation of hexagonal boron nitride for effective enhancements on thermal stability, flame retardancy and smoke suppression of epoxy resin nanocomposites via sol–gel process[J]. Journal of Materials Chemistry A,2016,4(19):7330-7340.
    [34] GHASSEMI H, HARLOW W, MASHTALIR O, et al. In situ environmental transmission electron microscopy study of oxidation of two-dimensional Ti3C2 and formation of carbon-supported TiO2[J]. Journal of Materials Chemistry A, 2014, 2(35): 14339-14343.
    [35] WANG K, ZHOU Y, XU W, et al. Fabrication and thermal stability of two-dimensional carbide Ti3C2 nanosheets[J]. Ceramics International,2016,42(7):8419-8124.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  966
  • HTML全文浏览量:  545
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-19
  • 修回日期:  2021-09-22
  • 录用日期:  2021-09-25
  • 网络出版日期:  2021-10-12
  • 刊出日期:  2022-08-22

目录

    /

    返回文章
    返回