Progress in application on health monitoring technology for aerospace composite structures
-
摘要: 随着飞行器中复合材料的使用占比逐年增加,对其安全性的要求也日益严苛。复合材料的损伤部位隐蔽且情况复杂,使预测失效模式和使用寿命变得困难。因此,需要实时监测结构响应,收集状态信息,评估运行情况,判断损伤和剩余寿命,以确保飞行器结构的安全稳定运行。本文瞄准航天飞行器对复合材料结构健康监测的需求,首先简述了复合材料结构在典型飞行器结构应用情况以及复合材料结构健康监测技术的研究及应用情况,随后分别对常见的结构健康监测技术进行了详细的讨论,包括光纤传感监测技术、超声导波监测技术、声发射监测技术、机电阻抗监测法等技术的研究进展,接着针对结构健康监测技术在航天飞行器的各种结构如燃料贮箱结构、热防护结构、发动机结构以及机翼前缘结构等其他结构的应用情况进行了分析讨论,然后对典型的结构健康监测技术评估方法的研究进展进行了分析总结,最后讨论总结了航天复合材料结构健康监测技术的发展趋势与面临的挑战。Abstract: The increasing utilization of composite materials in aircraft necessitates increasingly stringent safety requirements. The hidden nature and complexity of damage to the composite make predicting failure modes and service life challenging. Consequently, real-time monitoring of structural responses, state information collection, operation evaluation, and damage and remaining life assessment are essential for ensuring the safe and stable operation of aircraft structures. This paper first provides a brief overview of the application of composite structures in typical aircraft structures and the research and application of composite structure health monitoring technology. It then delves into common structural health monitoring techniques, including the research progress of optical fiber sensing monitoring technology, ultrasonic guided wave monitoring technology, acoustic emission monitoring technology, and electromechanical impedance monitoring technology. The application of structural health monitoring technology in various spacecraft structures, such as fuel tank structures, thermal protection structures, engine structures, and wing leading edge structures, is also analyzed and discussed. The research progress of typical structural health monitoring technology evaluation methods is analyzed and summarized. Finally, the development trends and challenges of aerospace composite structure health monitoring technology are discussed and summarized.
-
渗透性是水泥基材料耐久性能研究的关键内容,材料的渗透性与其耐久性劣化过程密切相关,对水泥基材料的长期性能有重要影响[1]。目前,水泥基材料的抗渗测试有抗水渗透试验和抗氯离子渗透试验两种标准[2]。这两种方法仅能提供水或离子的最终渗透结果,无法全面分析渗透介质在基体中的渗透过程,因此缺乏对水泥基材料抗渗性能影响机理的数据支持。1H低场核磁共振技术是利用1H作为探针分析水泥基材料中水的分布和含量,具有灵敏、快速和无侵入的独特优势,为研究水泥基材料中水分的迁移、渗透提供新的研究方法。目前,相关研究主要集中于水泥基材料的孔结构表征、物相表征和水分动力学。Valckenborg等[3]通过低场核磁研究了水泥砂浆干燥过程中的水分布情况,发现干燥过程中水分首先从毛细孔散失。Heijden 等[4]用核磁共振技术成像分析了混凝土在加热干燥过程中水分的变化情况。Bohris等[5]基于梯度回波成像采集了静态水分布数据,并通过成像计算了毛细吸水扩散速率。Ai Zhang等[6]通过低场核磁研究发现白水泥干燥过程中自由水从大孔隙蒸发到小孔。
修补材料的服役过程中,材料的含水率决定侵蚀介质的迁移。因此,深入地研究修补材料中水的渗透和分布是分析修补材料耐久性能的关键。核磁共振可以通过获取正比于水含量的氢核的核磁信号来计算水分的含量,利用横向弛豫时间分布可以得到水泥基材料中水分的分布[7]。通过低场核磁检测不同的应力状态下水的横向弛豫时间和渗水量,可以有效地反映水泥基材料的抗渗透性能。通过分析修补材料中水分渗透的变化,可以有效揭示不同组分对抗渗性能的影响机理。
聚合物改性水泥基材料是一种典型的有机-无机复合材料,具有韧性强、粘结强度高、耐久性好等优点,在结构修补领域具有广阔的应用前景[8]。聚合物有乳液和可再分散乳胶粉(以下简称聚合物)两种形式。可再分散乳胶粉是聚合物乳液经过特殊处理、喷雾干燥后,得到“壳-核”结构的聚合物颗粒,性能与乳液相似,但具有不影响水灰比、使用方便的优点。相关研究表明由于干燥失水和水泥水化消耗水,分散在水泥浆体中的聚合物粒子经历逐渐浓缩、密实堆积、团聚变形、融合成膜等过程,最终在水泥浆体孔隙、C-S-H凝胶间、氢氧化钙表面和界面过渡区形成连续的聚合物膜,提高水泥基材料的抗渗性能[9,10]。同时,聚合物膜可以有效地提高水泥基材料的抗折和粘结强度[11]。梅军鹏等[12]研究发现纳米二氧化钛与苯丙乳液复合改善乳液引起的早期强度降低及对水化的延迟作用,提高水泥基材料的抗渗性。李国忠等[13]研究发现醋酸乙烯酯-乙烯共聚聚合物能够改善了水泥基路面裂缝灌浆材料的可灌性,有效提高了材料的黏结性能及抗渗性能。
本文通过1H低场核磁共振技术测试了渗透压力、渗透时间和轴压对聚合物修补砂浆中可蒸发水的横向弛豫时间和渗水量,并以此表征修补砂浆的抗渗性。通过孔结构和微观形貌分析了聚合物对修补砂浆横向弛豫时间和渗水量的影响机理,为水泥基材料的抗渗性研究提供了一种新的思路。
1. 实验材料及方法
1.1 原材料
采用抚顺水泥股份有限公司生产的P·I 42.5水泥,表1和表2分别为水泥的化学成分和物理力学性能;聚合物采用德国瓦克公司生产的5044N型可再分散乳胶粉(图1),其主要成分是醋酸乙烯酯-乙烯聚合物;减水剂选用瑞士西卡530P改性聚羧酸盐减水剂;消泡剂选用临沂市凯奥化工有限公司的金属皂类消泡剂;砂为ISO标准砂;水为自来水。
表 1 水泥的化学组成Table 1. Chemical compositions of cementSiO2 Al2O3 Fe2O3 CaO MgO SO3 Na2O f-CaO Loss 20.6 4.57 3.29 63.27 2.59 2.11 0.55 0.76 2.15 表 2 水泥物理力学性能Table 2. Physical and mechanical properties of cementSetting time/min Flexural strength/MPa Compressive strength/MPa Initial set Final set 3 d 7 d 28 d 3 d 7 d 28 d 128 196 5.3 6.4 8.5 26 35.9 45.6 1.2 配合比
修补砂浆的胶砂比为1∶2,水灰比为0.35,减水剂选用聚羧酸减水剂,掺量为0.2%,同时采用掺量为0.5%消泡剂调整砂浆含气量。水泥质量的0、3%、6%、9%、12%、15%的聚合物改性修补砂浆的抗渗性能,依次标记为K0、K3、K6、K9、K12、K15,砂浆具体的配合比见表3。
1.3 试验方法
1.3.1 制备工艺
按照试验配合比将水泥、聚合物、减水剂和标准砂在砂浆搅拌机中搅拌2 min。将预先溶有减水剂的水加入到搅拌锅中,慢搅2 min(自转(140±5) r/min,公转(62±5) r/min)使浆体混合均匀,然后浇筑于模具。试样成型1 d后脱模,并在温度(20 ± 2)℃、相对湿度95%环境中养护到指定龄期。
1.3.2 力学性能
参照GB/T 17671-2021《水泥胶砂强度检验方法》[14]测试修补材料的3 d、7 d和28 d的抗折、抗压强度。采用界面弯拉强度表征修补砂浆粘结强度,首先制备40 mm×40 mm×80 mm的标准砂浆试块作为粘结基体。在标准养护条件下养护28 d,然后将标准水泥砂浆试块放入40 mm×40 mm×160 mm模中的一侧,另一侧倒入聚合物改性修补砂浆,在养护到指定龄期后测试三点抗折强度:
R=1.5FL/b3 (1) 式中:R为粘结强度(MPa);F为断裂时的荷载(N);L为支撑圆柱的距离(100 mm);b为棱柱体正方形截面边长(40 mm)。
表 3 聚合物改性修补砂浆配合比Table 3. Mix proportion of polymer modified repair mortarSpecimen No. Cement/g Sand/g Superplasticizer/g Defoamer/g Water/g Polymer/g K0 100 200 0.2 0.5 35 0 K3 100 200 0.2 0.5 35 3 K6 100 200 0.2 0.5 35 6 K9 100 200 0.2 0.5 35 9 K12 100 200 0.2 0.5 35 12 K15 100 200 0.2 0.5 35 15 1.3.3 抗渗性能
修补材料抗渗性采用φ50 mm ×100 mm的圆柱形试样。实验仪器为苏州纽迈分析仪器股份有限公司生产的PQ-001三轴核磁共振检测系统,磁体为永磁体,恒定磁场0.49 T,主频率21 MHz。在2英寸三轴加持探头(图2)采用CPMG脉冲序列测试不同条件下试样内部氢核的横向弛豫,得到横向弛豫时间T2分布和含水量(体积比)。渗水过程中的含水量减去试块的初始含水量得到渗水量。测试中,等待时间
4000 ms,回波个数18000 ,累加次数8。砂浆抗渗性试验在试样养护到28 d后直接放入三轴夹具中进行测试(不真空饱水),采用热缩膜隔离围压液和试块,并依次施加围压、轴压和渗透压。研究渗透压变化时,围压和轴压分别固定为8 MPa和0 MPa;研究时间变化时,围压、轴压和渗透压分别固定为8 MPa、0 MPa和2 MPa;研究轴压变化时,围压、渗透压分别固定为4 MPa和2 MPa。试样在50 MPa轴压作用后,采用纽迈核磁成像系统进行成像,分析试样破坏形貌。聚合物中存在的氢质子可能会影响低场核磁共振对聚合物改性砂浆的测试结果。本文测试了纯聚合物的横向弛豫时间分布,并与测试试样K9进行对比(图3)。聚合物主要成分醋酸乙烯酯-乙烯聚合物的氢信号存在于聚合物链条内,低场核磁信号难以捕捉。经试验在本实验测试参数下检测到聚合物的氢信号相对于测试试样极低,故本实验忽略聚合物中氢信号对试样低场核磁测试的影响。
1.3.4 微观结构分析
孔结构测试采用与抗渗性能测试相同的设备、程序和测试参数。通过真空高压充分饱水后的水含量表征孔隙率。φ50 mm ×100 mm的试样养护到28 d后真空饱水12 h。放置到50 mm氢测试探头线圈进行孔结构测试,测试过程中不施加任何的应力。
双组分快速交换模型是低场核磁共振弛豫测试孔结构最常用的模型[15]。对于多孔介质,水分子与孔隙表面的相互作用是影响驰豫的主要因素。对于孔体积为V和表面积为S的孔道,横向驰豫时间T2可以用下式表示[16]:
1T2=ρ2⋅SV (2) 式中ρ2为表面弛豫效率,是低场核磁表征砂浆孔结构的重要参数。根据相关文献,该研究中ρ2取值12 nm/ms[17,18]。假设为圆柱形孔,则横向弛豫时间T2与孔隙的等效半径r之间近似满足线性关系下式:
r=2ρ2T2 (3) 采用捷克TESCAN MIRA LMS型场发射扫描电镜分析了修补材料的微观形貌和元素分布。将养护到指定龄期的砂浆试样使用无水乙醇终止水化。测试前,将中止水化的样品在真空干燥箱中60℃烘干2 h。试验中观察新鲜断裂面,并喷金120 s增加试样的导电性。SEM图像分辨率为 0.9 nm@15 kV,能谱Maping拍摄时加速电压为 15 kV。
2. 结果与分析
2.1 聚合物对修补砂浆力学性能的影响
图4是聚合物掺量对修补砂浆力学性能的影响。由图4(a)可知,随着聚合物掺量的增加,修补砂浆的抗折强度先增大后减小。当聚合物的掺量为12%时,修补材料的抗折强度最大为9.6 MPa,比对照组提高了16.93%。这表明聚合物提高了砂浆的弯曲韧性。聚合物在砂浆中形成交织的网状膜,这种网状膜结构是典型的柔性结构,降低了水泥砂浆的弹性模量,提高了修补砂浆的韧性[19]。随着掺量的增加,聚合物逐渐形成连续的聚合物膜,改善了砂浆内部缺陷[20]。因此12%掺量时抗折强度最大。但是,聚合物掺量继续增加,聚合物引气作用会在水泥基体中引入空气形成较多的闭合孔,降低了砂浆的抗折强度[21]。
粘结强度是修补材料重要的力学指标,采用界面弯拉强度表征修补砂浆粘结强度。由图4(b)可知,随着聚合物掺量的增加修补砂浆的粘结强度先增减后减小,最优掺量为9%,此时修补砂浆的28 d粘结强度可达5.1 MPa,相对于对照组提高了57.45%。聚合物会渗透进入修补基体中的孔隙中,失水成膜后在砂浆基体中形网状膜结构,能够与修补体形成良好地“桥接”作用。同时聚合物良好的黏结性能可显著提高修补材料与基体的黏附强度。
由图4(c)可知,聚合物降低了修补砂浆的抗压强度,聚合物掺量在9%以内时,抗压强度降低不明显,修补材料的28 d抗压强度为49.9 MPa,相对于对照组下降了9.8%。聚合物会吸附在水泥颗粒表面,并最终逐渐成膜,延缓水泥水化,降低水泥的水化速率。
2.2 基于低场核磁技术的聚合物改性修补砂浆抗渗性研究
通过分析聚合物对修补砂浆力学性能的影响,选取K0和K9抗渗试验作为实验组。通过修补砂浆的渗水量表征修补砂浆的抗渗性能,试样的横向弛豫时间变化反应水的渗透过程。
2.2.1 渗透时间对聚合物改性修补砂浆抗渗性的影响
图5是渗透时间对试样横向弛豫时间的影响(测试条件:渗透压2 MPa、围压8 MPa)。当渗透压稳定在2 MPa后开始采集数据,因此在渗透时间为0 min时渗透已经开始。从图中可以看出试样的横向弛豫时间分布呈现出三峰分布的模式,且三个峰的位置基本相同,根据相关研究表明凝胶层间水、凝胶孔隙水、水化产物间孔和毛细孔的弛豫时间T2分别为0.08~0.12 ms、0.25~0.5 ms和0.8~1 ms和>10 ms[14]。第一个峰主要是凝胶孔隙水,第二和三峰主要是大毛细孔水。随着时间的增加水不断的渗入砂浆中,K0修补砂浆横向弛豫时间分布的第一个峰和第三个峰逐渐增加。这表明水分逐渐渗透入砂浆的凝胶孔和毛细孔。由于聚合物膜填充和阻隔作用,K9试样的横向弛豫时间变化不明显。
表4是不同时间渗透时间修补砂浆中的渗水率。在2 MPa的渗透压下,试样中的渗水量随着时间的增加逐渐增大,因此在试验测试的过程中要留够充足的稳定时间,本实验中每次测试至少保持0.5 h。试样的渗水率与横向弛豫时间分布变化相似,K0试样的孔隙率较大并且不具有阻水功能的膜结构,所以随时间延长试样的含水率变化明显。相对的,K9试样的含水率随时间变化不明显。原因在于聚合物可以填充修补砂浆中的微小孔隙,阻断联通毛细孔隙,优化了修补砂浆的孔结构。伴随水泥的水化过程,聚合物颗粒吸在水化产物、孔隙和界面过渡区之间,并失水形成均匀、柔性的聚合物膜阻断水的渗透通道。因此,在相同的渗透压下水渗入砂浆内部的能力减弱。
表 4 不同渗透时间修补砂浆渗水量Table 4. Seepage amount of repaired mortar at different times5 min 10 min 15 min 20 min 25 min 30 min K0 0.4% 0.71% 1.02% 1.29% 1.54% 1.72% K9 0.05% 0.13% 0.18% 0.22% 0.24% 0.27% 2.2.2 渗透压对聚合物改性修补砂浆抗渗性的影响
图6是不同渗透压下试样的横向弛豫时间分布。从图中可以看出在不同的渗透压下试样的横向弛豫时间分布呈现出三峰分布的模式,这可能是因为随着渗透压增大的过程,水逐渐的渗入修补材料的孔隙中,但是并不改变修补材料的孔结构。随着渗透压的增大,K0和K9试样的横向弛豫时间分布强度呈现出增大的趋势,并且不同渗透压下K9试样的横向弛豫时间分布差别较小,这是因为聚合物在水泥基材料中成膜有效的提高了修补材料的抗渗性。渗透压相对于时间对凝胶孔的峰值的提升明显。修补材料中小孔更难以渗透,渗透压是影响凝胶孔渗水量的主要因素。水泥浆体中,聚合物胶粉先吸水分散在水中,并吸附在水泥颗粒表面。伴随水泥水化和水分蒸发,聚合物逐渐失水、破乳,并在水化产物表面成膜,然后逐渐形成网络膜结。聚合物膜覆盖水化产物表面有效的阻碍了凝胶孔渗水通道;与此同时,较大的聚合物颗粒还可以填充水泥基体中的孔隙,增强修补砂浆致密性从而提高抗渗性能。因此在不同的渗透压作用下阻碍作用和堵塞作用分别造成了K9试样横向弛豫分布第一个峰和第三个峰的变化幅度的降低。
从表5可以看出随着渗透压的增大,试样中的渗水量逐渐增加,而且对于没有互穿网络结构的K0试样含水量增加明显。渗透压是影响横向弛豫时间分布和渗水量的主要因素,通过低场核磁测试砂浆的抗渗性时,渗透压是主要的控制因素。
表 5 不同渗透压修补砂浆渗水量Table 5. Seepage amount of repaired mortar at different infiltration times1 MPa 2 MPa 3 MPa 4 MPa 5 MPa 6 MPa K0 1.59% 3.1% 3.9% 4.26% 4.68% 5.34% K9 0.57% 0.97% 1.48% 1.79% 2.02% 2.28% 2.2.3 三轴加载下聚合物改性修补砂浆抗渗性性能
图7是不同轴压下的横向弛豫时间分布。在轴向压力作用下,修补砂浆中的孔隙被压缩变小,因此第一个峰的峰值略有增。K0试样在轴压50 MPa时,横向弛豫时间分布发生了较为明显的变化,K9试样未发生明显变化。图8是试验轴压作用下的破坏形貌,K0试样在轴压和渗透压的作用下产生裂纹,因此在轴压到达50 MPa时间横向弛豫时间分布突变。由于K9试样中加入了聚合物,试样的韧性增强,试样产生明显的压缩变形未产生大裂纹,因此试样的T2弛豫分布没有突变。通过对50 MPa轴压下的试样进行低场核磁共振成像发现,K0试样内部出现明显的交叉裂缝,聚合物改善了修补砂浆的韧性,K9试样未出现明显的优势渗透通道。聚合物改性使得骨料与水化产物、水化产物和水化产物之间黏合更加密实。聚合物的弹性模量远小于水泥和骨料,因此聚合物降低了修补砂浆的弹性模量,同时聚合物在颗粒与裂缝之间的桥接作用提高了砂浆的断裂韧性,使受力状态下砂浆试样中应力集中大大减小,聚合物改性砂浆由脆性破坏逐渐向塑性变形破坏模式转变。当修补砂浆受到外力时,贯穿于修补砂浆内部的聚合物膜不仅可以抑制内部微裂缝的进一步扩展,避免快速形成渗透通道,而且可以吸收一部分冲击力,提高修补砂浆的韧性。
表6是不同轴压作用下修补材料的渗水量。在围压和轴压的作用下,修补砂浆被缓慢的压缩,因此试样中的渗水量有小幅度减小。在修补砂浆产生明显的裂纹破坏前,轴压并不影响砂浆的抗渗性能,当产生破坏裂纹时修补砂浆的抗渗性能会产生突变。聚合物明显提高了修补材料的韧性,在复杂应力下服役时可有效地减少裂缝的产生,防止修补材料的抗渗性突变。
表 6 不同轴压修补砂浆渗水量Table 6. Seepage amount of repairing mortar under different coaxial pressure20 MPa 30 MPa 40 MPa 50 MPa K0 0.03% −0.03% −0.11% −0.38% K9 −0.08% −0.13% −0.12% −0.03% 2.3 聚合物改性修补砂浆抗渗性微观机理
采用1H低场核磁共振测孔技术和扫描电镜分析了聚合物改性修补砂浆的微观结。图9是聚合物掺量对修补砂浆孔结构的影响。1H低场核磁共振测试所得孔径主要呈现双峰模式,主要分为0.001~0.07 μm、2~100 μm两个范围,孔径尺寸跨越了5个数量级,第一个峰的峰极值和面积远大于第二个峰,占据优势地位。聚合物降低0.001~0.07 μm范围的峰值和面积,这可能是聚合物成膜封闭和充填了大的孔隙,降低了孔的尺寸。当聚合物的掺量过多时,试样中2~100 μm的孔会增多,聚合物的增稠作用导致修补砂浆中毛细孔增多。梅塔和蒙泰罗的研究表明毛细管孔隙(>50 nm)对于水泥基材料的抗渗性更具影响力[22],因此聚合物的掺量应控制9%以内。从表7中的数据可知,随着聚合物掺量的增加,修补砂浆的孔隙率呈现先减小后增大的趋势,聚合物掺量为9%时,修补砂浆的孔隙率最小为7.45%。
表 7 聚合物掺量对修补砂浆孔隙率的影响Table 7. Influence of polymer content on porosity of repair mortarK0 K3 K6 K9 K12 K15 Porosity/% 10.73 9.25 8.53 7.45 8.49 9.84 图10是聚合物修补砂浆SEM微观形貌。K0试样中可以看到大量的孔隙,这些孔隙极大的影响砂浆的抗渗性能,同时砂浆中还存在针棒状钙矾石、片状氢氧化钙和凹凸不平的C-S-H凝胶。K9试样相对于K0的孔隙明显减少,这与孔结构数据相符。致密的聚合物膜附着在水化产物表面,并逐渐形成交互的网络膜结构,封堵了砂浆孔隙,提高了修补砂浆的抗渗水能力[23]。因此聚合物明显降低了修补砂浆的横向弛豫时间分布强度和渗水量。图11是K0和K9试样在2000倍下断面EDS面扫图谱和元素含量。K0试样断面的孔隙处可见几微米的片状产物,元素分布图中相应的部分钙元素富集、硅元素缺失,因此可推断为氢氧化钙,其他区域主要以C-S-H凝胶为主。K9试样的碳含量为17.7 At%,相对K0的9.5 At%明显增加,这是因为聚合物中含有大量的碳元素。碳元素广泛地分布于试样各区域,表明聚合物在水泥基体中分布均匀,可以形成良好的阻水交互网络薄膜。
水泥基材料的抗渗性与孔隙结构密切相关。聚合物成膜后粘附在水化产物表面并分割、填充了水泥基材料的孔隙,改善了修补砂浆的微观结构。水泥和聚合物组成的胶凝体系水化产物之间可以相互交融、相互填充,具有更高的密实度[24]。这使得水更难进入水泥基体内部,抗渗性能优异。另一方面,聚合物膜粘附在水化产物表面,并贯穿于水泥水化物之间,有效的阻挡了水化产物内部凝胶孔的运移通道,像一道道“闸门”截断了毛细管道,阻断了材料内部与外界的联系,有效提高水泥基材料的抗渗性能。
3. 结 论
(1)聚合物改善了修补砂浆的力学性能,掺量9%时砂浆的抗折强度和粘结强度分别提高16.99%和57.45%,增加了砂浆的韧性和界面性能。
(2)通过横向弛豫时间分布和渗水量有效的表征聚合物改性修补砂浆抗渗性能。随渗透压增高,修补砂浆凝胶孔隙和毛细孔隙水增加,聚合物明显降低两者的增长趋势。
(3)在砂浆发生结构破坏前,轴压对修补砂浆的抗渗性能基本无影响,砂浆产生交叉裂缝破坏后抗渗性能会产生突变。聚合物改性修补砂浆产生明显的压缩变形未产生明显裂纹,试样的横向弛豫时间分布没有突变。
(4)聚合物优化了砂浆的孔结构和微观形貌,孔隙率最大降低了3.28%。聚合物薄膜的阻隔和填充效应降低了凝胶孔和毛细孔的通道运移能力,减少了修补砂浆的横向弛豫强度、渗水量,提高了砂浆的抗渗性能。
-
图 5 布里渊光学相关域分析(BOCDA)系统:(a) BOCDA测量系统概述;(b)光纤传感器在大型结构中的应用[41]
Figure 5. Brillouin optical correlation domain analysis (BOCDA) system: (a) Summary of BOCDA measurement system; (b) Application of optical fiber sensor in large structure[41]
fm—Modulation frequency; Δf—Frequency modulation width; DFBLD—Distributed feedback laser diode; SSBM—Single-sideband modulator; PSW—Polarization switch; EOM—Electro-optical modulator; EDFA—Erbium-doped fiber amplifiers; PD—Photo detector; FUT—Fiber under test; VOA—Variable optical attenuator
图 17 采用声发射技术探究燃料贮箱的损伤机制[103]
Figure 17. Damage mechanism of fuel tank investigated by acoustic emission technology[103]
FEA—Finite element analysis; L—Length of the sandwich shell; Ri—Sandwich shell inner radius; tf—Skin thickness; hc—Core height; P—Compression load; RAx—Support reaction force in x direction; RAx—Support reaction force in y direction; θ—Angle between the cross section and the mid-surface; Md—Section bending moment; FNd—Axial force on cross section; FQd—Cross-sectional shear force; AE—Acoustic Emission; CL1—Matrix damage; CL2—Fiber damage; CL3—Debonding; PCA—Principal component analysis
表 1 结构健康监测技术(SHM)的分类
Table 1 Classification of structural health monitoring technology (SHM)
Physical principle Technique Main sensor type Range Monitoring mode Continuous mechanics Strain-based methods Fiber optic sensors Mid-range Passive Vibration methods Accelerometers Global local Passive/active Elastic waves/waves propogation Guided waves Pb(Zr1−xTix)O3 (PZT) Mid-range Active Acoustic emission (AE) PZT, AE probes Mid-range Passive Phased arrays PZT Mid-range Passive/active Ultrasonics PZT/laster Local Active Electricity and magnetism Electromechanical impedance (EMI) PZT Local Active Electrical impedance tomography Carbon nanotube (CNT)-
doped resinsLocal Active Eddy currents Eddy probes Local Active Fluid dynamics Comparative vacuum monitoring (CVM) Patch with microchannels Local Passive -
[1] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1): 1-12. DU Shanyi. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica, 2007, 24(1): 1-12(in Chinese).
[2] RANA S, FANGUEIRO R. Advanced composites in aerospace engineering[M]//Advanced composite materials for aerospace engineering. Cambridge: Woodhead Publishing, 2016: 1-15.
[3] ZHANG J, LIN G, VAIDYA U, et al. Past, present and future prospective of global carbon fibre composite developments and applications[J]. Composites Part B: Engineering, 2023, 250: 110463. DOI: 10.1016/j.compositesb.2022.110463
[4] 杨智勇, 张东, 顾春辉, 等. 国外空天往返飞行器用先进树脂基复合材料研究与应用进展[J]. 复合材料学报, 2022, 39(7): 3029-3043. DOI: 10.13801/j.cnki.fhclxb.20220325.004 YANG Zhiyong, ZHANG Dong, GU Chunhui, et al. Research and application of advanced resin matrix composites for aerospace shuttle vehicles abroad[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3029-3043(in Chinese). DOI: 10.13801/j.cnki.fhclxb.20220325.004
[5] 谷雨. 碳纤维增强聚合物复合材料在航空航天领域的研究进展[J]. 冶金与材料, 2023, 43(7): 118-120. DOI: 10.3969/j.issn.1674-5183.2023.07.041 GU Yu. Research progress of carbon fiber reinforced polymer composites in aerospace field[J]. Metallurgy and Materials, 2023, 43(7): 118-120(in Chinese). DOI: 10.3969/j.issn.1674-5183.2023.07.041
[6] MUSK E. Making humans a multi-planetary species[J]. New Space, 2017, 5(2): 46-61. DOI: 10.1089/space.2017.29009.emu
[7] 赵云峰, 潘玲英. 航天先进结构复合材料及制造技术研究进展[J]. 宇航材料工艺, 2021, 51(4): 29-36. DOI: 10.12044/j.issn.1007-2330.2021.04.004 ZHAO Yunfeng, PAN Lingying. Research progress of aerospace advanced polymer matrix composites and manufacturing technology[J]. Aerospace Materials & Technology, 2021, 51(4): 29-36(in Chinese). DOI: 10.12044/j.issn.1007-2330.2021.04.004
[8] 周苑生. 先进复合材料在航空航天领域的应用[J]. 中国新技术新产品, 2018(3): 129-130. DOI: 10.3969/j.issn.1673-9957.2018.03.080 ZHOU Yuansheng. Application of advanced composite materials in aerospace field[J]. China New Technology and New Products, 2018(3): 129-130(in Chinese). DOI: 10.3969/j.issn.1673-9957.2018.03.080
[9] 熊健, 李志彬, 刘惠彬, 等. 航空航天轻质复合材料壳体结构研究进展[J]. 复合材料学报, 2021, 38(6): 1629-1650. XIONG Jian, LI Zhibin, LIU Huibin, et al. Advances in aerospace lightweight composite shell structure[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1629-1650(in Chinese).
[10] SONI R, VERMA R, GARG R K, et al. A critical review of recent advances in the aerospace materials[J]. Materials Today: Proceedings, 2023[2024-01-18]. Website: www.sciencedirect.com/science/article/pii/S2214785323043663.
[11] 王奕首, 卿新林. 复合材料连接结构健康监测技术研究进展[J]. 复合材料学报, 2016, 33(1): 1-16. WANG Yishou, QING Xinlin. Progress on study of structural health monitoring technology for composite joints[J]. Acta Materiae Compositae Sinica, 2016, 33(1): 1-16(in Chinese).
[12] 张辰威, 张博明. 复合材料贮箱在航天飞行器低温推进系统上的应用与关键技术[J]. 航空学报, 2014, 35(10): 2747-2755. ZHANG Chenwei, ZHANG Boming. Application and key technologies of composite tank in cryogenic propulsion system of spacecraft[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10): 2747-2755(in Chinese).
[13] 中国载人航天工程办公室. 附录六: NASA发布SpaceX CRS-7故障调查报告[EB/OL]. (2019-04-08)[2024-05-17]. 网址: www.cmse.gov.cn/dmt/cbw/zrhtndbg/202004/t20200427_46306.html. China Manned Space Engineering Office. Appendix VI: NASA issues SpaceX CRS-7 fault investigation report [EB/OL]. (2019-04-08)[2024-05-17]. Website: www.cmse.gov.cn/dmt/cbw/zrhtndbg/202004/t20200427_46306.html(in Chinese).
[14] 龙雪丹. SpaceX公司公布法尔肯9爆炸调查结果[J]. 航天制造技术, 2017(1): 70-71. LONG Xuedan. SpaceX released the results of the Falcon 9 explosion investigation[J]. Aerospace Manufacturing Technology, 2017(1): 70-71(in Chinese).
[15] 武湛君, 渠晓溪, 高东岳, 等. 航空航天复合材料结构健康监测技术研究进展[J]. 航空制造技术, 2016(15): 92-102, 109. WU Zhanjun, QU Xiaoxi, GAO Dongyue, et al. Research progress of structural health monitoring technology for aerospace composites[J]. Aeronautical Manufacturing Technology, 2016(15): 92-102, 109(in Chinese).
[16] BROER A A R, BENEDICTUS R, ZAROUCHAS D. The need for multi-sensor data fusion in structural health monitoring of composite aircraft structures[J]. Aerospace, 2022, 9(4): 183. DOI: 10.3390/aerospace9040183
[17] TOWSYFYAN H, BIGURI A, BOARDMAN R, et al. Successes and challenges in non-destructive testing of aircraft composite structures[J]. Chinese Journal of Aeronautics, 2020, 33(3): 771-791. DOI: 10.1016/j.cja.2019.09.017
[18] FARRAR C R, WORDEN K. An introduction to structural health monitoring[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2007, 365(1851): 303-315. DOI: 10.1098/rsta.2006.1928
[19] 张卫方, 何晶靖, 阳劲松, 等. 面向飞行器结构的健康监控技术研究现状[J]. 航空制造技术, 2017(19): 38-47. ZHANG Weifang, HE Jingjing, YANG Jinsong, et al. Research status of health monitoring technology for aircraft structure[J]. Aeronautical Manufacturing Technology, 2017(19): 38-47(in Chinese).
[20] QING X, LI W, WANG Y, et al. Piezoelectric transducer-based structural health monitoring for aircraft applications[J]. Sensors, 2019, 19(3): 545. DOI: 10.3390/s19030545
[21] 穆腾飞, 李忠剑, 戴喜妹. 飞机结构健康监测技术[J]. 民用飞机设计与研究, 2020(3): 35-41. MU Tengfei, LI Zhongjian, DAI Ximei. Aircraft structural health monitoring technology[J]. Civil Aircraft Design and Research, 2020(3): 35-41(in Chinese).
[22] SPECKMANN H, BROUSSET C. Structural health monitoring (SHM) a future alternative to conventional NDT[C]//49th Annual NDT Forum-Fort Worth, Texas. Cologne: European Union Aviation Safety Agency, 2006: 17-19.
[23] BOLLER C, BUDERATH M. Fatigue in aerostructures—Where structural health monitoring can contribute to a complex subject[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2007, 365(1851): 561-587. DOI: 10.1098/rsta.2006.1924
[24] 孙侠生, 肖迎春. 飞机结构健康监测技术的机遇与挑战[J]. 航空学报, 2014, 35(12): 3199-3212. DOI: 10.7527/S1000-6893.2014.0082 SUN Xiasheng, XIAO Yingchun. Opportunities and challenges of aircraft structural health monitoring technology[J]. Journal of Aeronautics and Astronautics, 2014, 35(12): 3199-3212(in Chinese). DOI: 10.7527/S1000-6893.2014.0082
[25] 袁梅, 鲍鹏宇, 付重, 等. 飞机结构健康监测技术及传感器网络[J]. 航空制造技术, 2008(22): 44-48. DOI: 10.3969/j.issn.1671-833X.2008.22.006 YUAN Mei, BAO Pengyu, FU Zhong et al. Aircraft structural health monitoring technology and sensor networks[J]. Aviation Manufacturing Technology, 2008(22): 44-48(in Chinese). DOI: 10.3969/j.issn.1671-833X.2008.22.006
[26] 卿新林, 王奕首, 赵琳. 结构健康监测技术及其在航空航天领域中的应用[J]. 实验力学, 2012, 27(5): 517-526. QING Xinlin, WANG Yishou, ZHAO Lin. Structural health monitoring technology and its application in the aerospace field[J]. Experimental Mechanics, 2012, 27(5): 517-526(in Chinese).
[27] DUBINSKII S V, ZICHENKOV M C, ZHARENOV I A. Safety provision for composite structures in aviation: Today and tomorrow[J]. Journal of Machinery Manufacture and Reliability, 2020, 49: 920-931. DOI: 10.3103/S1052618820110023
[28] CHERNYSHEV S L, KOLESNIKOV V I, VERMEL V D, et al. Diagnostics of dissipative characteristics of friction damper[C]//IOP Conference Series: Materials Science and Engineering. Bristol: IOP Publishing, 2020, 996(1): 012009.
[29] QIU L, YUAN S, WANG Q, et al. Design and experiment of PZT network-based structural health monitoring scanning system[J]. Chinese Journal of Aeronautics, 2009, 22(5): 505-512. DOI: 10.1016/S1000-9361(08)60133-8
[30] 杨宇, 王彬文, 祁小凤. 面向全尺寸民机结构疲劳试验的声发射监测技术[J]. 航空学报, 2022, 43(6): 248-260. YANG Yu, WANG Binwen, QI Xiaofeng. Acoustic emission monitoring technology for full-scale fatigue testing of civil aircraft structures[J]. Journal of Aeronautics, 2022, 43(6): 248-260(in Chinese).
[31] JIANG J, SONG L, LIU T, et al. Performance characterization of fiber Bragg grating thermal response in space vacuum thermal environment[J]. Review of Scientific Instruments, 2013, 84(12): 123107. DOI: 10.1063/1.4842295
[32] Society of Automotive Engineers. Guidelines for implementation of structural health monitoring on fixed wing aircraft: ARP6461[S]. Warrendale, PA: Society of Automotive Engineers, 2013.
[33] GÜEMES A, FERNANDEZ-LOPEZ A, POZO A R, et al. Structural health monitoring for advanced composite structures: A review[J]. Journal of Composites Science, 2020, 4(1): 13. DOI: 10.3390/jcs4010013
[34] 祝诗平, 张星霞. 传感器与检测技术[M]. 北京: 中国林业出版社, 2006: 181-186. ZHU Shiping, ZHANG Xingxia. Sensor and detection technology[M]. Beijing: China Forestry Publishing House, 2006: 181-186(in Chinese).
[35] 王文娟, 薛景锋, 张梦杰. 光纤传感在飞机结构健康监测中的应用进展和展望[J]. 航空科学技术, 2020, 31(7): 95-101. WANG Wenjuan, XUE Jingfeng, ZHANG Mengjie. Application progress and prospect of optical fiber sensing in aircraft structural health monitoring[J]. Aeronautical Science and Technology, 2020, 31(7): 95-101(in Chinese).
[36] LÓPEZ-HIGUERA J M, COBO L R, INCERA A Q, et al. Fiber optic sensors in structural health monitoring[J]. Journal of Lightwave Technology, 2011, 29(4): 587-608. DOI: 10.1109/JLT.2011.2106479
[37] DI SANTE R. Fibre optic sensors for structural health monitoring of aircraft composite structures: Recent advances and applications[J]. Sensors, 2015, 15(8): 18666-18713. DOI: 10.3390/s150818666
[38] READ I J, FOOTE P D. Sea and flight trials of optical fibre Bragg grating strain sensing systems[J]. Smart Materials and Structures, 2001, 10(5): 1085. DOI: 10.1088/0964-1726/10/5/325
[39] KO W L, RICHARDS W L, TRAN V T. Displacement theories for in-flight deformed shape predictions of aerospace structures: NASA/TP-2007-214612[R]. Washington: NASA, 2007.
[40] GÜEMES A, FERNÁNDEZ-LÓPEZ A, SOLLER B. Optical fiber distributed sensing-physical principles and applications[J]. Structural Health Monitoring, 2010, 9(3): 233-245. DOI: 10.1177/1475921710365263
[41] MINAKUCHI S, NAKAMURA T, NADABE T, et al. Damage detection of CFRP bolted joints using embedded optical fibers with BOCDA system[J]. Japan Society of Aeronautical Space Sciences, 2011, 59(690): 176-182. DOI: 10.2322/jjsass.59.176
[42] DI PALMA P, LEONE M, RUSSO M, et al. Bonding quality monitoring of carbon fiber reinforced plastics bonded structures by fiber bragg gratings[J]. Optics & Laser Technology, 2023, 161: 109119.
[43] FALCETELLI F. Qualification of optical fiber sensors for the structural health monitoring of aerospace structures[D]. Bologna: University of Bologna, 2023.
[44] 芦吉云, 梁大开, 潘晓文. 基于准分布式光纤光栅传感器的机翼盒段载荷监测[J]. 南京航空航天大学学报, 2009, 41(2): 217-221. DOI: 10.3969/j.issn.1005-2615.2009.02.015 LU Jiyun, LIANG Dakai, PAN Xiaowen. Load monitoring of wing box based on quasi-distributed fiber bragg grating sensor[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2009, 41(2): 217-221(in Chinese). DOI: 10.3969/j.issn.1005-2615.2009.02.015
[45] 杨钰. 光纤传感技术在飞机结构健康监测中的应用研究[D]. 南京: 南京航空航天大学, 2014. YANG Yu. Study on the application of optical fiber sensing technology in aircraft structure health monitoring[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014(in Chinese).
[46] 王文娟, 宋昊, 吴天, 等. 基于光纤光栅传感器内埋的复合材料加筋板冲击位置识别[J]. 航空制造技术, 2016(15): 103-109. WANG Wenjuan, SONG Hao, WU Tian, et al. Identification of impact position of composite stiffened plate based on fiber Bragg grating sensor[J]. Aviation Manufacturing Technology, 2016(15): 103-109(in Chinese).
[47] TAN Y, CAI L, PENG B, et al. An investigation of structural damage location based on ultrasonic excitation-fiber bragg grating detection[J]. Advances in Acoustics and Vibration, 2013, 2013(1): 525603.
[48] FENG Q, TANG M, OU J. Monolithic multicore fiber based multi-parameter measurement based on spatial-division-multiplex sensing mechanisms[J]. Measurement, 2020, 151: 107128. DOI: 10.1016/j.measurement.2019.107128
[49] 郑跃滨, 武湛君, 雷振坤, 等. 基于超声导波的航空航天结构损伤诊断成像技术研究进展[J]. 航空制造技术, 2020, 63(18): 24-43. ZHENG Yuebin, WU Zhanjun, LEI Zhenkun, et al. Research progress of damage diagnosis and imaging technology of aerospace structures based on ultrasonic guided waves[J]. Aviation Manufacturing Technology, 2020, 63(18): 24-43(in Chinese).
[50] 鲍峤, 邱雷, 袁慎芳. 飞行器结构健康监测中压电-导波成像技术的发展与挑战[J]. 航空科学技术, 2020, 31(3): 15-33. BAO Qiao, QIU Lei, YUAN Shenfang. Development and challenge of piezoelectric-guided wave imaging technology in aircraft structural health monitoring[J]. Aeronautical Science and Technology, 2020, 31(3): 15-33(in Chinese).
[51] LAMB H. On waves in an elastic plate[J]. Proceedings of the Royal Society of London. Series A, Containing Papers of A Mathematical And Physical Character, 1917, 93(648): 114-128. DOI: 10.1098/rspa.1917.0008
[52] WORLTON D C. Experimental confirmation of Lamb waves at megacycle frequencies[J]. Journal of Applied Physics, 1961, 32(6): 967-971. DOI: 10.1063/1.1736196
[53] ROSE J L. A vision of ultrasonic guided wave inspection potential[C]//Proceedings of the 7th ASME NDE Tropical Conference-2001. San Antonio: Penn State, 2001: 1-22.
[54] LIN M, CHANG F K. The manufacture of composite structures with a built-in network of piezoceramics[J]. Composites Science and Technology, 2002, 62(7-8): 919-939. DOI: 10.1016/S0266-3538(02)00007-6
[55] IHN J B, CHANG F K. Pitch-catch active sensing methods in structural health monitoring for aircraft structures[J]. Structural Health Monitoring, 2008, 7(1): 5-19. DOI: 10.1177/1475921707081979
[56] HERVIN F, FROMME P. Anisotropy influence on guided wave scattering for composite structure monitoring[J]. Structural Health Monitoring, 2023, 22(4): 2626-2640. DOI: 10.1177/14759217221133284
[57] LAMBOUL B, PASSILLY B, ROCHE J M, et al. Impact damage detection in sandwich composite structures using Lamb waves and laser vibrometry[C]//AIP Conference proceedings. College Park: American Institute of Physics, 2013, 1511(1): 1003-1010.
[58] 王强, 袁慎芳. 主动Lamb波结构健康监测中信号增强与损伤成像方法[J]. 航空学报, 2008(4): 1061-1067. DOI: 10.3321/j.issn:1000-6893.2008.04.048 WANG Qiang, YUAN Shenfang. Signal enhancement and damage imaging in active Lamb wave structural health monitoring[J]. Acta Aeronautica, 2008(4): 1061-1067(in Chinese). DOI: 10.3321/j.issn:1000-6893.2008.04.048
[59] GAO D, WANG Y, WU Z, et al. Minimum attenuation frequency selection method for composite tailplane structural health monitoring[C]//6th European Workshop on Structural Health Monitoring, London: Springer Nature, 2012: 1025-1032.
[60] GAO D, WU Z, YANG L, et al. Guide waves-based multi-damage identification using a local probability-based diagnostic imaging method[J]. Smart Materials and Structures, 2016, 25(4): 045009. DOI: 10.1088/0964-1726/25/4/045009
[61] CHEN H, LIU Z, WU B, et al. A technique based on nonlinear Hanning-windowed chirplet model and genetic algorithm for parameter estimation of Lamb wave signals[J]. Ultrasonics, 2021, 111: 106333. DOI: 10.1016/j.ultras.2020.106333
[62] GAO X, TIAN Y, JIAO J, et al. Non-destructive measurements of thickness and elastic constants of plate structures based on Lamb waves and particle swarm optimization[J]. Measurement, 2022, 204: 111981. DOI: 10.1016/j.measurement.2022.111981
[63] MITRA M, GOPALAKRISHNAN S. Guided wave based structural health monitoring: A review[J]. Smart Materials and Structures, 2016, 25(5): 053001. DOI: 10.1088/0964-1726/25/5/053001
[64] 李小丽, 张海兵, 朱龙翔. 声发射技术在航空维修中的应用进展[J]. 国防制造技术, 2017(1): 64-66. DOI: 10.3969/j.issn.1674-5574.2017.01.019 LI Xiaoli, ZHANG Haibing, ZHU Longxiang. Application progress of acoustic emission technology in aviation maintenance[J]. Defense Manufacturing Technology, 2017(1): 64-66(in Chinese). DOI: 10.3969/j.issn.1674-5574.2017.01.019
[65] ONO K. Review on structural health evaluation with acoustic emission[J]. Applied Sciences, 2018, 8(6): 958. DOI: 10.3390/app8060958
[66] DAHMENE F, YAACOUBI S, MOUNTASSIR M E L. Acoustic emission of composites structures: story, success, and challenges[J]. Physics Procedia, 2015, 70: 599-603. DOI: 10.1016/j.phpro.2015.08.031
[67] GREEN A T, LOCKMAN C S, STEELE R K. Acoustic verification of structural integrity of Polaris chambers[J]. Modern Plastics, 1964, 41(11): 137-139.
[68] HAMSTAD M A. A review: Acoustic emission, a tool for composite-materials studies[J]. Experimental Mechanics, 1986, 26: 7-13. DOI: 10.1007/BF02319949
[69] POLLOCK A A. Critical AE problems for the researcher[J]. Journal of Acoustic Emission, 1990, 9(2): 140-141.
[70] PROSSER W H. Advanced AE techniques in composite materials research[J]. Journal of Acoustic Emission, 1996, 14(3-4): S1-S11.
[71] ONO K. Acoustic emission in materials research—A review[J]. Journal of Acoustic Emission, 2011, 29: 284-308.
[72] MANTEROLA J, AGUIRRE M, ZURBITU J, et al. Using acoustic emissions (AE) to monitor mode I crack growth in bonded joints[J]. Engineering Fracture Mechanics, 2020, 224: 106778.
[73] MUIR C, SWAMINATHAN B, ALMANSOUR A S, et al. Damage mechanism identification in composites via machine learning and acoustic emission[J]. npj Computational Materials, 2021, 7(1): 95. DOI: 10.1038/s41524-021-00565-x
[74] HOLFORD K M, EATON M J, HENSMAN J J, et al. A new methodology for automating acoustic emission detection of metallic fatigue fractures in highly demanding aerospace environments: An overview[J]. Progress in Aerospace Sciences, 2017, 90: 1-11. DOI: 10.1016/j.paerosci.2016.11.003
[75] SAEEDIFAR M, ZAROUCHAS D. Damage characterization of laminated composites using acoustic emission: A review[J]. Composites Part B: Engineering, 2020, 195: 108039. DOI: 10.1016/j.compositesb.2020.108039
[76] DE GROOT P J, WIJNEN P A M, JANSSEN R B F. Real-time frequency determination of acoustic emission for different fracture mechanisms in carbon/epoxy composites[J]. Composites Science and Technology, 1995, 55(4): 405-412. DOI: 10.1016/0266-3538(95)00121-2
[77] DAS S, CHATTOPADHYAY A, ZHOU X. Acoustic based structural health monitoring for composites using optimal sensor placement: analysis and experiments[J]. Journal of Reinforced Plastics and Composites, 2009, 28(1): 83-97. DOI: 10.1177/0731684407084099
[78] FU T, LIU Y, LI Q, et al. Fiber optic acoustic emission sensor and its applications in the structural health monitoring of CFRP materials[J]. Optics and Lasers in Engineering, 2009, 47(10): 1056-1062. DOI: 10.1016/j.optlaseng.2009.03.011
[79] XIAO D, GAO Y. Damage monitoring of carbon fiber reinforced silicon carbide composites under random vibration environment by acoustic emission technology[J]. Ceramics International, 2020, 46(11): 18948-18957. DOI: 10.1016/j.ceramint.2020.04.218
[80] GIURGIUTIU V. Structural health monitoring (SHM) of aerospace composites[M]//Polymer composites in the aerospace industry. Cambridge: Woodhead Publishing, 2020: 491-558.
[81] PARK S, YUN C B, INMAN D J. Structural health monitoring using electro-mechanical impedance sensors[J]. Fatigue & Fracture of Engineering Materials & Structures, 2008, 31(8): 714-724.
[82] LIANG C, SUN F P, ROGERS C A. Coupled electro-mechanical analysis of adaptive material systems—determination of the actuator power consumption and system energy transfer[J]. Journal of Intelligent Material Systems and Structures, 1994, 5(1): 12-20. DOI: 10.1177/1045389X9400500102
[83] CHAUDHRY Z A, JOSEPH T, SUN F P, et al. Local-area health monitoring of aircraft via piezoelectric actuator/sensor patches[C]//Smart Structures and Materials 1995: Smart Structures and Integrated Systems. San Diego: SPIE, 1995, 2443: 268-276.
[84] GIURGIUTIU V, ZAGRAI A, BAO J J. Piezoelectric wafer embedded active sensors for aging aircraft structural health monitoring[J]. Structural Health Monitoring, 2002, 1(1): 41-61. DOI: 10.1177/147592170200100104
[85] PAVELKO I, PAVELKO V, KUZNETSOV S, et al. Bolt-joint structural health monitoring by the method of electromechanical impedance[J]. Aircraft Engineering and Aerospace Technology: An International Journal, 2014, 86(3): 207-214.
[86] ROTH W, GIURGIUTIU V. Structural health monitoring of an adhesive disbond through electromechanical impedance spectroscopy[J]. International Journal of Adhesion and Adhesives, 2017, 73: 109-117. DOI: 10.1016/j.ijadhadh.2016.11.008
[87] 王群, 焦竞仪, 王端志, 等. 结构健康监测技术在航天运载器结构中的应用探索[J]. 宇航计测技术, 2018, 38(2): 77-81. DOI: 10.12060/j.issn.1000-7202.2018.02.16 WANG Qun, JIAO Jingyi, WANG Duanzhi, et al. Application of structural health monitoring technology in the structure of space launch vehicle[J]. Astronautical Metrology and Measurement Technology, 2018, 38(2): 77-81(in Chinese). DOI: 10.12060/j.issn.1000-7202.2018.02.16
[88] 李钰, 李晨, 王常龙, 等. 面向航天器结构健康状态监测的数据压缩感知算法研究[J]. 工程数学学报, 2022, 39(1): 37-49. DOI: 10.3969/j.issn.1005-3085.2022.01.003 LI Yu, LI Chen, WANG Changlong, et al. Research on data compression sensing algorithm for spacecraft structural health monitoring[J]. Journal of Engineering Mathematics, 2022, 39(1): 37-49(in Chinese). DOI: 10.3969/j.issn.1005-3085.2022.01.003
[89] MCKENZIE I, IBRAHIM S, HADDAD E, et al. Fiber optic sensing in spacecraft engineering: An historical perspective from the European space agency[J]. Frontiers in Physics, 2021, 9: 719441. DOI: 10.3389/fphy.2021.719441
[90] 杜飞, 徐超, 鱼则行. 可重复使用运载器结构健康监测技术研究进展[J]. 宇航学报, 2019, 40(10): 1177-1186. DOI: 10.3873/j.issn.1000-1328.2019.10.008 DU Fei, XU Chao, YU Zexing. Research progress of structural health monitoring technology for reusable launch vehicles[J]. Journal of Astronautics, 2019, 40(10): 1177-1186(in Chinese). DOI: 10.3873/j.issn.1000-1328.2019.10.008
[91] JOHNSON S B, GORMLEY T J, KESSLER S S, et al. System health management: With aerospace applications[M]. Hoboken: John Wiley & Sons, Ltd, 2011: 139-142.
[92] LASSITER J, ENGBERG R. Piezoelectric sensor evaluation for structural health monitoring of cryogenic structures: 20050207560[R]. Washington: NASA, 2005.
[93] ELLERBROCK P J. DC-XA structural health-monitoring fiber optic-based strain measurement system[C]//Smart Structures and Materials 1997: Industrial and Commercial Applications of Smart Structures Technologies. San Diego: SPIE, 1997, 3044: 207-218.
[94] BAUMANN E W, BECKER R S, ELLERBROCK P J, et al. DC-XA structural health-monitoring system[C]//Smart Structures and Materials 1997: Industrial and Commercial Applications of Smart Structures Technologies. San Diego: SPIE, 1997, 3044: 195-206.
[95] WILKERSON C. Acoustic emission monitoring of the DC-XA composite liquid hydrogen tank during structural testing: NAS 1.15:108520[R]. Washington: NASA, 1996.
[96] LETCHWORTH G. X-33 reusable launch vehicle demonstrator, spaceport and range: KSC-2011-232R[C]//AIAA Space 2011 Conference & Exposition. Long Beach: AIAA, 2011: 7314.
[97] SCHWEIKHARD K A, RICHARDS W L, THEISEN J, et al. Flight demonstration of X-33 vehicle health management system components on the F/A-18 systems research aircraft[C]//19th Digital Avionics Systems Conference. Edwards: NASA, 2001: 1-11.
[98] UDD E. Structural health monitoring using FBGs for aerospace and composite manufacturing[C]//Optical Fiber Sensors. Cancun: Optica Publishing Group, 2006: MF2.
[99] WERLINK R J, PENA F. NASA prototype all composite tank cryogenic pressure tests to failure with structural health monitoring[C]//International Workshop on Structural Health Monitoring 2015. Stanford: NASA, 2015: 1-11.
[100] MIZUTANI T, TAKEDA N, TAKEYA H. On-board strain measurement of a cryogenic composite tank mounted on a reusable rocket using FBG sensors[J]. Structural Health Monitoring, 2006, 5(3): 205-214. DOI: 10.1177/1475921706058016
[101] LIN L, WANG X, YANG B, et al. Condition monitoring of composite overwrap pressure vessels based on buckypaper sensor and MXene sensor[J]. Composites Communications, 2021, 25: 100699. DOI: 10.1016/j.coco.2021.100699
[102] 尹晚. 低温复合材料贮箱结构健康监测方法[D]. 大连: 大连理工大学, 2016. YIN Wan. Structural health monitoring method of cryogenic composite tank[D]. Dalian: Dalian University of Technology, 2016(in Chinese).
[103] LI Z, GAO Y, WANG Y, et al. Failure mechanisms and acoustic emission pattern recognition of all-CFRP cylindrical honeycomb sandwich shell under three-point bending[J]. Composites Science and Technology, 2023, 237: 110003. DOI: 10.1016/j.compscitech.2023.110003
[104] 王奕首, 王明华, 刘德博, 等. 声发射在复合材料贮箱上的应用研究进展[J]. 仪器仪表学报, 2022, 43(4): 1-17. WANG Yishou, WANG Minghua, LIU Debo, et al. Research progress of acoustic emission application in composite tank[J]. Chinese Journal of Scientific Instrument, 2022, 43(4): 1-17(in Chinese).
[105] YANG J, CHANG F K, DERRISO M M. Design of a hierarchical health monitoring system for detection of multilevel damage in bolted thermal protection panels: a preliminary study[J]. Structural Health Monitoring, 2003, 2(2): 115-122. DOI: 10.1177/1475921703002002003
[106] DERRISO M, BRAISTED W, ROSENSTENGEL J, et al. The structural health monitoring of a mechanically attached thermal protection system[J]. JOM, 2004, 56: 36-39.
[107] GRISSO B L, INMAN D J. Impedance-based structural health monitoring of thermal protection systems[C]//Nondestructive Evaluation and Health Monitoring of Aerospace Materials, Composites, and Civil Infrastructure V. San Diego: SPIE, 2006, 6176: 155-162.
[108] KUNDU T, DAS S, JATA K V. Health monitoring of a thermal protection system using Lamb waves[J]. Structural Health Monitoring, 2009, 8(1): 29-45. DOI: 10.1177/1475921708090558
[109] HOSCHKE N, PRICE D C, SCOTT D A, et al. Structural health monitoring of space vehicle thermal protection systems[J]. Key Engineering Materials, 2013, 558: 268-280. DOI: 10.4028/www.scientific.net/KEM.558.268
[110] QIAN H, ZHANG C, QIU J, et al. Research of effects of temperature change and thermal cycles on lamb waves in the thermal protection structure[C]//2022 Global Reliability and Prognostics and Health Management (PHM-Yantai). Yantai: IEEE, 2022: 1-4.
[111] 郑辉, 邱雷, 袁慎芳, 等. C/C热防护结构高温气流损伤导波监测实验方法[J]. 航空学报, 2022, 43(8): 428-440. ZHENG Hui, QIU Lei, YUAN Shenfang et al. Experimental method for guided wave monitoring of high temperature airflow damage in C/C thermal protection structures[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 428-440(in Chinese).
[112] PARIS H G. Assessment of impact damage of composite rocket motor cases: NASA-CR-195143[R]. Atlanta: NASA, 1994.
[113] NAKAJIMA T, SATO E, TSUDA H, et al. Development of simultaneous measurement system for strain and AE using FBG sensors for structural health monitoring of solid rocket motor composite chamber[J]. Journal of Solid Mechanics and Materials Engineering, 2013, 7(2): 324-339. DOI: 10.1299/jmmp.7.324
[114] SRIVASTAVA L, KRISHNANAND L, NATH N K, et al. Online structural integrity monitoring of high-performance composite rocket motor casing[J]. Materials Today: Proceedings, 2022, 56: 1001-1009. DOI: 10.1016/j.matpr.2022.03.230
[115] ZHANG Y, FAN L, ZHANG Y. Interface debonding monitoring of solid rocket motor based on femtosecond grating array[J]. Optics Express, 2023, 31(8): 12367-12383. DOI: 10.1364/OE.486820
[116] CHANG X, HE X, HU J, et al. Experimental research on embedded fiber Bragg grating sensors network for solid rocket motors health monitor[C]//2008 First International Conference on Intelligent Networks and Intelligent Systems. Wuhan: IEEE, 2008: 170-173.
[117] LI W, LI Y, ZHANG C. Application of optical fiber sensor in strain monitoring of solid rocket motor shell[C]//Advanced Optical Manufacturing Technologies and Applications 2022; and 2nd International Forum of Young Scientists on Advanced Optical Manufacturing (AOMTA and YSAOM 2022). Changchun: SPIE, 2023, 12507: 485-493.
[118] YAP K C. Structural health monitoring analysis for the orbiter wing leading edge[C]//Joint JANNAF Conference Space Vehicle and Propulsion Systems Wireless Sensors Workshop. Orlando: NASA, 2010: 1-20.
[119] REYNOLDS W D, DOYLE D, ARRITT B. Active loose bolt detection in a complex satellite structure[C]//Health Monitoring of Structural and Biological Systems 2010. San Diego: SPIE, 2010, 7650: 117-130.
[120] TOTARO G, DE NICOLA F, SPENA P, et al. CFRP conical grid space structure with embedded fiber optics: Design, manufacturing and test[J]. Aerospace, 2023, 11(1): 41. DOI: 10.3390/aerospace11010041
[121] 王晓宇, 张超, 孙维, 等. 航天器密封舱加筋壁板碎片撞击监测技术研究[J]. 实验流体力学, 2014, 28(4): 70-77. DOI: 10.11729/syltlx2014pz20 WANG Xiaoyu, ZHANG Chao, SUN Wei, et al. Study on debris impact monitoring technology of stiffened panel in spacecraft sealed cabin[J]. Experimental Fluid Dynamics, 2014, 28(4): 70-77(in Chinese). DOI: 10.11729/syltlx2014pz20
[122] 陈健, 孟义兴, 袁慎芳, 等. 融合导波监测的搭接结构裂纹扩展寿命孪生预测[J/OL]. 机械工程学报, 2023: 1-9[2023-10-09]. 网址: kns.cnki.net/kcms/detail/11.2187.TH.20230628.1514.076.html. CHEN Jian, MENG Yixing, YUAN Shenfang, et al. Prediction of crack propagation life twinned by fusion guided wave monitoring in lap structures[J/OL]. Chinese Journal of Mechanical Engineering, 2023: 1-9[2023-10-09]. Website: kns.cnki.net/kcms/detail/11.2187.TH.20230628.1514.076.html(in Chinese).
[123] GHAREHBAGHI V R, NOROOZINEJAD FARSANGI E, NOORI M, et al. A critical review on structural health monitoring: Definitions, methods, and perspectives[J]. Archives of Computational Methods in Engineering, 2022, 29(4): 1-27.
[124] NGUYEN K D, CHAN T H T, THAMBIRATNAM D P, et al. Damage identification in a complex truss structure using modal characteristics correlation method and sensitivity-weighted search space[J]. Structural Health Monitoring, 2019, 18(1): 49-65. DOI: 10.1177/1475921718809471
[125] JAMALI S, CHAN T H T, NGUYEN A, et al. Reliability-based load-carrying capacity assessment of bridges using structural health monitoring and nonlinear analysis[J]. Structural Health Monitoring, 2019, 18(1): 20-34. DOI: 10.1177/1475921718808462
[126] GHAREHBAGHI V R, NGUYEN A, FARSANGI E N, et al. Supervised damage and deterioration detection in building structures using an enhanced autoregressive time-series approach[J]. Journal of Building Engineering, 2020, 30: 101292. DOI: 10.1016/j.jobe.2020.101292
[127] CHEN F C, JAHANSHAHI M R. ARF-Crack: Rotation invariant deep fully convolutional network for pixel-level crack detection[J]. Machine Vision and Applications, 2020, 31(6): 47. DOI: 10.1007/s00138-020-01098-x
[128] YU Y, NGUYEN T N, LI J, et al. Predicting elastic modulus degradation of alkali silica reaction affected concrete using soft computing techniques: A comparative study[J]. Construction and Building Materials, 2021, 274: 122024. DOI: 10.1016/j.conbuildmat.2020.122024
[129] 拓宏亮. 先进复合材料损伤分析方法及应用研究[D]. 西安: 西北工业大学, 2019. TUO Hongliang. Advanced damage analysis method and application of composite materials[D]. Xi'an: Northwest University of Technology, 2019(in Chinese).
[130] FOTOUHI M, SAEEDIFAR M, SADEGHI S, et al. Investigation of the damage mechanisms for mode I delamination growth in foam core sandwich composites using acoustic emission[J]. Structural Health Monitoring, 2015, 14(3): 265-280. DOI: 10.1177/1475921714568403
[131] PASHMFOROUSH F, FOTOUHI M, AHMADI M. Acoustic emission-based damage classification of glass/polyester composites using harmony search k-means algorithm[J]. Journal of Reinforced Plastics and Composites, 2012, 31(10): 671-680. DOI: 10.1177/0731684412442257
[132] FOTOUHI M, SADEGHI S, JALALVAND M, et al. Analysis of the damage mechanisms in mixed-mode delamination of laminated composites using acoustic emission data clustering[J]. Journal of Thermoplastic Composite Materials, 2017, 30(3): 318-340. DOI: 10.1177/0892705715598362
[133] 杨红娟, 杨正岩, 杨雷, 等. 碳纤维复合材料损伤的超声检测与成像方法研究进展[J]. 复合材料学报, 2023, 40(8): 4295-4317. YANG Hongjuan, YANG Zhengyan, YANG Lei, et al. Research progress of ultrasonic detection and imaging methods for damage of carbon fiber composites[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4295-4317(in Chinese).
[134] 刘哲军, 陈博, 金珂, 等. 航天复合材料智能健康监测技术研究进展[J]. 宇航材料工艺, 2022, 552(2): 109-115. DOI: 10.12044/j.issn.1007-2330.2022.02.010 LIU Zhejun, CHEN Bo, JIN Ke, et al. Research progress of intelligent health monitoring technology for aerospace composites[J]. Aerospace Materials Technology, 2022, 552(2): 109-115(in Chinese). DOI: 10.12044/j.issn.1007-2330.2022.02.010
-
目的
随着飞行器中复合材料的占比逐渐增加,对于飞行器结构的安全性的要求也日益严苛。由于复合材料结构的损伤具有隐蔽性与复杂性,监测飞行器复合材料结构的响应、收集状态信息并判断损伤情况及剩余寿命对保证飞行器结构安全运行具有重要意义。本文以航天飞行器复合材料结构为研究对象,系统介绍了目前在复合材料结构中常见的结构健康监测技术,列举了各种方法的基本原理、特点以及应用场景,此外还对结构健康监测技术在航天飞行器复合材料典型结构中的应用以及典型评估方法进行了综述,并且展望了航天飞行器复合材料结构健康监测技术的未来研究方向。
结果本文系统综述了结构健康监测技术及其在航天复合材料结构中的应用进展:(1)首先从技术的角度介绍了几种常用在复合材料结构中的典型结构健康监测技术:光纤传感监测技术、基于超声导波的监测技术、声发射监测技术以及机电阻抗监测技术。分别剖析了这几种典型结构健康监测技术的基本工作原理,并且对其典型表现形式进行了分类以及描述,随后结合典型应用与研究案例,对几种典型结构健康监测技术的研究与应用情况以及发展趋势进行了详细的阐述:目前国外在结构健康监测技术的研究上起步较早,技术相对与成熟,针对航空航天等极端工况下的应用研究较为全面;国内起步较晚,然而发展迅速,在基础研究以及民生应用方面较为成熟且全面,而在航空航天等极端环境下的研究规模较小,应用经验尚待丰富。(2)随后从结构的角度,列举了几种航天飞行器中的典型复合材料结构:燃料贮箱结构、热防护结构、发动机结构以及机翼前缘结构等其他结构,并且通过列举与总结结构健康监测技术在典型航天复合材料结构中的应用与研究案例对目前航天复合材料结构健康监测技术的发展情况以及后续趋势进行了系统的分析与总结。结果表明,目前针对航天复合材料结构健康监测技术的应用及系统布置多集中于燃料贮箱结构、发动机结构等敏感性较高的结构,由于这些结构的工作环境较其他部位更加恶劣,目前针对航天复合材料结构健康监测技术的研究多集中于系统元件的可靠性,如传感器的环境补偿、数据传输的完整性等等(3)最后对目前航天复合材料结构健康监测技术中的典型评估方法如基于响应的方法、基于可靠性的方法、 特征提取方法、计算机视觉以及机器学习等进行了分析,列举了部分研究与应用案例对结构健康监测技术评估方法进行了总结,结果表明,目前对于评估方法的研究多集中于信号收集精度、数据处理算法的效率以及数据储存方式等方面,结合力学原理并且着重于判断复合材料损伤模式、分析损伤成因以及损伤演化进程的结构健康监测技术目前研究得并不全面,针对该方面的技术研究将成为后续发展的一个重点。
结论(1)目前应用于航天结构的结构健康监测技术大多数来源于航空结构,针对航天结构工作环境特有的结构健康监测技术需要进行研究,例如针对航天极端环境下的传感器结构相关研究。(2)随着结构健康监测技术所应用的范围增大,结构健康监测系统所采集的数据量日渐庞大繁杂,需要更新数据处理技术从而能够在海量的数据中取得有效的特征信息以实现对结构的更加精确的监控。(3)随着针对结构健康监测系统各部分的研究更加完善,关于结构健康监测技术的系统集成技术亟待深入研究,从而实现对航天复合材料结构的全方位的监测与管理。(4)航天复合材料结构的制备方法多采用一体成型,将结构健康监测技术与航天结构设计、制备相结合而成的融合技术有利于实现结构与监测的一体化与协同化。(5)结构健康监测技术的核心始终是损伤识别以及结构剩余性能、寿命的分析评估,因此结合了力学原理的结构健康监测技术评估方法更有利于可重复使用航天结构、航天结构的视情维修以及航天器自修复结构的发展。