留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

助熔剂对可陶瓷化阻燃室温硫化硅橡胶泡沫性能的影响

商珂 林贵德 姜慧婧 金星 赵璧 王俊胜

商珂, 林贵德, 姜慧婧, 等. 助熔剂对可陶瓷化阻燃室温硫化硅橡胶泡沫性能的影响[J]. 复合材料学报, 2023, 40(7): 4057-4068
引用本文: 商珂, 林贵德, 姜慧婧, 等. 助熔剂对可陶瓷化阻燃室温硫化硅橡胶泡沫性能的影响[J]. 复合材料学报, 2023, 40(7): 4057-4068
SHANG Ke, LIN Guide, JIANG Huijing, JIN Xing, ZHAO Bi, WANG Junsheng. Effect of flux agents on properties of ceramifiable flame retardant room temperature vulcanized silicone rubber foam[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4057-4068.
Citation: SHANG Ke, LIN Guide, JIANG Huijing, JIN Xing, ZHAO Bi, WANG Junsheng. Effect of flux agents on properties of ceramifiable flame retardant room temperature vulcanized silicone rubber foam[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4057-4068.

助熔剂对可陶瓷化阻燃室温硫化硅橡胶泡沫性能的影响

基金项目: 国家重点研发计划(2020 YFB0311301,2020 YFB0311300);应急管理部天津消防研究所基础科研业务费(2022 SJ19)
详细信息
    通讯作者:

    王俊胜,博士,副研究员,研究方向为防火阻燃材料和消防员个人防护装备 E-mail: wangjunsheng@tfri.com.cn

  • 中图分类号: TB332

Effect of flux agents on properties of ceramifiable flame retardant room temperature vulcanized silicone rubber foam

Funds: China National Key R&D Program (No.2020 YFB0311301, No.2020 YFB0311300); Basic Scientific Research Expenses of Tianjin Fire Science and Technology Research Institute of MEM (No. 2022 SJ19)
  • 摘要: 为提升室温硫化硅橡胶泡沫的阻燃性能和耐火性能,本文以不同熔点玻璃粉和硼酸锌为助熔剂,云母粉为耐火填料,制备可陶瓷化阻燃室温硫化硅橡胶泡沫,并研究了不同无机填料种类和配比对硅橡胶泡沫微观形貌、热稳定性、阻燃性能和燃烧行为的影响及不同温度烧蚀下硅橡胶泡沫的陶瓷化行为。结果表明,玻璃粉的引入影响了硅橡胶泡沫的发泡过程,形成了孔径较大的泡沫结构,不利于硅橡胶泡沫阻燃性能、热稳定性、火安全性的提升,但在烧蚀实验中,其能够显著降低硅橡胶泡沫的陶瓷化温度;硼酸锌的引入能够显著提升硅橡胶泡沫的阻燃性能、高温区热稳定性和火安全性,并且硼酸锌与云母粉展现出较好的协同阻燃作用,硅橡胶泡沫的LOI最高达到33.2%,并通过垂直燃烧V-0级,热重分析测试中900℃时的残炭含量最高可达75.9%,硅橡胶泡沫的热释放和烟释放以及烧蚀实验后的质量损失率均得到明显降低,同时,硼酸锌还有助于形成陶瓷状残炭。

     

  • 图  1  可陶瓷化阻燃室温硫化硅橡胶泡沫的SEM图像

    Figure  1.  SEM images of the ceramifiable flame retardant RTV silicone rubber foam

    图  2  可陶瓷化阻燃室温硫化硅橡胶泡沫在氮气氛下的TG(a)和DTG(b)曲线

    Figure  2.  TG (a) and DTG (b) curves of the ceramifiable flame retardant RTV silicone rubber foam under N2 atmosphere

    图  3  可陶瓷化阻燃室温硫化硅橡胶泡沫在空气氛下的TG(a)和DTG(b)曲线

    Figure  3.  TG (a) and DTG (b) curves of the ceramifiable flame retardant RTV silicone rubber foam under air atmosphere

    图  4  可陶瓷化阻燃室温硫化硅橡胶泡沫的HRR(a)、THR(b)、RSR(c)和TSP(d)曲线

    Figure  4.  HRR (a), THR (b), RSR (c) and TSP (d) curves of the ceramifiable flame retardant RTV silicone rubber foam

    图  5  可陶瓷化阻燃室温硫化硅橡胶泡沫锥形量热测试后残炭的数码照片

    Figure  5.  Digital photographs of carbon residues for the ceramifiable flame retardant RTV silicone rubber foam after cone calorimeter test

    图  6  不同烧蚀温度下可陶瓷化阻燃室温硫化硅橡胶泡沫的SEM图像

    Figure  6.  SEM images of the ceramifiable flame retardant RTV silicone rubber under different ablation temperatures

    图  7  800℃烧蚀后可陶瓷化阻燃室温硫化硅橡胶泡沫的SEM图像

    Figure  7.  SEM images of the ceramifiable flame retardant RTV silicone rubber after ablation at 800oC

    表  1  可陶瓷化阻燃室温硫化硅橡胶泡沫的配方及LOI、UL-94测试结果

    Table  1.   Formulation, LOI and UL-94 test results of the ceramifiable flame retardant RTV silicone rubber foam

    SampleMass ratioMelting point of GP/oCLOI
    /wt%
    UL-94
    SRF/wt%GP/wt%ZB/wt%MP/wt%
    SF10000023.4NR
    SF/MP3070003031.8V-0
    SF/GP40010MP20701002040023.4NR
    SF/GP40015MP15701501540024.6NR
    SF/GP40020MP10702001040023.4NR
    SF/GP50020MP10702001050024.0NR
    SF/GP65020MP10702001065022.8NR
    SF/GP4003070300040026.4NR
    SF/ZB10MP20700102033.2V-0
    SF/ZB15MP15700151531.8V-0
    SF/ZB20MP10700201031.0V-0
    SF/ZB3070030031.6V-0
    下载: 导出CSV

    表  2  可陶瓷化阻燃室温硫化硅橡胶泡沫氮气氛下的热重测试具体数据

    Table  2.   TGA parameters of the ceramifiable flame retardant RTV silicone rubber foam under N2 atmosphere

    SampleTonset /℃Tmax /℃dW/dT/
    (%·min−1)
    Residue /%
    SF442.0576.06.3640.1
    SF/MP30451.7510.82.2473.0
    SF/GP40010MP20434.9566.26.7552.8
    SF/GP40015MP15441.4559.410.2047.5
    SF/GP40020MP10425.2532.87.4450.4
    SF/GP50020MP10449.7557.310.4143.7
    SF/GP65020MP10415.8482.211.1447.7
    SF/GP40030451.6518.520.7136.4
    SF/ZB10MP20406.2467.92.7462.9
    SF/ZB15MP15407.7422.11.3975.9
    SF/ZB20MP10419.1463.61.2875.0
    SF/ZB30418.4421.81.1474.1
    Notes:Tonset, Tmax and dW/dT are the onset thermal decomposition temperature, the maximum thermal decomposition temperature and the thermal decomposition rate at the Tmax.
    下载: 导出CSV

    表  3  可陶瓷化阻燃室温硫化硅橡胶泡沫空气氛下的热重测试具体数据

    Table  3.   TGA parameters of the ceramifiable flame retardant RTV silicone rubber foam under air atmosphere

    SampleTonset/℃Tmax/℃dW/dT/
    (%·min−1)
    Residue/%
    SF354.4362.09.8156.9
    SF/MP30378.5380.75.6576.0
    SF/GP40010MP20377.0509.311.9152.2
    SF/GP40015MP15375.3507.514.3946.0
    SF/GP40020MP10373.7498.915.6442.1
    SF/GP50020MP10363.3367.26.6564.1
    SF/GP65020MP10376.5452.817.0342.4
    SF/GP40030369.6495.816.6040.6
    SF/ZB10MP20374.4372.34.9180.2
    SF/ZB15MP15379.8551.93.9173.0
    SF/ZB20MP10376.4370.53.6979.5
    SF/ZB30367.7362.13.8281.2
    下载: 导出CSV

    表  4  可陶瓷化阻燃室温硫化硅橡胶泡沫的锥形量热测试主要数据

    Table  4.   Burning parameters of the ceramifiable flame retardant RTV silicone rubber foam in cone calorimeter test

    SampleTTI
    /s
    PHRR
    /(kW·m−2)
    THR
    /(MJ·m−2)
    TTPHRR
    /s
    TSP
    /m−2
    Residue
    /%
    SF7145.040.017018.352.6
    SF/MP301376.623.0301.779.6
    SF/GP40010MP2015117.935.73516.768.3
    SF/GP40015MP1523133.547.74517.665.4
    SF/GP40020MP1024130.742.04517.060.2
    SF/GP50020MP101498.636.34011.869.2
    SF/GP65020MP1050167.696.07049.571.4
    SF/GP4003033154.065.65026.966.2
    SF/ZB10MP201684.525.8353.481.8
    SF/ZB15MP151673.424.5353.275.7
    SF/ZB20MP101072.229.1304.881.6
    SF/ZB301480.130.7357.180.5
    Notes:TTI, PHRR, THR, TTPHRR and TSP are time to ignition, peak of heat release rate, total heat release, time to PHRR and total smoke production.
    下载: 导出CSV

    表  5  可陶瓷化阻燃室温硫化硅橡胶泡沫烧蚀后质量损失率

    Table  5.   Mass loss rate of the ceramifiable flame retardant RTV silicone rubber foam after ablation

    SampleMass loss/%
    600oC800oC1000oC
    SF89.1675.7180.33
    SF/MP3045.5620.4517.65
    SF/GP40010MP2066.7367.1867.52
    SF/GP40015MP1566.0265.7264.43
    SF/GP40020MP1062.6069.5262.12
    SF/GP50020MP1067.4966.3261.66
    SF/GP65020MP1059.7347.8551.40
    SF/GP4003064.3054.5250.00
    SF/ZB10MP2053.4532.7825.61
    SF/ZB15MP1552.0748.1926.45
    SF/ZB20MP1035.5631.6330.00
    SF/ZB3059.3935.4843.35
    下载: 导出CSV
  • [1] DENG S B, LIAO W, YANG J C, et al. Flame-retardant and smoke-suppressed silicone foams with chitosan-based nanocoatings[J]. Industrial & Engineering Chemistry Research,2016,55(27):7239-7248.
    [2] ABBAD A, JABOVISTE K, OUISSE M, et al. Acoustic performances of silicone foams for sound absorption[J]. Journal of Cellular Plastics,2018,54(3):651-670. doi: 10.1177/0021955X17732305
    [3] ROSTAMI-TAPEH-ESMAEIL E, VAHIDIFAR A, ESMIZADEH E, et al. Chemistry, processing, properties, and applications of rubber foams[J]. Polymers,2021,13(10):1565. doi: 10.3390/polym13101565
    [4] LUO W Q, LI Z M, LUO H H, et al. Preparation of room temperature vulcanized silicone rubber foam with excellent flame retardancy[J]. Scanning,2021:9976005.
    [5] DENG J, KANG F R, XIAO Y, et al. Effects of platinum compounds/superfine aluminum hydroxide/ultrafine calcium carbonate on the flame retardation and smoke suppression of silicone foams[J]. Journal of Applied Polymer Science,2020,137(1):47679. doi: 10.1002/app.47679
    [6] KANG F R, WANG C P, DENG J, et al. Effects of talc/hollow glass beads on the flame retardancy of silicone foams[J]. Materials Research Express,2019,6(9):095318. doi: 10.1088/2053-1591/ab3084
    [7] PANG Q T, KANG F R, DENG J, et al. Flame retardancy effects between expandable graphite and halloysite nanotubes in silicone rubber foam[J]. RSC Advances,2021,11(23):13821-13831. doi: 10.1039/D1RA01409A
    [8] CHEN X L, SONG W K, LIU J B, et al. Synergistic flame-retardant effects between aluminum hypophosphite and expandable graphite in silicone rubber composites[J]. Journal of Thermal Analysis and Calorimetry,2015,120(3):1819-1826. doi: 10.1007/s10973-015-4428-0
    [9] KANG F R, WANG C P, DENG J, et al. Flame retardancy and smoke suppression of silicone foams with microcapsulated aluminum hypophosphite and zinc borate[J]. Polymers for Advanced Technologies,2020,31(4):654-664. doi: 10.1002/pat.4799
    [10] CAO C F, WANG P H, ZHANG J W, et al. One-step and green synthesis of lightweight, mechanically flexible and flame-retardant polydimethylsiloxane foam nanocomposites via surface-assembling ultralow content of graphene derivative[J]. Chemical Engineering Journal,2020,393:124724. doi: 10.1016/j.cej.2020.124724
    [11] PANG Q T, DENG J, KANG F R, et al. Effect of expandable graphite/hexaphenoxycyclotriphosphazene beads on the flame retardancy of silicone rubber foam[J]. Materials Research Express,2020,7(5):055308. doi: 10.1088/2053-1591/ab9250
    [12] KANG F R, DENG J, JIAO D S, et al. Microfluidic fabrication of polysiloxane/dimethyl methylphosphonate flame-retardant microcapsule and its application in silicone foams[J]. Polymers for Advanced Technologies,2019,30(5):1269-1278. doi: 10.1002/pat.4560
    [13] CHRUSCIEL J J, LESNIAK E. Preparation of flexible, self-extinguishing silicone foams[J]. Journal of Applied Polymer Science,2011,119(3):1696-1703. doi: 10.1002/app.32852
    [14] HANU L G, SIMON G P, MANSOURI J, et al. Development of polymer–ceramic composites for improved fire resistance[J]. Journal of Materials Processing Technology,2004,153(1):401-407.
    [15] CAMINO G, LOMAKIN S M, LAZZARI M. Polydimethylsiloxane thermal degradation Part 1. Kinetic aspects[J]. Polymer,2001,42(6):2395-2402. doi: 10.1016/S0032-3861(00)00652-2
    [16] CAMINO G, LOMAKIN S M, LAZZARI M. Thermal polydimethylsiloxane degradation. Part 2. The degradation mechanisms[J]. Polymer,2002,43(7):2011-2015. doi: 10.1016/S0032-3861(01)00785-6
    [17] MANSOURI J, BURFORD R P, CHENG Y B. Formation of strong ceramified ash from silicone-based compositions[J]. Journal of Materials Science,2005,40(21):5741-5749. doi: 10.1007/s10853-005-1427-8
    [18] 孟盼, 王雁冰, 魏冲, 等. 硅藻土/硅橡胶可陶瓷化复合材料的制备及性能[J]. 复合材料学报, 2017, 34(1):53-59. doi: 10.13801/j.cnki.fhclxb.20160411.003

    MENG Pan, WANG Yanbing, WEI Chong, et al. Preparation and properties of ceramifiable diatomite/silicone rubber composites[J]. Acta Materiae Compositae Sinica,2017,34(1):53-59(in Chinese). doi: 10.13801/j.cnki.fhclxb.20160411.003
    [19] 刘良点, 秦岩宋, 九强, 等. 短切聚酰亚胺纤维增强可瓷化三元乙丙橡胶复合材料的制备与性能[J]. 复合材料学报, 2017, 34(12):2800-2809. doi: 10.13801/j.cnki.fhclxb.20170310.003

    LIU Liangdian, QIN Yansong, JIU Qiang, et al. Preparation and properties of ceramifiable ethylene propylene diene monomer rubber composites reinforced with chopped polyimide fibers[J]. Acta Materiae Compositae Sinica,2017,34(12):2800-2809(in Chinese). doi: 10.13801/j.cnki.fhclxb.20170310.003
    [20] LI Y M, DENG C, WANG Y Z. A novel high-temperature-resistant polymeric material for cables and insulated wires via the ceramization of mica-based ceramifiable EVA composites[J]. Composites Science and Technology,2016,132:116-122. doi: 10.1016/j.compscitech.2016.07.007
    [21] TANG K H, YU Y, XU G Q, et al. Preparation of a ceramifiable phenolic foam and its ceramization behavior[J]. Polymers, 14(8): 1591.
    [22] 欧芸, 石敏先, 姚亚琳, 等. 可瓷化PDMS改性聚氨酯泡沫复合材料的制备及其性能研究[J]. 复合材料科学与工程, 2020, 4:96-100+111. doi: 10.3969/j.issn.1003-0999.2020.04.015

    OU Yun, SHI Minxian, YAO Yalin, et al. Preparation and properties of ceramicizable PDMS modified polyurethane foam composites[J]. Composites Science and Engineering,2020,4:96-100+111(in Chinese). doi: 10.3969/j.issn.1003-0999.2020.04.015
    [23] Song J Q, Huang Z X, Qin Y, et al. Ceramifiable and mechanical properties of silicone rubber foam composite with frit and high silica glass fiber[J]. IOP Conference Series-Materials Science and Engineering,2018,423:012168. doi: 10.1088/1757-899X/423/1/012168
    [24] 中国国家标准化管理委员会. 橡胶燃烧性能的测定: GB/T 10707-2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People’s Republic of China. Rubber-Determination of the burning: GB/T 10707-2008 [S]. Beijing: China Stand-ards Press, 2008 (in Chinese).
    [25] International Organization for Standardization. Reaction-to-fire tests-Heat release, smoke production and mass loss rate-Part 1: Heat release rate (cone calorimeter method) and somke production rate (dynamic measurement): ISO 5660-1 [S]. International, 2015.
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  242
  • HTML全文浏览量:  152
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-29
  • 修回日期:  2022-08-24
  • 录用日期:  2022-09-02
  • 网络出版日期:  2022-09-17
  • 刊出日期:  2023-07-15

目录

    /

    返回文章
    返回