Numerical study of the effect of compression-shear load ratio on the failure behavior of CFRP laminated plate
-
摘要: 碳纤维增强(Carbon fiber reinforced polymer, CFRP)复合材料层合板是飞行器中的常用结构。面内压缩和剪切载荷下,层合板结构失效同时受屈曲和材料损伤影响,失效形式复杂多变。本文建立了考虑就地效应、横向应力对剪切强度的影响以及剪切非线性的渐进损伤失效分析方法,开展压剪试验对分析方法进行了验证,并在此基础上研究了不同压缩和剪切载荷比下CFRP层合板的失效行为。研究表明,压剪载荷比低时,层合板先发生材料的初始损伤,然后达到最大载荷;压剪载荷比高时,直接发生屈曲,同时达到最大载荷,不发生材料损伤;载荷比处于两者之间时,先发生材料损伤,然后屈曲并且达到最大载荷。此外,压剪载荷比的变化还会对层合板的压缩承载能力、剪切承载能力、以及结构达到最大载荷时的损伤扩展程度产生影响。Abstract: Carbon fiber reinforced polymer (CFRP) composite laminated plates are commonly used structures in the aircraft. Under in-plane compression-shear loads, the failure of laminated plates is affected by both buckling and material damage, and the failure forms are complex and variable. In this paper, a progressive damage analysis method was established considering the in-situ effect, the influence of transverse stress on shear strength, and the shear nonlinearity of the material. The compression-shear test was carried out to validate the proposed method. Based on the validated method, the failure behavior of the CFRP plates with different compression-shear load ratios was investigated based on the finite element model. It is shown that when the compression-shear loads ratio is low, the initial material damage of the plate occurs first, and then the maximum load is reached. When the load ratio is high, buckling occurs directly, and at the same time, the maximum load is reached without material damage. When the load ratio is in between, material damage occurs first, then buckling occurs and maximum load is reached. In addition, the change of compression-shear load ratio will also have an effect on the compression and shear load bearing capacity of the plate, and the damage extension degree of the plate when the maximum load is reached.
-
表 1 USN15000/EPW材料参数
Table 1. Properties of the USN15000/EPW material
E1/GPa E2/GPa v12 G12/GPa 129.96 9.62 0.35 4.99 XT/MPa XC/MPa YT/MPa YC/MPa S12/MPa 1564 997 44 180 77 GIC/(N/mm) GIIC/(N/mm) cf Em/GPa Gm/GPa 129.96 9.62 70% 3.52 1.2 Notes:E1, E2, v12, and G12 are the stiffness properties of the material; XT, XC, YT, YC, and S12 are the strength properties of the material; GIC and GIIC are the fracture toughness of the material; cf is the fiber volume fraction; Em and Gm are the stiffness properties of the matrix. 表 2 数值模拟方法验证与对比
Table 2. Validation and comparison of two numerical simulation methods
Method Buckling Initial damage Max load Load/N Err/% Load/N Err/% Load/N Err/% Test 402 − 1509 − 1627 − Previous 425 5.72 761 −49.57 1792 10.14 Present 424 5.47 1653 9.54 1816 11.62 表 3 各工况下层合板失效扩展情况和载荷比
Table 3. Damage initiation and extension each loading conditions
η Damage type Initial damage load/
Maximum loadInitial damage Ultimate failure 0 FC, FM FC, FM 0.994 0.1 FC, FM FC, MC, FM 0.903 0.5 FC, FM FC, MC, FM, IT 0.846 1 FC, FM FC, MC, FM 0.990 2 Undamaged Undamaged − 10 Undamaged Undamaged − ∞ Undamaged Undamaged − Notes: η is the ratio of the compression load to the shear load. -
[1] TRZEPIECIŃSKI T, NAJM S M, SBAYTI M, et al. New Advances and future possibilities in forming technology of hybrid metal–polymer composites used in aerospace applications[J]. Journal of Composites Science, 2021, 5(8): 217. doi: 10.3390/jcs5080217 [2] 马志阳, 高丽敏, 徐吉峰. 复合材料在大飞机主承力结构上的应用与发展趋势[J]. 航空制造技术, 2021, 64(11): 24-30.MA Zhiyang, GAO Limin, XU Jifeng. Application and development for composite primary structure in large aircraft[J]. Aeronautical Manufacturing Technology, 2021, 64(11): 24-30(in Chinese). [3] 陈佳. 运载火箭新型支承舱结构设计与分析 [D]. 南京: 南京航空航天大学, 2012.CHEN Jia. Structure design and analysis for advanced payload adapters [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012 (in Chinese). [4] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1): 1-12. doi: 10.3321/j.issn:1000-3851.2007.01.001DU Shanyi. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica, 2007, 24(1): 1-12(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.01.001 [5] 姜晓伟, 汪海, 朱建辉. 基于能量准则的复合材料层合板低速冲击近场动力学模拟[J]. 复合材料学报, 2024, 41(4): 2126-2136.JIANG Xiaowei, WANG Hai, ZHU Jianhui. Peridynamic modeling of composite laminate under low-velocity impact using energy-based criteria[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 2126-2136(in Chinese). [6] 俞鸣明, 朱雪莉, 刘雪强, 等. 低速多次冲击下碳纤维/环氧树脂基复合材料层合板失效机制及剩余强度评估[J]. 复合材料学报, 2023, 40 (09): 5359-5370.YU Mingming, ZHU Xueli, LIU Xueqiang, , et al. Failure mechanism and assessment of residual strength of carbon fiber/epoxy resin matrix composite laminates under multiple impacts at low velocities[J]. Acta Materiae Compositae Sinica, 2023, 40 (09): 5359-5370(in Chinese). [7] 牛春匀, 程小全, 张纪奎. 实用飞机复合材料结构设计与制造 [M]. 北京: 航空工业出版社, 2010: 191-194.NIU Chunyun, CHENG Xiaoquan, ZHANG Jikui. Composite airframe structures [M]. Beijing: Aviation industry press, 2010: 191-194(in Chinese). [8] MANSON S S, HALFORD G R. Multiaxial low-cycle fatigue of type 304 stainless steel[J]. Journal of Engineering Materials and Technology, 1977, 99(3): 283-285. [9] MANSON S S, HALFORD G R. Treatment of multiaxial creep-fatigue by strainrange partitioning [C]// Proceedings of Symposium on Creep Fatigue Interaction. New York: American Society of Mechanical Engineers, 1976: 299-322. [10] KLEIN H. General about buckling tests with thin-walled shells, 89-13 [R]. Cologne: DLR-Mitt, 1989. [11] LIGHTFOOT M, AMBUR D. Open architecture data system for NASA Langley Combined Loads Test System [C]// Proceedings of 36th AIAA Aerospace Sciences Meeting and Exhibit. Reno: American Institute of Aeronautics and Astronautics, 1998: 0345. [12] OESMANN W, SCHLERET J C, KOTZKE A, et al. Testing apparatus for compression and shear testing of a test component such as a curved aircraft component: US Patent, US7155982B2 [P]. 2007-01-02. [13] LINDE P. Virtual Testing of stiffened composite panels at airbus[J]. International Journal of Structural Stability and Dynamics, 2010, 10(4): 589-600. doi: 10.1142/S0219455410003634 [14] PETERS R W. Buckling tests of flat rectangular plates under combined shear and longitudinal compression, NACA-TN-1750 [R]. Washington: NACA, 1948: 1-2. [15] SERRA J, PIERRé J E, PASSIEUX J C, et al. Validation and modeling of aeronautical composite structures subjected to combined loadings: The VERTEX project. Part 1: Experimental setup, FE-DIC instrumentation and procedures[J]. Composite Structures, 2017, 179: 224-244. doi: 10.1016/j.compstruct.2017.07.080 [16] CASTANIE B, BARRAU J J, JAOUEN J P. Theoretical and experimental analysis of asymmetric sandwich structures[J]. Composite Structures, 2002, 55(3): 295-306. doi: 10.1016/S0263-8223(01)00156-8 [17] CASTANIE B, BARRAU J J, JAOUEN J P, et al. Combined shear/compression structural testing of asymmetric sandwich structures[J]. Experimental Mechanics, 2004, 44(5): 461-472. doi: 10.1007/BF02427957 [18] 马胜强. 复合材料壁板刚度匹配关系分析与试验研究 [D]. 哈尔滨: 哈尔滨工业大学, 2011.MA Shengqiang. Stiffness matching relations analysis and experimental study of composite panels [D]. Harbin: Harbin Institute of Technology, 2011(in Chinese). [19] 姜海洋. 基于实测应变数据的复合材料加筋板工作行为分析 [D]. 哈尔滨: 哈尔滨工业大学, 2012.JIANG Haiyang. Work behavior analysis of stiffened composite panels based on measured strain data [D]. Harbin: Harbin Institute of Technology, 2012(in Chinese). [20] 刘鹏洋. 复合材料加筋层合板屈曲分析理论及数值实现 [D]. 大连: 大连理工大学, 2020.LIU Pengyang. Analytical buckling analysis and numerical simulation of stiffened composite laminated plate [D]. Dalian: Dalian University of Technology, 2020(in Chinese). [21] CHEN Q, QIAO P. Post-buckling analysis of composite plates under combined compression and shear loading using finite strip method[J]. Finite Elements in Analysis and Design, 2014, 83: 33-42. doi: 10.1016/j.finel.2014.01.002 [22] 陈庆远. 复合材料薄壁结构的屈曲和后屈曲分析 [D]. 上海: 上海交通大学, 2015.CHEN qingyuan. Buckling and post-buckling analysis of thin-walled composite structures. Shanghai: Shanghai Jiao Tong University, 2015(in Chinese). [23] 李政, 梁珂. 压剪联合载荷作用下复合材料壁板屈曲及后屈曲性能计算与优化方法研究[J]. 宇航总体技术, 2021, 5(6): 20-26.LI Zheng, LIANG Ke. A novel method for calculation and optimization of buckling and post-buckling performance of composite panels under combined compression and shear loads[J]. Astronautical Systems Engineering Technology, 2021, 5(6): 20-26(in Chinese). [24] PIAN R, ZHANG L, YANG F, et al. The competition between buckling and overstress failure of composite laminated plates in compression and shear loads[J]. Composites Communications, 2023, 43: 101714. doi: 10.1016/j.coco.2023.101714 [25] 骈瑢, 杨帆, 章凌, et al. 压剪载荷下复合材料层合板的失效模式研究[J/OL]. 北京航空航天大学学报. https://doi.org/10.13700/j.bh.1001-5965.2024.0084PIAN Rong, YANG Fan, ZHANG Ling, et al. Failure mode study of composite laminated plates under compression-shear loading [J/OL]. Journal of Beijing University of Aeronautics and Astronautics. https://doi.org/10.13700/j.bh.1001-5965.2024.0084(in Chinese). [26] LESSARD L B. Compression failure in laminated composites containing an open hole [D]. Palo Alto: Stanford University, 1989. [27] SHOKRIEH M M, LESSARD L B. Progressive fatigue damage modeling of composite materials, Part I: Modeling[J]. Journal of Composite Materials, 2000, 34(13): 1056-1080. doi: 10.1177/002199830003401301 [28] 中国国家标准化管理委员会. 定向纤维增强聚合物基复合材料拉伸性能试验方法: GB/T 3354-2014 [S]. 北京: 中国标准出版社, 2014.Standardization Administration of the People’s Republic of China. Test method for tensile properties of orientation fiber reinforced polymer matrix composite materials: GB/T 3354-2014 [S]. Beijing: China Standards Press, 2014(in Chinese). [29] American Society for Testing and Materials. Standard test method for compressive properties of polymer matrix composite materials using a combined loading compression (CLC) test fixture: ASTM D6641/D6641M-16e2 [S]. West Conshohocken: ASTM International, 2016. [30] CAMANHO P P, DAVILA C G, PINHO S T, et al. Prediction of in situ strengths and matrix cracking in composites under transverse tension and in-plane shear[J]. Composites Part A: Applied Science and Manufacturing, 2006, 37(2): 165-176. doi: 10.1016/j.compositesa.2005.04.023 [31] PARVIZI A, GARETT K W, BAILEY J E. Constrained cracking in glass fibre-reinforced epoxy cross-ply laminates[J]. Journal of Materials Science, 1978, 13(1): 195-201. doi: 10.1007/BF00739291 [32] FLAGGS D L, KURAL M H. Experimental determination of the in situ transverse lamina strength in graphite/epoxy laminates[J]. 1982, 16 (2): 103-116. [33] DVORAK G J, LAWS N. Analysis of progressive matrix cracking in composite laminates II. First Ply Failure[J]. 1987, 21 (4): 309-329. [34] 张国凡. 复合材料加筋壁板结构屈曲承载特性研究 [D]. 西安: 西北工业大学, 2018.ZHANG Guofan. Study on buckling behavior of stiffened composite panels [D]. Xi’an: Northwestern Polytechnical University, 2018(in Chinese). [35] PINHO S T, DARVIZEH R, ROBINSON P, et al. Material and structural response of polymer-matrix fibre-reinforced composites[J]. Journal of Composite Materials, 2012, 46(19-20): 2313-2341. doi: 10.1177/0021998312454478 [36] PUCK A, SCHURMANN H. Failure analysis of FRP laminates by means of physically based phenomenological models[J]. Composites Science and Technology, 2002, 62(12): 1633-1662. [37] 李彪, 李亚智, 杨帆. 考虑复合材料层合板就地效应的强度理论[J]. 航空学报, 2014, 35(11): 3025-3036. doi: 10.7527/S1000-6893.2014.0101LI Biao, LI Yazhi, YANG Fan. Theoretical methodology for laminated composite strength including in-situ effect[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(11): 3025-3036(in Chinese). doi: 10.7527/S1000-6893.2014.0101 [38] HAHN H T, TSAI S W. Nonlinear elastic behavior of unidirectional composite laminae[J]. 1973, 7 (1): 102-118. [39] PETIT P H, WADDOUPS M E. A method of predicting the nonlinear behavior of laminated composites[J]. 1969, 3 (1): 2-19. [40] 路怀玉. 层—层角连锁机织复合材料的损伤行为研究 [D]. 哈尔滨: 哈尔滨工业大学, 2018.LU Huaiyu. Damage behaviors investigation of layer-to-layer angle interlock woven composites [D]. Harbin: Harbin Institute of Technology, 2018(in Chinese). [41] ZHANG J, ZHOU L, CHEN Y, et al. A micromechanics-based degradation model for composite progressive damage analysis[J]. Journal of Composite Materials, 2016, 50(16): 2271-2287. [42] SHAN M, ZHAO L, HONG H, et al. A progressive fatigue damage model for composite structures in hygrothermal environments[J]. International Journal of Fatigue, 2018, 111: 299-307. doi: 10.1016/j.ijfatigue.2018.02.019 [43] SHIN E S, PAE K D. Effects of hydrostatic pressure on the torsional shear behavior of graphite/epoxy composites[J]. 1992, 26 (4): 462-485. [44] American Society for Testing and Materials. Standard test method for in-plane shear response of polymer matrix composite materials by tensile test of a ±45° laminate: ASTM D3518/D3518M-18 [S]. West Conshohocken: ASTM International, 2018. [45] 万春华, 段世慧, 吴存利, 等. 初始几何缺陷对加筋结构后屈曲分析的影响[J]. 航空计算技术, 2017, 47(1): 90-93. doi: 10.3969/j.issn.1671-654X.2017.01.023WAN Chunhua, DUAN Shihui, WU Cunli, et al. Influence of initial geometrical imperfection on post-buckling analysis for stiffened structure[J]. Aeronautical Computing Technique, 2017, 47(1): 90-93(in Chinese). doi: 10.3969/j.issn.1671-654X.2017.01.023 [46] LI X, GAO W, LIU W. The Bearing behavior and failure characteristic of CFRP laminate with cutout under shearing load: Part I. Experiments[J]. Composite Structures, 2016, 141: 355-365. doi: 10.1016/j.compstruct.2015.12.069 [47] HERMAN R J. Postbuckling behavior of graphite/epoxy cloth shear panels with 45-flanged lightening holes [D]. Naval Postgraduate School, 1982.
计量
- 文章访问数: 37
- HTML全文浏览量: 23
- 被引次数: 0