Experimental investigations on bonding performance between BFRP bars and low alkalinity sulphoaluminate cement concrete
-
摘要: 为研究玄武岩纤维增强聚合物复合材料(Basalt fiber reinforced polymer,BFRP)筋与低碱度硫铝酸盐水泥混凝土的粘结性能,对共90个粘结试件进行中心拉拔试验,研究了筋材表面形貌、混凝土强度等级等因素对粘结性能的影响。试验结果表明,对筋材表面进行喷砂、缠绕纤维和螺纹处理能显著提高粘结性能,深螺纹环氧树脂BFRP筋与65 MPa低碱度硫铝酸盐水泥混凝土的粘结强度高达39.09 MPa,远大于光滑BFRP筋的13.32 MPa。强度等级对BFRP筋-低碱度硫铝酸盐水泥混凝土粘结试件的粘结强度的影响更为明显,此外BFRP筋与低碱度硫铝酸盐水泥混凝土粘结性能高于普通硅酸盐混凝土。最后,通过CMR模型和mBPE模型对BFRP筋-混凝土粘结试件的粘结滑移(τ−s)曲线进行拟合,发现CMR模型对粘结滑移曲线的上升段拟合效果较好,清晰准确地反映了其粘结-滑移本构关系,为研究BFRP筋增强硫铝酸盐水泥混凝土结构的力学性能提供了关键理论依据。Abstract: In order to study the bonding performance between basalt fiber reinforced polymer (BFRP) bars and low alkalinity sulphoaluminate cement concrete, a total of 90 bonding specimens were tested by central pullout test. The effects of surface morphology of BFRP bars and concrete strength grade on the bonding performance were studied. The experimental results show that sand blasting, fiber winding and ribbed treatments on the surface of BFRP bars can significantly improve the bonding performance, the bond strength between deep ribbed epoxy resin BFRP bar and low alkalinity sulphoaluminate cement concrete with strength grade of 65 MPa is as high as 39.09 MPa, which is much higher than 13.32 MPa of smooth BFRP bar. The effect of strength grade on bond strength of BFRP bar/low alkalinity sulphoaluminate cement concrete is more obvious. In addition, the bonding performance between BFRP bars and low alkalinity sulphoaluminate concrete is higher than that of ordinary Portland concrete. Finally, the CMR and mBPE models were used to fit the bond-slip (τ−s) curve of BFRP bar-concrete bond specimens. It is found that the fitting result of CMR model for the ascending segment of the bond-slip curve is better, which clearly and accurately reflects the bond-slip constitutive relationship between BFRP bar and concrete, and provides a key theoretical basis for investigating performance of BFRP-reinforced sulphoaluminate cement concrete structures.
-
图 11 混凝土强度与BFRP筋/低碱度硫铝酸盐水泥混凝土拉拔试件粘结强度的关系
Figure 11. Relationship between concrete strength and bond strength of BFRP bar/low alkalinity sulphoaluminate cement concrete pullout specimens
τm—Interfacial bond strength of BFRP bars and concrete; fcu—Cube compressive strength corresponding to the bond specimen; R2—Coefficient of determination
表 1 XRF测得的普通硅酸盐水泥和硫铝酸盐水泥化学成分及烧失量
Table 1. Chemical composition of ordinary Portland cement and sulphoaluminate cement by XRF and loss on ignition
Type Chemical composition LOI SiO2 Al2O3 Fe2O3 CaO K2O SO3 TiO2 MgO Na2O P2O5 BaO MnO LSAC 42.5 7.84 17.80 2.22 50.87 0.87 16.23 0.91 2.13 0.28 0.06 − 0.06 3.22 PO 42.5 17.29 4.82 3.91 65.34 1.16 3.19 0.35 3.26 0.17 0.05 0.04 0.08 3.41 Notes: LSAC—Low alkalinity sulphoaluminate cement; PO—Portland cement.Ordinary; 42.5—Cement quantity class; LOI—Loss on ignition. 表 2 混凝土配合比
Table 2. Mix proportion of concrete
Concrete type Cement River sand Gravel
(10-20 mm)Gravel
(5-10 mm)Water Superplasticizer SAC(C30) 386 617 810 347 239 − SAC(C50) 397 635 833 357 179 − SAC(C65) 404 647 849 364 129 8.1 OPC(C30) 386 617 810 347 239 − OPC(C65) 404 647 849 364 129 8.1 Notes: SAC—Low alkalinity sulphoaluminate cement concrete; OPC—Ordinary Portland cement concrete; C30—Compressive strength of concrete is 30 MPa. 表 3 混凝土抗压强度及劈裂抗拉强度
Table 3. Compressive strength and splitting tensile strength of concrete
Concrete type Compressive strength with curing time/MPa Mechanical properties on the day of pullout test (Curing for 34 days) 3 days 7 days 28 days 56 days Compressive strength/MPa Splitting tensile strength/MPa SAC(C30) 24.2 27.7 32.2 34.1 33.7 2.42 SAC(C50) 37.4 45.2 51.3 51.7 53.3 3.71 SAC(C65) 54.8 57.1 65.0 65.4 66.5 4.00 OPC(C30) 21.1 27.5 35.3 40.7 37.0 2.61 OPC(C65) 54.7 57.2 69.3 72.1 71.2 4.25 表 4 玄武岩纤维增强聚合物复合材料(BFRP)筋几何特性
Table 4. Geometric properties of basalt fiber reinforced polymer (BFRP) bars
BFRP bar type Outside diameter
do/mmMean diameter
db/mmDensity/
(g·mm−3)Fiber mass
fraction/wt%Fiber volume fraction/vol% Rib height
rh/mmRib width
rr/mmRib spacing
rs/mmRib angle
α/(°)SR/E 6.20 6.08 2.22 87.69 70.23 0.14 3.29 7.17 23 SC/E 7.25 6.61 2.21 82.23 70.00 − − − − DR/E 6.52 6.21 2.07 85.21 60.33 0.31 4.37 8.03 25 HW/E 7.60 6.51 2.13 80.39 64.46 0.71 2.78 7.04 27 SS/E 5.86 5.83 2.30 87.60 76.20 − − − − DR/V 6.85 6.55 2.10 87.92 65.75 0.29 4.21 6.87 20 Notes: SR/E—Shallow ribbed/epoxy resin; SC/E—Sand coated/epoxy resin; DR/E—Deep ribbed/epoxy resin; HW/E—Helical wrapping with fiber/epoxy resin; SS/E—Smooth surface/epoxy resin; DR/V—Deep ribbed/vinyl ester resin. 表 5 BFRP筋拉伸性能测试结果
Table 5. Tensile properties results of BFRP bars
BFRP bar type Mean diameter
/mmUltimate tensile strength/MPa Elastic modulus/GPa Elongation at break/% SR/E 6.08 1475.0±53.6 63.9±3.7 2.17±0.15 SC/E 6.60 1173.3±59.0 46.5±1.1 2.13±0.17 DR/E 6.21 1526.6±60.2 59.3±1.2 2.57±0.08 HW/E 6.51 1193.3±51.1 50.9±2.9 2.29±0.18 SS/E 5.83 1574.0±131.7 63.9±1.9 2.10±0.10 DR/V 6.55 1270.7±39.1 49.7±2.0 2.38±0.08 表 6 所有BFRP筋/混凝土中心拉拔试件具体设计参数汇总
Table 6. Summary of design parameters of all BFRP bar/concrete pullout specimens
Specimen code Concrete type Strength grade of concrete Mean diameter db/mm Bond length lb/mm Number of test specimen SR/E/SAC(C30) SAC C30 6.08 30 3 SC/E/SAC(C30) 6.60 30 3 DR/E/SAC(C30) 6.21 30 3 HW/E/SAC(C30) 6.51 30 3 SS/E/SAC(C30) 5.83 30 3 DR/V/SAC(C30) 6.55 30 3 SR/E/SAC(C50) SAC C50 6.08 30 3 SC/E/SAC(C50) 6.60 30 3 DR/E/SAC(C50) 6.21 30 3 HW/E/SAC(C50) 6.51 30 3 SS/E/SAC(C50) 5.83 30 3 DR/V/SAC(C50) 6.55 30 3 SR/E/SAC(C65) SAC C65 6.08 30 3 SC/E/SAC(C65) 6.60 30 3 DR/E/SAC(C65) 6.21 30 3 HW/E/SAC(C65) 6.51 30 3 SS/E/SAC(C65) 5.83 30 3 DR/V/SAC(C65) 6.55 30 3 SR/E/OPC(C30) OPC C30 6.08 30 3 SC/E/OPC(C30) 6.60 30 3 DR/E/OPC(C30) 6.21 30 3 HW/E/OPC(C30) 6.51 30 3 SS/E/OPC(C30) 5.83 30 3 DR/V/OPC(C30) 6.55 30 3 SR/E/OPC(C65) OPC C65 6.08 30 3 SC/E/OPC(C65) 6.60 30 3 DR/E/OPC(C65) 6.21 30 3 HW/E/OPC(C65) 6.51 30 3 SS/E/OPC(C65) 5.83 30 3 DR/V/OPC(C65) 6.55 30 3 表 7 BFRP筋/混凝土拉拔试件试验结果汇总
Table 7. Test results of BFRP bar/concrete pullout specimens
Specimen code Compressive strength of
concrete/MPaSplitting tensile strength of concrete/MPa Mean bonding strength/MPa Standard deviation/MPa Free end
slip/mmStandard deviation/mm Loaded
end slip
/mmStandard deviation/mm Failure mode SR/E/SAC(C30) 33.7±0.55 2.42±0.23 16.09 1.23 1.40 0.45 1.78 0.76 P-1 SC/E/SAC(C30) 12.61 0.42 3.12 0.14 4.10 0.63 P-2 DR/E/SAC(C30) 26.38 1.30 2.20 0.56 2.90 0.39 P-1 HW/E/SAC(C30) 17.15 1.26 0.10 0.02 0.51 0.07 P-2 SS/E/SAC(C30) 6.24 0.21 0.77 0.11 0.99 0.09 P-1 DR/V/SAC(C30) 18.77 0.49 1.48 0.20 1.85 0.15 P-2 SR/E/SAC(C50) 53.3±0.92 3.71±0.35 19.80 0.76 2.01 0.67 2.50 0.75 P-1 SC/E/SAC(C50) 16.92 0.30 2.69 0.16 3.31 0.15 P-2 DR/E/SAC(C50) 34.58 1.46 2.16 0.63 3.55 1.17 P-1 HW/E/SAC(C50) 18.47 0.37 0.21 0.20 0.70 0.22 P-2 SS/E/SAC(C50) 7.71 0.69 0.88 0.02 1.14 0.13 P-1 DR/V/SAC(C50) 25.39 0.50 1.85 0.15 2.59 0.56 P-2 SR/E/SAC(C65) 66.5±1.92 3.99±0.26 25.58 0.52 1.49 0.47 1.88 0.70 P-1 SC/E/SAC(C65) 17.58 0.91 2.67 0.09 3.30 0.25 P-2 DR/E/SAC(C65) 39.09 1.04 1.88 0.70 2.53 0.81 P-1 HW/E/SAC(C65) 19.22 0.15 0.31 0.29 0.74 0.20 P-2 SS/E/SAC(C65) 13.32 0.27 0.63 0.18 0.88 0.15 P-1 DR/V/SAC(C65) 25.70 1.61 1.70 0.71 2.42 0.94 P-2 SR/E/OPC(C30) 37.0±1.25 2.61±0.26 14.87 1.15 1.02 0.62 1.47 0.75 P-1 SC/E/OPC(C30) 14.30 0.76 2.82 0.01 3.39 0.16 P-2 DR/E/OPC(C30) 27.08 0.61 2.28 0.25 2.86 0.34 P-1 HW/E/OPC(C30) 16.17 0.41 1.14 0.25 1.48 0.18 P-2 SS/E/OPC(C30) 4.60 0.25 0.69 0.12 0.93 0.15 P-1 DR/V/OPC(C30) 17.74 1.50 1.68 0.28 2.31 0.27 P-2 SR/E/OPC(C65) 71.2±0.56 4.25±0.49 16.95 2.01 1.60 0.07 1.72 0.07 P-1 SC/E/OPC(C65) 16.19 0.37 2.85 0.27 3.31 0.58 P-2 DR/E/OPC(C65) 37.42 1.50 2.04 0.36 3.17 0.74 R-3 HW/E/OPC(C65) 17.53 1.84 0.67 1.16 1.22 1.24 P-2 SS/E/OPC(C65) 7.96 1.15 0.80 0.18 1.31 0.61 P-1 DR/V/OPC(C65) 19.83 1.21 0.97 0.16 1.52 0.06 P-2 Notes: P-1—Pullout and surface scraping of BFRP bar; P-2—Pullout and interlaminar shear of BFRP bar; R-3—Rebar fracture. 表 8 混凝土强度对不同形貌BFRP筋/低碱度硫铝酸盐水泥混凝土拉拔试件的粘结强度影响的拟合结果
Table 8. Fitting results of influence of concrete strength on bond strength of BFRP bars with different morphologies/low alkalinity sulphoaluminate cement concrete pull-out specimens
Fitting
parameterSR/E SC/E DR/E HW/E SS/E DR/V α0 1.343 2.298 3.456 9.506 0.060 3.745 β0 0.694 0.491 0.578 0.167 1.271 0.467 R2 0.93170 0.94127 0.99972 0.99930 0.83587 0.89781 表 9 BFRP筋/混凝土拉拔试件的τ-s曲线拟合结果
Table 9. τ-s curve fitting results of BFRP bar/concrete pull-out specimens
Specimen code CMR model mBPE model τm/MPa sm/mm sr β R2 τm
/MPasm/mm α p R2 SR/E/SAC(C30) 15.71 1.182 0.489 0.175 0.780 15.71 1.182 0.135 0.155 0.853 SC/E/SAC(C30) 12.45 3.270 4.079 0.199 0.897 12.45 3.270 0.234 0.571 0.913 DR/E/SAC(C30) 27.25 2.808 0.938 0.433 0.993 27.25 2.808 0.271 0.380 0.959 HW/E/SAC(C30) 18.04 0.078 0.033 0.408 0.964 18.04 0.078 0.292 0.005 0.947 SS/E/SAC(C30) 6.19 0.823 0.006 0.530 0.827 6.19 0.823 0.103 0.164 0.753 DR/V/SAC(C30) 18.87 1.562 0.517 0.500 0.998 18.87 1.562 0.310 0.274 0.973 SR/E/SAC(C50) 19.63 1.989 0.397 0.333 0.991 19.63 1.989 0.199 0.109 0.941 SC/E/SAC(C50) 16.95 2.845 2.918 0.230 0.787 16.95 2.845 0.269 0.377 0.830 DR/E/SAC(C50) 34.12 1.517 0.562 0.401 0.992 34.12 1.517 0.269 0.117 0.976 HW/E/SAC(C50) 17.97 0.432 0.034 0.569 0.979 17.97 0.432 0.198 0.021 0.890 SS/E/SAC(C50) 7.94 0.904 1.174 0.073 0.609 7.94 0.904 0.078 0.039 0.525 DR/V/SAC(C50) 25.02 1.871 0.738 0.498 0.992 25.02 1.871 0.330 0.188 0.810 SR/E/SAC(C65) 25.70 2.016 0.658 0.262 0.960 25.70 2.016 0.179 0.137 0.955 SC/E/SAC(C65) 18.50 2.577 3.344 0.181 0.919 18.50 2.577 0.211 0.234 0.932 DR/E/SAC(C65) 39.60 1.071 0.347 0.463 0.996 39.60 1.071 0.296 0.067 0.965 HW/E/SAC(C65) 19.21 0.213 0.012 0.745 0.991 19.21 0.213 0.216 0.011 0.654 SS/E/SAC(C65) 13.22 0.622 0.060 0.278 0.862 13.22 0.622 0.152 0.044 0.720 DR/V/SAC(C65) 27.71 2.342 1.031 0.372 0.983 27.71 2.342 0.268 0.346 0.912 SR/E/OPC(C30) 16.48 0.938 0.373 0.378 0.980 16.48 0.938 0.262 0.049 0.982 SC/E/OPC(C30) 14.48 2.812 3.603 0.182 0.944 14.48 2.812 0.205 0.284 0.945 DR/E/OPC(C30) 26.46 2.072 0.562 0.527 0.999 26.46 2.072 0.296 0.253 0.947 HW/E/OPC(C30) 15.59 1.082 0.015 3.343 0.969 15.59 1.082 0.219 0.028 0.803 SS/E/OPC(C30) 4.95 0.807 0.981 0.093 0.765 4.95 0.807 0.102 0.058 0.466 DR/V/OPC(C30) 15.72 2.003 0.488 0.535 0.999 15.72 2.003 0.284 0.286 0.947 SR/E/OPC(C65) 18.35 1.655 0.160 0.769 0.995 18.35 1.655 0.213 0.144 0.871 SC/E/OPC(C65) 16.47 2.996 3.160 0.224 0.937 16.47 2.996 0.250 0.246 0.954 DR/E/OPC(C65) 37.88 1.645 0.635 0.434 0.995 37.88 1.645 0.294 6.683 0.954 HW/E/OPC(C65) 15.00 0.373 0.022 0.651 0.958 15.00 0.373 0.201 0.017 0.848 SS/E/OPC(C65) 9.14 0.807 0.168 0.273 0.892 9.14 0.807 0.176 0.144 0.883 DR/V/OPC(C65) 19.97 1.024 0.480 0.446 0.987 19.97 1.024 0.329 0.045 0.974 Notes: s—Specimen bond slip value; sm—Bond strength corresponding slip value; sr, β, α, p—Unknown parameters. -
[1] JAFARZADEH H, NEMATZADEH M. Evaluation of post-heating flexural behavior of steel fiber-reinforced high-strength concrete beams reinforced with FRP bars: Experimental and analytical results[J]. Engineering Structures,2020,225(5):111292. [2] EDUARDA N, JOSE S C, LUíS C, et al. Review on the bond behavior and durability of FRP bars to concrete[J]. Construction and Building Materials,2021,287(3):123042. [3] ISLAM S, AFEFY H M, SENNAH K, et al. Bond characteristics of straight- and headed-end, ribbed-surface, GFRP bars embedded in high-strength concrete[J]. Construction and Building Materials,2015,83:283-298. doi: 10.1016/j.conbuildmat.2015.03.025 [4] AMINE M S, TANKS J D, HARRIS D K, et al. Environmental effects on material and bond durability of CFRP and AFRP for prestressed concrete bridge applications[C]//Structures Congress. Portland Oregon, 2015: 1278-1289. [5] MICELLI F, NANNI A. Durability of FRP rods for concrete structures[J]. Construction and Building Materials,2004,18(7):491-503. doi: 10.1016/j.conbuildmat.2004.04.012 [6] 尹世平, 华云涛, 徐世烺. FRP配筋混凝土结构研究进展及其应用[J]. 建筑结构学报, 2021, 42(1):134-150.YIN Shiping, HUA Yuntao, XU Shilang. A review on research progress and application of concrete structures internally reinforced with FRP bars[J]. Journal of Building Structures,2021,42(1):134-150(in Chinese). [7] WANG Y, WANG Y, WAN B, et al. Properties and mechanisms of self-sensing carbon nanofibers/epoxy composites for structural health monitoring[J]. Composite Structures,2018,200:669-678. doi: 10.1016/j.compstruct.2018.05.151 [8] VELJKOVIC A, CARVELLI V, HAFFKE M M, et al. Concrete cover effect on the bond of GFRP bar and concrete under static loading[J]. Composites Part B: Eningeering,2017,124:40-53. doi: 10.1016/j.compositesb.2017.05.054 [9] DONG Z-Q, WU G, XU Y-Q. Bond and flexural behavior of sea sand concrete members reinforced with hybrid steel-composite bars presubjected to wet–dry cycles[J]. Journal of Composites for Construction,2016,21(2):04016095. [10] FIORE V, SCALICI T, BELLA G D, et al. A review on basalt fibre and its composites[J]. Composites Part B: Eningeering,2015,74:74-94. doi: 10.1016/j.compositesb.2014.12.034 [11] WU G, WANG X, WU Z, et al. Degradation of basalt FRP bars in alkaline environment[J]. Science and Engineering of Composite Materials,2015,22(6):649-657. doi: 10.1515/secm-2014-0040 [12] WANG Z, YANG Z, YANG Y, et al. Flexural fatigue behavior of a pultruded basalt fiber reinforced epoxy plate subjected to elevated temperatures exposure[J]. Polymer Composites,2018,39(5):1731-1741. doi: 10.1002/pc.24124 [13] LU Z, XIAN G, LI H. Effects of elevated temperatures on the mechanical properties of basalt fibers and BFRP plates[J]. Construction and Building Materials,2016,127:1029-1036. doi: 10.1016/j.conbuildmat.2015.10.207 [14] GRAVINA R J, LI J, SMITH S T, et al. Environmental durability of FRP bar-to-concrete bond: critical review[J]. Journal of Composites for Construction,2020,24(4):03120001. doi: 10.1061/(ASCE)CC.1943-5614.0001016 [15] 董志强, 吴刚. FRP筋增强混凝土结构耐久性能研究进展[J]. 土木工程学报, 2019, 52(10):1-19, 29. doi: 10.15951/j.tmgcxb.2019.10.001DONG Zhiqiang, WU Gang. Research progress on durability of FRP bars reinforced concrete structures[J]. China Civil Engineering Journal,2019,52(10):1-19, 29(in Chinese). doi: 10.15951/j.tmgcxb.2019.10.001 [16] CHEN Y, DAVALOS J F, RAY I, et al. Accelerated aging tests for evaluations of durability performance of FRP reinforcing bars for concrete structures[J]. Composite Structures,2005,78(1):101-111. [17] 吴刚, 朱莹, 董志强, 等. 碱性环境中BFRP筋耐腐蚀性能试验研究[J]. 土木工程学报, 2014, 47(8):32-41.WU Gang, ZHU Ying, DONG Zhiqiang, et al. Experimental study on the corrosion resistance performance of BFRP bars in the alkaline environment[J]. China Civil Engineering Journal,2014,47(8):32-41(in Chinese). [18] YAN F, LIN Z. Bond durability assessment and long-term degradation prediction for GFRP bars to fiber-reinforced concrete under saline solutions[J]. Composite Structures, 2017, 161: 393-406. [19] 黄姣姣. 硫铝酸盐水泥混凝土与普通硅酸盐水泥混凝土性能对比研究[J]. 商品混凝土, 2019(12).HUANG Jiaojiao. Comparative study on properties of sulphoaluminate cement concrete and portland cement concrete[J]. Ready-Mixed Concrete, 2019(12)(in Chinese). [20] 王建军, 张自力, 万善奎. 硫铝酸盐水泥的发展现状与展望[J]. 新世纪水泥导报, 2021, 48(11):12-15, 19.WAN J J, ZHANG Z L, WAN S K. Development status and prospect of sulfoaluminate cement[J]. Cement Guide for New Epoch,2021,48(11):12-15, 19(in Chinese). [21] DONG Z, WU G, ZHU H, et al. Bond and flexural performance of basalt fiber–reinforced polymer bar–reinforced seawater sea sand glass aggregate concrete beams[J]. Advances in Structural Engineering, 2021, 24 (15): 3359-3374. [22] 申浩, 詹树林, 徐强, 等. 硫铝酸盐与硅酸盐水泥复合对砂浆中钢筋腐蚀的影响[J]. 新型建筑材料, 2021, 48(11):12-15, 19.SHEN Hao, ZHAN Shulin, XU Qiang, et al. The influence of sulphoaluminate and Portland mixed cement on the corrosion of steel in mortar[J]. New Building Materials,2021,48(11):12-15, 19(in Chinese). [23] 王凌波, 詹树林, 唐旭东, 等. 钢筋在硫铝酸盐水泥砂浆中的腐蚀行为研究[J]. 硅酸盐通报, 2020, 39(2):337-343.WANG Lingbo, ZHAN Shulin, TANG Xudong, et al. Corrosion behavior of steel in calcium sulfoaluminate cement mortar[J]. Bulletin of The Chinese Ceramic Society,2020,39(2):337-343(in Chinese). [24] LI J, GRAVINA R J, SMITH S T, et al. Bond strength and bond stress-slip analysis of FRP bar to concrete incorporating environmental durability[J]. Construction and Building Materials,2020,261(4):119860. [25] ACHILLIDES Z, PILAKOUTAS K. Bond behavior of fiber reinforced polymer bars under direct pullout conditions[J]. Journal of Composites for Construction,2004,8(2):173-181. doi: 10.1061/(ASCE)1090-0268(2004)8:2(173) [26] ROSSETTI V A, GALEOTA D, GIAMMATTEO M M. Local bond stress-slip relationships of glass fibre reinforced plastic bars embedded in concrete[J]. Materials and Structures,1995,28(6):340-344. doi: 10.1007/BF02473149 [27] BAENA M, TORRES L, TURON A, et al. Experimental study of bond behaviour between concrete and FRP bars using a pullout test[J]. Composites Part B: Eningeering,2009,40(8):784-797. doi: 10.1016/j.compositesb.2009.07.003 [28] 代前前. GFRP筋与混凝土粘结性能试验研究[D]. 大连: 大连理工大学, 2017.DAI Qianqian. The experimental research on bond-slip performance of GFRP bar embedded in concrete[D]. Dalian: Dalian University of Technology, 2017(in Chinese). [29] ANTONIETTA AIELLO M, LEONE M, PECCE M. Bond performances of FRP rebars-reinforced concrete[J]. Journal of Materials in Civil Engineering,2007,19(3):205-213. doi: 10.1061/(ASCE)0899-1561(2007)19:3(205) [30] HAO Q, WANG Y, HE Z, et al. Bond strength of glass fiber reinforced polymer ribbed rebars in normal strength concrete[J]. Construction and Building Materials,2009,23(2):865-871. doi: 10.1016/j.conbuildmat.2008.04.011 [31] SOLYOM S, BALÁZS G L. Bond of FRP bars with different surface characteristics[J]. Construction and Building Materials,2020,264:119839. doi: 10.1016/j.conbuildmat.2020.119839 [32] HUANG L, CHEN J, QU J, et al. Modeling for bond-constitutive relationships of FRP rebars to concrete matrix[J]. Construction and Building Materials,2020,263(2):120654. [33] YAN F, LIN Z, YANG M. Bond mechanism and bond strength of GFRP bars to concrete: A review[J]. Composites Part B: Eningeering,2016,98:56-69. doi: 10.1016/j.compositesb.2016.04.068 [34] LEE J Y, KIM T Y, KIM T J, et al. Interfacial bond strength of glass fiber reinforced polymer bars in high-strength concrete[J]. Composites Part B: Eningeering,2007,39(2):258-270. [35] OKELO R, YUAN R L. Bond strength of fiber reinforced polymer rebars in normal strength concrete[J]. Journal of Composites for Construction,2005,9(3):203-213. doi: 10.1061/(ASCE)1090-0268(2005)9:3(203) [36] 谷泓学. FRP筋拉伸及与混凝土的粘结性能[D]. 郑州: 郑州大学, 2015.GU Hongxue. Tensile property of FRP tendons and bond behavior between FRP tendons and concrete[D]. Zhengzhou: Zhengzhou University, 2015(in Chinese). [37] 高丹盈, BRAHIM B. 纤维聚合物筋与混凝土粘结性能的影响因素[J]. 工业建筑, 2001(2):9-14. doi: 10.3321/j.issn:1000-8993.2001.02.004GAO Danying, BRAHIM B. Influential factors of bond properties between fiber reinforced polymer (FRP) rebars and concrete[J]. Industrial Construction,2001(2):9-14(in Chinese). doi: 10.3321/j.issn:1000-8993.2001.02.004 [38] 张望喜, 胡彬彬, 王冠杰, 等. FRP筋与混凝土粘结性能研究进展及本构模型改进[J]. 土木与环境工程学报(中英文), 2021, 45(2):1-12.ZHANG Wangxi, HU Binbin, WANG Guanjie, et al. Research progress on bond behavior between FRP bars and concrete and improvement of constitutive model[J]. Journal of Civil and Environmental Engineering,2021,45(2):1-12(in Chinese). [39] 中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019.Ministry of Housing and Urban and Rural Construction of the People’s Republic of China. Standard for test method of concrete physical and mechanical properties: GB/T 50081—2019[S]. Beijing: China Building Industry Press, 2019(in Chinese). [40] 中华人民共和国国家质量监督检验检疫总局. 纤维增强塑料密度和相对密度试验方法: GB/T 1463—2005[S]. 北京: 中国标准出版社, 2005.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Test method for density and relative density of fiber reinforced plastics: GB/T 1463—2005[S]. Beijing: Standards Press of China, 2005(in Chinese). [41] ACI Comment 440. Guide test methods for fiber-reinforced polymers(FRPs) for reinforcing or strengthening concrete structures: ACI-440.3 R-12[S]. Farmington Hills: American Concrete Institute, 2012. [42] AL-DULAIJAN S U, AL-ZAHRANI M M, ANTONIO N, et al. Effect of environmental pre-conditioning on bond of FRP reinforcement to concrete[J]. Journal of Reinforced Plastics & Composites,2001,20(10):881-900. [43] ASTM. Standard test method for apparent horizontal shear strength of pultruded reinforced plastic rods by the short-beam method: ASTM D4475-02(2008)[S]. West Conshohocken: ASTM, 2008. [44] MALVAR L J. Tensile and bond properties of GFRP reinforcing bars[J]. ACI Materials Journal,1995,92(3):276-285. [45] COSENZA E, MANFREDI G, REALFONZO R. Bond characteristics and anchorage length of FRP rebars [C]//Advanced Composite Materials in Bridges and Structures. Montreal: 1996. -