留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

BFRP筋与低碱度硫铝酸盐水泥混凝土粘结性能试验

赵军 潘昊瑾 王自柯 宋起行

赵军, 潘昊瑾, 王自柯, 等. BFRP筋与低碱度硫铝酸盐水泥混凝土粘结性能试验[J]. 复合材料学报, 2023, 40(6): 3513-3528. doi: 10.13801/j.cnki.fhclxb.20220906.001
引用本文: 赵军, 潘昊瑾, 王自柯, 等. BFRP筋与低碱度硫铝酸盐水泥混凝土粘结性能试验[J]. 复合材料学报, 2023, 40(6): 3513-3528. doi: 10.13801/j.cnki.fhclxb.20220906.001
ZHAO Jun, PAN Haojin, WANG Zike, et al. Experimental investigations on bonding performance between BFRP bars and low alkalinity sulphoaluminate cement concrete[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3513-3528. doi: 10.13801/j.cnki.fhclxb.20220906.001
Citation: ZHAO Jun, PAN Haojin, WANG Zike, et al. Experimental investigations on bonding performance between BFRP bars and low alkalinity sulphoaluminate cement concrete[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3513-3528. doi: 10.13801/j.cnki.fhclxb.20220906.001

BFRP筋与低碱度硫铝酸盐水泥混凝土粘结性能试验

doi: 10.13801/j.cnki.fhclxb.20220906.001
基金项目: 国家自然科学基金青年科学基金(51908512);教育部创新团队发展计划(IRT_16R67);河南省高等学校重点科研项目计划(21A560012);河南省重点研发与推广专项(科技攻关)项目(222102320081)
详细信息
    通讯作者:

    王自柯,博士,副教授,硕士生导师,研究方向为纤维增强复合材料(FRP)结构 E-mail: zkwang@zzu.edu.cn

  • 中图分类号: TU528;TB333

Experimental investigations on bonding performance between BFRP bars and low alkalinity sulphoaluminate cement concrete

Funds: National Natural Science Foundation of China (51908512); Program for Innovative Research Team in University of Minister of Education of China (IRT_16R67); Key Scientific Research Project of College and University in Henan Province (21A560012); Key R&D and Promotion Special Project in Henan Province (Tackling Key Scientific and Technological Problems) (222102320081)
  • 摘要: 为研究玄武岩纤维增强聚合物复合材料(Basalt fiber reinforced polymer,BFRP)筋与低碱度硫铝酸盐水泥混凝土的粘结性能,对共90个粘结试件进行中心拉拔试验,研究了筋材表面形貌、混凝土强度等级等因素对粘结性能的影响。试验结果表明:对筋材表面进行喷砂、缠绕纤维和螺纹处理能显著提高粘结性能,深螺纹环氧树脂BFRP筋与65 MPa低碱度硫铝酸盐水泥混凝土的粘结强度高达39.09 MPa,远大于光滑BFRP筋的13.32 MPa。强度等级对BFRP筋-低碱度硫铝酸盐水泥混凝土粘结试件的粘结强度的影响更明显,此外BFRP筋与低碱度硫铝酸盐水泥混凝土粘结性能高于普通硅酸盐混凝土。最后,通过Cosenza-Manfredi-Realfonzo(CMR)模型和修正后的Bertero-Popov-Eligehausen(mBPE)模型)对BFRP筋-混凝土粘结试件的粘结滑移(τ-s)曲线进行拟合,发现CMR模型对粘结滑移曲线的上升段拟合效果较好,清晰准确地反映了其粘结-滑移本构关系,为研究BFRP筋增强硫铝酸盐水泥混凝土结构的力学性能提供了关键理论依据。

     

  • 图  1  BFRP筋表面形貌

    Figure  1.  Surface morphologies of BFRP bars

    图  2  BFRP筋/混凝土拉拔试件制作及尺寸

    Figure  2.  Fabrication and size of BFRP bar/concrete pullout specimen

    图  3  加载装置示意图

    Figure  3.  Schematic diagram of setup

    LVDT—Linear variable differential transformer

    图  4  混凝土强度变化

    Figure  4.  Change of concrete strength

    图  5  BFRP筋破坏模式(P-1—拔出和表面刮擦;P-2—拔出和层间剪切;R-3—筋材拉断)

    Figure  5.  Failure mode of BFRP bars (P-1—Pullout and surface scraping of BFRP bar; P-2—Pullout and interlaminar shear of BFRP bar; R-3—Rebar fracture)

    图  6  不同分组BFRP筋/混凝土拉拔试件的粘结-滑移(τ-s)曲线

    Figure  6.  Bond-slip (τ-s) curves of different groups of BFRP bar/concrete pullout specimens

    图  7  BFRP筋/混凝土拉拔试件滑移值对比

    Figure  7.  Comparison of slip values of BFRP bar/concrete pullout specimens

    图  8  不同表面形貌BFRP筋/混凝土拉拔试件的τ-s曲线

    Figure  8.  τ-s curves of pullout specimens of BFRP bar/concrete with different surface morphologies

    图  9  不同表面形貌BFRP筋/混凝土拉拔试件的粘结强度

    Figure  9.  Bond strength of pullout specimens of BFRP bar/concrete with different surface morphologies

    图  10  混凝土种类对BFRP筋/混凝土拉拔试件粘结强度的影响

    Figure  10.  Effect of concrete types on bond strength of BFRP bar/concrete pullout specimens

    图  11  混凝土强度与BFRP筋/低碱度硫铝酸盐水泥混凝土拉拔试件粘结强度的关系

    Figure  11.  Relationship between concrete strength and bond strength of BFRP bar/low alkalinity sulphoaluminate cement concrete pullout specimens

    τm—Interfacial bond strength of BFRP bars and concrete; fcu—Cube compressive strength corresponding to the bond specimen; R2—Coefficient of determination

    图  12  BFRP筋/混凝土拉拔试件的τ-s试验与拟合曲线结果对比

    Figure  12.  Comparison of τ-s test and fitting curve results of BFRP bar/concrete pull-out specimens

    CMR—Cosenza-Manfredi-Realfonzo; mBPE—modified Bertero-Popov-Eligehausen

    表  1  X射线荧光光谱分析(XRF)测得的普通硅酸盐水泥和硫铝酸盐水泥化学成分及烧失量

    Table  1.   Chemical composition of ordinary portland cement and sulphoaluminate cement by X-ray fluorescence (XRF) and loss on ignition wt%

    TypeChemical compositionLOI
    SiO2Al2O3Fe2O3CaOK2OSO3TiO2MgONa2OP2O5BaOMnO
    LSAC 42.5 7.84 17.80 2.22 50.87 0.87 16.23 0.91 2.13 0.28 0.06 0.06 3.22
    PO 42.5 17.29 4.82 3.91 65.34 1.16 3.19 0.35 3.26 0.17 0.05 0.04 0.08 3.41
    Notes: LSAC—Low alkalinity sulphoaluminate cement; PO—Portland cement.Ordinary; 42.5—Cement quantity class; LOI—Loss on ignition.
    下载: 导出CSV

    表  2  混凝土配合比

    Table  2.   Mix proportion of concrete kg/m3

    Concrete typeCementRiver sandGravel
    (10-20 mm)
    Gravel
    (5-10 mm)
    WaterSuperplasticizer
    SAC(C30)386617810347239
    SAC(C50)397635833357179
    SAC(C65)4046478493641298.1
    OPC(C30)386617810347239
    OPC(C65)4046478493641298.1
    Notes: SAC—Low alkalinity sulphoaluminate cement concrete; OPC—Ordinary Portland cement concrete; C30—Compressive strength of concrete is 30 MPa.
    下载: 导出CSV

    表  3  混凝土抗压强度及劈裂抗拉强度

    Table  3.   Compressive strength and splitting tensile strength of concrete

    Concrete typeCompressive strength with curing time/MPa Mechanical properties on the day of pullout test (Curing for 34 days)
    3 days7 days28 days56 daysCompressive strength/MPaSplitting tensile strength/MPa
    SAC(C30)24.227.732.234.133.72.42
    SAC(C50)37.445.251.351.753.33.71
    SAC(C65)54.857.165.065.466.54.00
    OPC(C30)21.127.535.340.737.02.61
    OPC(C65)54.757.269.372.171.24.25
    下载: 导出CSV

    表  4  玄武岩纤维增强聚合物复合材料(BFRP)筋几何特性

    Table  4.   Geometric properties of basalt fiber reinforced polymer (BFRP) bars

    BFRP bar typeOutside diameter
    do/mm
    Mean diameter
    db/mm
    Density/
    (g·mm−3)
    Fiber mass
    fraction/wt%
    Fiber volume fraction/vol%Rib height
    rh/mm
    Rib width
    rr/mm
    Rib spacing
    rs/mm
    Rib angle
    α/(°)
    SR/E6.206.082.2287.6970.230.143.297.1723
    SC/E7.256.612.2182.2370.00
    DR/E6.526.212.0785.2160.330.314.378.0325
    HW/E7.606.512.1380.3964.460.712.787.0427
    SS/E5.865.832.3087.6076.20
    DR/V6.856.552.1087.9265.750.294.216.8720
    Notes: SR/E—Shallow ribbed/epoxy resin; SC/E—Sand coated/epoxy resin; DR/E—Deep ribbed/epoxy resin; HW/E—Helical wrapping with fiber/epoxy resin; SS/E—Smooth surface/epoxy resin; DR/V—Deep ribbed/vinyl ester resin.
    下载: 导出CSV

    表  5  BFRP筋拉伸性能测试结果

    Table  5.   Tensile properties results of BFRP bars

    BFRP bar typeMean diameter
    /mm
    Ultimate tensile strength/MPaElastic modulus/GPaElongation at break/%
    SR/E6.081475.0±53.663.9±3.72.17±0.15
    SC/E6.601173.3±59.046.5±1.12.13±0.17
    DR/E6.211526.6±60.259.3±1.22.57±0.08
    HW/E6.511193.3±51.150.9±2.92.29±0.18
    SS/E5.831574.0±131.763.9±1.92.10±0.10
    DR/V6.551270.7±39.149.7±2.02.38±0.08
    下载: 导出CSV

    表  6  所有BFRP筋/混凝土中心拉拔试件具体设计参数汇总

    Table  6.   Summary of design parameters of all BFRP bar/concrete pullout specimens

    Specimen codeConcrete typeStrength grade of concreteMean diameter db/mmBond length lb/mmNumber of test specimen
    SR/E/SAC(C30)SACC306.08303
    SC/E/SAC(C30)6.60303
    DR/E/SAC(C30)6.21303
    HW/E/SAC(C30)6.51303
    SS/E/SAC(C30)5.83303
    DR/V/SAC(C30)6.55303
    SR/E/SAC(C50)SACC506.08303
    SC/E/SAC(C50)6.60303
    DR/E/SAC(C50)6.21303
    HW/E/SAC(C50)6.51303
    SS/E/SAC(C50)5.83303
    DR/V/SAC(C50)6.55303
    SR/E/SAC(C65)SACC656.08303
    SC/E/SAC(C65)6.60303
    DR/E/SAC(C65)6.21303
    HW/E/SAC(C65)6.51303
    SS/E/SAC(C65)5.83303
    DR/V/SAC(C65)6.55303
    SR/E/OPC(C30)OPCC306.08303
    SC/E/OPC(C30)6.60303
    DR/E/OPC(C30)6.21303
    HW/E/OPC(C30)6.51303
    SS/E/OPC(C30)5.83303
    DR/V/OPC(C30)6.55303
    SR/E/OPC(C65)OPCC656.08303
    SC/E/OPC(C65)6.60303
    DR/E/OPC(C65)6.21303
    HW/E/OPC(C65)6.51303
    SS/E/OPC(C65)5.83303
    DR/V/OPC(C65)6.55303
    下载: 导出CSV

    表  7  BFRP筋/混凝土拉拔试件试验结果汇总

    Table  7.   Test results of BFRP bar/concrete pullout specimens

    Specimen codeCompressive strength of
    concrete/MPa
    Splitting tensile strength of concrete/MPaMean bond strength/MPaStandard deviation/MPaFree end
    slip/mm
    Standard deviation/mmLoaded
    end slip/
    mm
    Standard deviation/mmFailure mode
    SR/E/SAC(C30) 33.7±0.55 2.42±0.23 16.09 1.23 1.40 0.45 1.78 0.76 P-1
    SC/E/SAC(C30) 12.61 0.42 3.12 0.14 4.10 0.63 P-2
    DR/E/SAC(C30) 26.38 1.30 2.20 0.56 2.90 0.39 P-1
    HW/E/SAC(C30) 17.15 1.26 0.10 0.02 0.51 0.07 P-2
    SS/E/SAC(C30) 6.24 0.21 0.77 0.11 0.99 0.09 P-1
    DR/V/SAC(C30) 18.77 0.49 1.48 0.20 1.85 0.15 P-2
    SR/E/SAC(C50) 53.3±0.92 3.71±0.35 19.80 0.76 2.01 0.67 2.50 0.75 P-1
    SC/E/SAC(C50) 16.92 0.30 2.69 0.16 3.31 0.15 P-2
    DR/E/SAC(C50) 34.58 1.46 2.16 0.63 3.55 1.17 P-1
    HW/E/SAC(C50) 18.47 0.37 0.21 0.20 0.70 0.22 P-2
    SS/E/SAC(C50) 7.71 0.69 0.88 0.02 1.14 0.13 P-1
    DR/V/SAC(C50) 25.39 0.50 1.85 0.15 2.59 0.56 P-2
    SR/E/SAC(C65) 66.5±1.92 3.99±0.26 25.58 0.52 1.49 0.47 1.88 0.70 P-1
    SC/E/SAC(C65) 17.58 0.91 2.67 0.09 3.30 0.25 P-2
    DR/E/SAC(C65) 39.09 1.04 1.88 0.70 2.53 0.81 P-1
    HW/E/SAC(C65) 19.22 0.15 0.31 0.29 0.74 0.20 P-2
    SS/E/SAC(C65) 13.32 0.27 0.63 0.18 0.88 0.15 P-1
    DR/V/SAC(C65) 25.70 1.61 1.70 0.71 2.42 0.94 P-2
    SR/E/OPC(C30) 37.0±1.25 2.61±0.26 14.87 1.15 1.02 0.62 1.47 0.75 P-1
    SC/E/OPC(C30) 14.30 0.76 2.82 0.01 3.39 0.16 P-2
    DR/E/OPC(C30) 27.08 0.61 2.28 0.25 2.86 0.34 P-1
    HW/E/OPC(C30) 16.17 0.41 1.14 0.25 1.48 0.18 P-2
    SS/E/OPC(C30) 4.60 0.25 0.69 0.12 0.93 0.15 P-1
    DR/V/OPC(C30) 17.74 1.50 1.68 0.28 2.31 0.27 P-2
    SR/E/OPC(C65) 71.2±0.56 4.25±0.49 16.95 2.01 1.60 0.07 1.72 0.07 P-1
    SC/E/OPC(C65) 16.19 0.37 2.85 0.27 3.31 0.58 P-2
    DR/E/OPC(C65) 37.42 1.50 2.04 0.36 3.17 0.74 R-3
    HW/E/OPC(C65) 17.53 1.84 0.67 1.16 1.22 1.24 P-2
    SS/E/OPC(C65) 7.96 1.15 0.80 0.18 1.31 0.61 P-1
    DR/V/OPC(C65) 19.83 1.21 0.97 0.16 1.52 0.06 P-2
    Notes: P-1—Pullout and surface scraping of BFRP bar; P-2—Pullout and interlaminar shear of BFRP bar; R-3—Rebar fracture.
    下载: 导出CSV

    表  8  混凝土强度对不同形貌BFRP筋/低碱度硫铝酸盐水泥混凝土拉拔试件的粘结强度影响的拟合结果

    Table  8.   Fitting results of influence of concrete strength on bond strength of BFRP bars with different morphologies/low alkalinity sulphoaluminate cement concrete pull-out specimens

    Fitting parameter α0 β0 R2
    SR/E 1.343 0.694 0.93170
    SC/E 2.298 0.491 0.94127
    DR/E 3.456 0.578 0.99972
    HW/E 9.506 0.167 0.99930
    SS/E 0.060 1.271 0.83587
    DR/V 3.745 0.467 0.89781
    下载: 导出CSV

    表  9  BFRP筋/混凝土拉拔试件的τ-s曲线拟合结果

    Table  9.   τ-s curve fitting results of BFRP bar/concrete pull-out specimens

    Specimen codeCMR modelmBPE model
    τm/MPasm/mmsrβR2τm
    /MPa
    sm/mmαpR2
    SR/E/SAC(C30) 15.71 1.182 0.489 0.175 0.780 15.71 1.182 0.135 0.155 0.853
    SC/E/SAC(C30) 12.45 3.270 4.079 0.199 0.897 12.45 3.270 0.234 0.571 0.913
    DR/E/SAC(C30) 27.25 2.808 0.938 0.433 0.993 27.25 2.808 0.271 0.380 0.959
    HW/E/SAC(C30) 18.04 0.078 0.033 0.408 0.964 18.04 0.078 0.292 0.005 0.947
    SS/E/SAC(C30) 6.19 0.823 0.006 0.530 0.827 6.19 0.823 0.103 0.164 0.753
    DR/V/SAC(C30) 18.87 1.562 0.517 0.500 0.998 18.87 1.562 0.310 0.274 0.973
    SR/E/SAC(C50) 19.63 1.989 0.397 0.333 0.991 19.63 1.989 0.199 0.109 0.941
    SC/E/SAC(C50) 16.95 2.845 2.918 0.230 0.787 16.95 2.845 0.269 0.377 0.830
    DR/E/SAC(C50) 34.12 1.517 0.562 0.401 0.992 34.12 1.517 0.269 0.117 0.976
    HW/E/SAC(C50) 17.97 0.432 0.034 0.569 0.979 17.97 0.432 0.198 0.021 0.890
    SS/E/SAC(C50) 7.94 0.904 1.174 0.073 0.609 7.94 0.904 0.078 0.039 0.525
    DR/V/SAC(C50) 25.02 1.871 0.738 0.498 0.992 25.02 1.871 0.330 0.188 0.810
    SR/E/SAC(C65) 25.70 2.016 0.658 0.262 0.960 25.70 2.016 0.179 0.137 0.955
    SC/E/SAC(C65) 18.50 2.577 3.344 0.181 0.919 18.50 2.577 0.211 0.234 0.932
    DR/E/SAC(C65) 39.60 1.071 0.347 0.463 0.996 39.60 1.071 0.296 0.067 0.965
    HW/E/SAC(C65) 19.21 0.213 0.012 0.745 0.991 19.21 0.213 0.216 0.011 0.654
    SS/E/SAC(C65) 13.22 0.622 0.060 0.278 0.862 13.22 0.622 0.152 0.044 0.720
    DR/V/SAC(C65) 27.71 2.342 1.031 0.372 0.983 27.71 2.342 0.268 0.346 0.912
    SR/E/OPC(C30) 16.48 0.938 0.373 0.378 0.980 16.48 0.938 0.262 0.049 0.982
    SC/E/OPC(C30) 14.48 2.812 3.603 0.182 0.944 14.48 2.812 0.205 0.284 0.945
    DR/E/OPC(C30) 26.46 2.072 0.562 0.527 0.999 26.46 2.072 0.296 0.253 0.947
    HW/E/OPC(C30) 15.59 1.082 0.015 3.343 0.969 15.59 1.082 0.219 0.028 0.803
    SS/E/OPC(C30) 4.95 0.807 0.981 0.093 0.765 4.95 0.807 0.102 0.058 0.466
    DR/V/OPC(C30) 15.72 2.003 0.488 0.535 0.999 15.72 2.003 0.284 0.286 0.947
    SR/E/OPC(C65) 18.35 1.655 0.160 0.769 0.995 18.35 1.655 0.213 0.144 0.871
    SC/E/OPC(C65) 16.47 2.996 3.160 0.224 0.937 16.47 2.996 0.250 0.246 0.954
    DR/E/OPC(C65) 37.88 1.645 0.635 0.434 0.995 37.88 1.645 0.294 6.683 0.954
    HW/E/OPC(C65) 15.00 0.373 0.022 0.651 0.958 15.00 0.373 0.201 0.017 0.848
    SS/E/OPC(C65) 9.14 0.807 0.168 0.273 0.892 9.14 0.807 0.176 0.144 0.883
    DR/V/OPC(C65) 19.97 1.024 0.480 0.446 0.987 19.97 1.024 0.329 0.045 0.974
    Notes: s—Specimen bond slip value; sm—Bond strength corresponding slip value; sr, β, α, p—Unknown parameters.
    下载: 导出CSV
  • [1] JAFARZADEH H, NEMATZADEH M. Evaluation of post-heating flexural behavior of steel fiber-reinforced high-strength concrete beams reinforced with FRP bars: Experimental and analytical results[J]. Engineering Structures,2020,225(5):111292.
    [2] EDUARDA N, JOSE S C, LUÍS C, et al. Review on the bond behavior and durability of FRP bars to concrete[J]. Construction and Building Materials,2021,287(3):123042.
    [3] ISLAM S, AFEFY H M, SENNAH K, et al. Bond characteristics of straight- and headed-end, ribbed-surface, GFRP bars embedded in high-strength concrete[J]. Construction and Building Materials,2015,83:283-298. doi: 10.1016/j.conbuildmat.2015.03.025
    [4] AMINE M S, TANKS J D, HARRIS D K, et al. Environmental effects on material and bond durability of CFRP and AFRP for prestressed concrete bridge applications[C]//Structures Congress. Portland Oregon, 2015: 1278-1289.
    [5] MICELLI F, NANNI A. Durability of FRP rods for concrete structures[J]. Construction and Building Materials,2004,18(7):491-503. doi: 10.1016/j.conbuildmat.2004.04.012
    [6] 尹世平, 华云涛, 徐世烺. FRP配筋混凝土结构研究进展及其应用[J]. 建筑结构学报, 2021, 42(1):134-150.

    YIN Shiping, HUA Yuntao, XU Shilang. A review on research progress and application of concrete structures internally reinforced with FRP bars[J]. Journal of Building Structures,2021,42(1):134-150(in Chinese).
    [7] WANG Y L, WANG Y, WAN B, et al. Properties and mechanisms of self-sensing carbon nanofibers/epoxy composites for structural health monitoring[J]. Composite Structures,2018,200:669-678. doi: 10.1016/j.compstruct.2018.05.151
    [8] VELJKOVIC A, CARVELLI V, HAFFKE M M, et al. Concrete cover effect on the bond of GFRP bar and concrete under static loading[J]. Composites Part B: Eningeering,2017,124:40-53. doi: 10.1016/j.compositesb.2017.05.054
    [9] DONG Z Q, WU G, XU Y Q. Bond and flexural behavior of sea sand concrete members reinforced with hybrid steel-composite bars presubjected to wet-dry cycles[J]. Journal of Composites for Construction,2016,21(2):04016095.
    [10] FIORE V, SCALICI T, BELLA G D, et al. A review on basalt fibre and its composites[J]. Composites Part B: Eningeering,2015,74:74-94. doi: 10.1016/j.compositesb.2014.12.034
    [11] WU G, WANG X, WU Z, et al. Degradation of basalt FRP bars in alkaline environment[J]. Science and Engineering of Composite Materials,2015,22(6):649-657. doi: 10.1515/secm-2014-0040
    [12] WANG Z, YANG Z, YANG Y, et al. Flexural fatigue behavior of a pultruded basalt fiber reinforced epoxy plate subjected to elevated temperatures exposure[J]. Polymer Composites,2018,39(5):1731-1741. doi: 10.1002/pc.24124
    [13] LU Z, XIAN G, LI H. Effects of elevated temperatures on the mechanical properties of basalt fibers and BFRP plates[J]. Construction and Building Materials,2016,127:1029-1036. doi: 10.1016/j.conbuildmat.2015.10.207
    [14] GRAVINA R J, LI J, SMITH S T, et al. Environmental durabi-lity of FRP bar-to-concrete bond: Critical review[J]. Jour-nal of Composites for Construction,2020,24(4):03120001. doi: 10.1061/(ASCE)CC.1943-5614.0001016
    [15] 董志强, 吴刚. FRP筋增强混凝土结构耐久性能研究进展[J]. 土木工程学报, 2019, 52(10):1-19, 29. doi: 10.15951/j.tmgcxb.2019.10.001

    DONG Zhiqiang, WU Gang. Research progress on durability of FRP bars reinforced concrete structures[J]. China Civil Engineering Journal,2019,52(10):1-19, 29(in Chinese). doi: 10.15951/j.tmgcxb.2019.10.001
    [16] CHEN Y, DAVALOS J F, RAY I, et al. Accelerated aging tests for evaluations of durability performance of FRP reinforcing bars for concrete structures[J]. Composite Structures,2005,78(1):101-111.
    [17] 吴刚, 朱莹, 董志强, 等. 碱性环境中BFRP筋耐腐蚀性能试验研究[J]. 土木工程学报, 2014, 47(8):32-41.

    WU Gang, ZHU Ying, DONG Zhiqiang, et al. Experimental study on the corrosion resistance performance of BFRP bars in the alkaline environment[J]. China Civil Engineering Journal,2014,47(8):32-41(in Chinese).
    [18] YAN F, LIN Z. Bond durability assessment and long-term degradation prediction for GFRP bars to fiber-reinforced concrete under saline solutions[J]. Composite Structures, 2017, 161: 393-406.
    [19] 黄姣姣. 硫铝酸盐水泥混凝土与普通硅酸盐水泥混凝土性能对比研究[J]. 商品混凝土, 2019(12): 28, 46-47.

    HUANG Jiaojiao. Comparative study on properties of sulphoaluminate cement concrete and portland cement concrete[J]. Ready-Mixed Concrete, 2019(12): 28, 46-47(in Chinese).
    [20] 王建军, 张自力, 万善奎. 硫铝酸盐水泥的发展现状与展望[J]. 新世纪水泥导报, 2021, 48(11):12-15, 19.

    WAN J J, ZHANG Z L, WAN S K. Development status and prospect of sulfoaluminate cement[J]. Cement Guide for New Epoch,2021,48(11):12-15, 19(in Chinese).
    [21] DONG Z, WU G, ZHU H, et al. Bond and flexural performance of basalt fiber-reinforced polymer bar-reinforced seawater sea sand glass aggregate concrete beams[J]. Advances in Structural Engineering, 2021, 24 (15): 3359-3374.
    [22] 申浩, 詹树林, 徐强, 等. 硫铝酸盐与硅酸盐水泥复合对砂浆中钢筋腐蚀的影响[J]. 新型建筑材料, 2021, 48(11):12-15, 19.

    SHEN Hao, ZHAN Shulin, XU Qiang, et al. The influence of sulphoaluminate and Portland mixed cement on the corrosion of steel in mortar[J]. New Building Materials,2021,48(11):12-15, 19(in Chinese).
    [23] 王凌波, 詹树林, 唐旭东, 等. 钢筋在硫铝酸盐水泥砂浆中的腐蚀行为研究[J]. 硅酸盐通报, 2020, 39(2):337-343.

    WANG Lingbo, ZHAN Shulin, TANG Xudong, et al. Corrosion behavior of steel in calcium sulfoaluminate cement mortar[J]. Bulletin of The Chinese Ceramic Society,2020,39(2):337-343(in Chinese).
    [24] LI J, GRAVINA R J, SMITH S T, et al. Bond strength and bond stress-slip analysis of FRP bar to concrete incorporating environmental durability[J]. Construction and Building Materials,2020,261(4):119860.
    [25] ACHILLIDES Z, PILAKOUTAS K. Bond behavior of fiber reinforced polymer bars under direct pullout conditions[J]. Journal of Composites for Construction,2004,8(2):173-181. doi: 10.1061/(ASCE)1090-0268(2004)8:2(173)
    [26] ROSSETTI V A, GALEOTA D, GIAMMATTEO M M. Local bond stress-slip relationships of glass fibre reinforced plastic bars embedded in concrete[J]. Materials and Structures,1995,28(6):340-344. doi: 10.1007/BF02473149
    [27] BAENA M, TORRES L, TURON A, et al. Experimental study of bond behaviour between concrete and FRP bars using a pullout test[J]. Composites Part B: Eningeering,2009,40(8):784-797. doi: 10.1016/j.compositesb.2009.07.003
    [28] 代前前. GFRP筋与混凝土粘结性能试验研究[D]. 大连: 大连理工大学, 2017.

    DAI Qianqian. The experimental research on bond-slip performance of GFRP bar embedded in concrete[D]. Dalian: Dalian University of Technology, 2017(in Chinese).
    [29] ANTONIETTA A M, LEONE M, PECCE M. Bond performances of FRP rebars-reinforced concrete[J]. Journal of Materials in Civil Engineering,2007,19(3):205-213. doi: 10.1061/(ASCE)0899-1561(2007)19:3(205)
    [30] HAO Q, WANG Y, HE Z, et al. Bond strength of glass fiber reinforced polymer ribbed rebars in normal strength concrete[J]. Construction and Building Materials,2009,23(2):865-871. doi: 10.1016/j.conbuildmat.2008.04.011
    [31] SOLYOM S, BALÁZS G L. Bond of FRP bars with different surface characteristics[J]. Construction and Building Materials,2020,264:119839. doi: 10.1016/j.conbuildmat.2020.119839
    [32] HUANG L, CHEN J, QU J, et al. Modeling for bond-constitutive relationships of FRP rebars to concrete matrix[J]. Construction and Building Materials,2020,263(2):120654.
    [33] YAN F, LIN Z, YANG M. Bond mechanism and bond strength of GFRP bars to concrete: A review[J]. Compo-sites Part B: Eningeering,2016,98:56-69. doi: 10.1016/j.compositesb.2016.04.068
    [34] LEE J Y, KIM T Y, KIM T J, et al. Interfacial bond strength of glass fiber reinforced polymer bars in high-strength concrete[J]. Composites Part B: Eningeering,2007,39(2):258-270.
    [35] OKELO R, YUAN R L. Bond strength of fiber reinforced polymer rebars in normal strength concrete[J]. Journal of Composites for Construction,2005,9(3):203-213. doi: 10.1061/(ASCE)1090-0268(2005)9:3(203)
    [36] 谷泓学. FRP筋拉伸及与混凝土的粘结性能[D]. 郑州: 郑州大学, 2015.

    GU Hongxue. Tensile property of FRP tendons and bond behavior between FRP tendons and concrete[D]. Zhengzhou: Zhengzhou University, 2015(in Chinese).
    [37] 高丹盈, BRAHIM B. 纤维聚合物筋与混凝土粘结性能的影响因素[J]. 工业建筑, 2001(2):9-14. doi: 10.3321/j.issn:1000-8993.2001.02.004

    GAO Danying, BRAHIM B. Influential factors of bond pro-perties between fiber reinforced polymer (FRP) rebars and concrete[J]. Industrial Construction,2001(2):9-14(in Chinese). doi: 10.3321/j.issn:1000-8993.2001.02.004
    [38] 张望喜, 胡彬彬, 王冠杰, 等. FRP筋与混凝土粘结性能研究进展及本构模型改进[J]. 土木与环境工程学报(中英文), 2021, 45(2):1-12.

    ZHANG Wangxi, HU Binbin, WANG Guanjie, et al. Research progress on bond behavior between FRP bars and concrete and improvement of constitutive model[J]. Journal of Civil and Environmental Engineering,2021,45(2):1-12(in Chinese).
    [39] 中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019.

    Ministry of Housing and Urban and Rural Construction of the People’s Republic of China. Standard for test method of concrete physical and mechanical properties: GB/T 50081—2019[S]. Beijing: China Building Industry Press, 2019(in Chinese).
    [40] 中华人民共和国国家质量监督检验检疫总局. 纤维增强塑料密度和相对密度试验方法: GB/T 1463—2005[S]. 北京: 中国标准出版社, 2005.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Test method for density and relative density of fiber reinforced plastics: GB/T 1463—2005[S]. Beijing: Standards Press of China, 2005(in Chinese).
    [41] ACI Comment 440. Guide test methods for fiber-reinforced polymers (FRPs) for reinforcing or strengthening concrete structures: ACI-440.3 R-12[S]. Farmington Hills: American Concrete Institute, 2012.
    [42] AL-DULAIJAN S U, AL-ZAHRANI M M, ANTONIO N, et al. Effect of environmental pre-conditioning on bond of FRP reinforcement to concrete[J]. Journal of Reinforced Plastics & Composites,2001,20(10):881-900.
    [43] ASTM. Standard test method for apparent horizontal shear strength of pultruded reinforced plastic rods by the short-beam method: ASTM D4475-02(2008)[S]. West Conshohocken: ASTM, 2008.
    [44] MALVAR L J. Tensile and bond properties of GFRP reinforcing bars[J]. ACI Materials Journal,1995,92(3):276-285.
    [45] COSENZA E, MANFREDI G, REALFONZO R. Bond characteristics and anchorage length of FRP rebars[C]//2nd International Conference on Advanced Composite Materials in Bridges and Structures. Montreal: The Canadian Society for Civil Engineering, 1996.
  • 加载中
图(12) / 表(9)
计量
  • 文章访问数:  825
  • HTML全文浏览量:  441
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-06
  • 修回日期:  2022-08-13
  • 录用日期:  2022-08-25
  • 网络出版日期:  2022-09-07
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回