留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水性超亲水耐污复合涂层网膜的制备及其长效油水分离性能

王蓉辉 陈俊旭 于照鹏 余新泉 张友法

王蓉辉, 陈俊旭, 于照鹏, 等. 水性超亲水耐污复合涂层网膜的制备及其长效油水分离性能[J]. 复合材料学报, 2023, 40(7): 4082-4094. doi: 10.13801/j.cnki.fhclxb.20230215.001
引用本文: 王蓉辉, 陈俊旭, 于照鹏, 等. 水性超亲水耐污复合涂层网膜的制备及其长效油水分离性能[J]. 复合材料学报, 2023, 40(7): 4082-4094. doi: 10.13801/j.cnki.fhclxb.20230215.001
WANG Ronghui, CHEN Junxu, YU Zhaopeng, et al. Preparation and enduring effect oil-water separation performance of water-based superhydrophilic anti-fouling composite mesh membrane[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4082-4094. doi: 10.13801/j.cnki.fhclxb.20230215.001
Citation: WANG Ronghui, CHEN Junxu, YU Zhaopeng, et al. Preparation and enduring effect oil-water separation performance of water-based superhydrophilic anti-fouling composite mesh membrane[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4082-4094. doi: 10.13801/j.cnki.fhclxb.20230215.001

水性超亲水耐污复合涂层网膜的制备及其长效油水分离性能

doi: 10.13801/j.cnki.fhclxb.20230215.001
基金项目: 国家自然科学基金 (52071076)
详细信息
    通讯作者:

    于照鹏,博士,讲师,研究方向为表界面功能材料 E-mail: yuzhaopeng@cslg.edu.cn

    张友法,博士,教授,博士生导师,研究方向为表界面功能材料 E-mail: yfzhang@seu.edu.cn

  • 中图分类号: TB332

Preparation and enduring effect oil-water separation performance of water-based superhydrophilic anti-fouling composite mesh membrane

Funds: National Natural Science Foundation of China (52071076)
  • 摘要: 石油化工和机械制造等领域普遍存在含油污水,直接排放不仅浪费水、油资源,污染生态环境,还影响人类与其他生物的生存与健康。传统的油水分离方法局限性强、经济性差、分离效率不高。以316不锈钢丝网为基底,研发了耐长期水泡与耐油污染的超亲水水下疏油网膜,通过优选水性丙烯酸与水性环氧清漆共混树脂作为粘结剂,对基底采用植酸预处理,采用一步喷涂法制备出了纯水性涂层涂覆的超亲水水下疏油网膜。对不同含油污水的分离效率均能够达到98%以上,水通量能够达到14000 L/(m2·h·bar) 以上,耐油压为4.65 kPa。循环分离正己烷污水50次后,网膜的分离效率仍然能够达到98%以上。耐水泡180天后仍保持超亲水性及6500 L/(m2·h·bar)以上的水通量。添加微量表面活性剂十二烷基硫酸钠后,经过50次污染-清洗循环后网膜的水通量衰减<50%。这一研究为精细化含油污水处理领域超亲水分离网膜的研发与制备提供了一定借鉴与技术参考。

     

  • 图  1  超亲水网膜的制备示意图

    Figure  1.  Schematic diagram of preparation of the superhydrophilic mesh membrane

    CNC—Cellulose nanocrystals; PA—Phytic acid

    图  2  环氧地坪漆(EP-D)与环氧清漆(EP-T)改性网膜泡水期涂层变化

    Figure  2.  Change of mesh membranes modified by the water-based epoxy floor (EP-D) and epoxy topcoat (EP-T) duration the water immersion

    图  3  (a) 水性丙烯酸树脂在不同预处理不锈钢丝网上的附着力;(b) 经不同预处理的丝网在空气中静置24 h后的光学照片

    Figure  3.  (a) Adhesion force of water-based acrylic acid resin on different pretreated stainless steel meshes; (b) Optical photos of different pretreated meshes after leaving in the air for 24 h

    图  4  超亲水网膜的润湿性:(a) 水接触角(WCA)及水下CCl4接触角(UWOCA);(b) 空气中水滴铺展时间

    Figure  4.  Wettability of the superhydrophilic mesh membrane: (a) Water contact angle (WCA) and underwater oil contact angle (UWOCA) of CCl4; (b) Spreading time of water droplet in air

    图  5  原始不锈钢丝网 (a) 和超亲水网膜 (b) 的SEM图像

    Figure  5.  SEM images of the original stainless steel mesh (a) and the superhydrophilic mesh membrane (b)

    图  6  (a) 植酸预处理制备的超亲水网膜用于分离正己烷/水混合物;(b) 油水分离原理示意图

    Figure  6.  (a) N-hexane/water mixture separated by the superhydrophilic mesh membrane pretreated by phytic acid; (b) Schematic diagram of oil-water separation principle

    Δp—Intrusion pressure; θα—Advancing contact angle; R—Radius of the meniscus

    图  7  (a) 超亲水网膜对不同含油污水的分离效率;(b) 循环分离正己烷污水50次超亲水网膜的分离效率;(c) 超亲水网膜的分离水通量

    Figure  7.  (a) Oil-water separation efficiency of the superhydrophilic mesh membrane for wastewater with different oils; (b) Oil-water separation efficiency of superhydrophilic mesh membrane for wastewater with N-hexane after 50 separation cycles; (c) Water flux of superhydrophilic mesh membrane during the separation

    图  8  超亲水网膜泡水180天期间:(a) 水滴铺展时间;(b) 水通量变化

    Figure  8.  Superhydrophilic mesh membrane immersed into water for 180 days: (a) Change in spreading time; (b) Change in water flux

    图  9  超亲水网膜泡水180天内微观形貌的变化:(a) 泡水前;(b) 泡水50天;(c) 泡水80天;(d) 泡水120天;(e) 泡水150天;(f) 泡水180天

    Figure  9.  Change in microscopic morphologies of superhydrophilic mesh membrane after immersing into water for 180 days: (a) Original; (b) 50 days; (c) 80 days; (d) 120 days; (e) 150 days; (f) 180 days

    图  10  超亲水网膜润湿性的变化:(a) 不同pH环境浸泡24 h;(b) 在pH=2、pH=12的溶液中浸泡7天;超亲水网膜在不同pH溶液中浸泡7天后的表面形貌SEM图像:(c) pH=2;(d) pH=12

    Figure  10.  Change in wettability of superhydrophilic mesh membrane: (a) Immersing in different pH solutions for 24 h; (b) Immersing in solutions of pH=2 and pH=12 for 7 days; SEM images of superhydrophilic mesh membrane after immersing in different pH solutions for 7 days: (c) pH=2; (d) pH=12

    图  11  (a) 原始不锈钢丝网无法脱附油污;(b) 超亲水网膜可有效脱附油污;(c) 干燥状态下粘附在超亲水网膜上的大豆油在水下快速自行脱附

    Figure  11.  (a) Original stainless steel mesh cannot desorb the oil; (b) Superhydrophilic mesh membrane can effectively desorb the oil; (c) Rapid self-desorption of the soybean oil adhered to the dry superhydrophilic mesh membrane underwater

    图  12  (a) 添加少量十二烷基硫酸钠(SDS)后制得的超亲水网膜涂层SEM图像;(b) 超亲水网膜及其加入SDS后分别经过原油污染-清洗50次循环后水通量衰减情况;(c) 100 g砝码压力下粒径为25.4 μm的砂纸摩擦100次后超亲水网膜的润湿性变化

    Figure  12.  (a) SEM images of the superhydrophilic mesh membrane prepared by adding a small amount of sodium dodecyl sulfate (SDS); (b) Water flux attenuation of the superhydrophilic mesh membrane and after adding SDS suffering from 50 cycles of crude oil pollution and cleaning respectively; (c) Wettability change of superhydrophilic mesh membrane after 100 abrasion tests with 100 g weight and sandpaper with a particle size of 25.4 μm

  • [1] HOANG A T, NIŽETIĆ S, DUONG X Q, et al. Advanced super-hydrophobic polymer-based porous absorbents for the treatment of oil-polluted water[J]. Chemosphere,2021,277:130274. doi: 10.1016/j.chemosphere.2021.130274
    [2] GUPTA R K, DUNDERDALE G J, ENGLAND M W, et al. Oil/water separation techniques: A review of recent progresses and future directions[J]. Journal of Materials Chemistry A,2017,5(31):16025-16058. doi: 10.1039/C7TA02070H
    [3] ISMAIL N H, SALLEH W N W, ISMAIL A F, et al. Hydrophilic polymer-based membrane for oily wastewater treatment: A review[J]. Seperation and Purification Technology,2020,233:116007. doi: 10.1016/j.seppur.2019.116007
    [4] LI S H, HUANG J Y, CHEN Z, et al. A review on special wettability textiles: Theoretical models, fabrication technologies and multifunctional applications[J]. Journal of Materials Chemistry A,2017,5(1):31-55. doi: 10.1039/c6ta07984a
    [5] XU X T, WAN X Z, LI H N, et al. Oil-polluted water purification via the carbon-nanotubes-doped organohydrogel platform[J]. Nano Research,2022,15:5653-5662. doi: 10.1007/s12274-022-4118-8
    [6] YIN K, CHU D K, DONG X R, et al. Femtosecond laser induced robust periodic nanoripple structured mesh for highly efficient oil-water separation[J]. Nanoscale,2017,9(37):14229-14235. doi: 10.1039/c7nr04582d
    [7] ZHU Y Z, WANG D, JIANG L, et al. Recent prgress in developing advanced membranes for emulsified oil/water separation[J]. NPG Asia Materials,2014,6:e101. doi: 10.1038/am.2014.23
    [8] 邵云飞, 仲梁维. 重力沉降式油水分离技术的改进[J]. 通信电源技术, 2015, 32(6):174-177, 193. doi: 10.3969/j.issn.1009-3664.2015.06.057

    SHAO Yunfei, ZHONG Liangwei. The improvement of oil-water separation technique based on gravittional sedimentation[J]. Telecom Power Technology,2015,32(6):174-177, 193(in Chinese). doi: 10.3969/j.issn.1009-3664.2015.06.057
    [9] 井博勋, 刘雅洁. 含油污水处理技术方法简述[J]. 天津化工, 2015, 29(4):9-10. doi: 10.3969/j.issn.1008-1267.2015.04.003

    JING Boxun, LIU Yajie. Brief introduction of treatment technology of wastewater with oil[J]. Tianjin Chemical Industry,2015,29(4):9-10(in Chinese). doi: 10.3969/j.issn.1008-1267.2015.04.003
    [10] IHADDADEN S, ABERKANE D, BOUKERROUI A, et al. Removal of methylene blue (basic dye) by coagulation-flocculation with biomaterials (bentonite and Opuntia ficus indica)[J]. Journal of Water Process Engineering,2022,49:102952. doi: 10.1016/j.jwpe.2022.102952
    [11] 毛雪慧, 徐明芳, 刘辉, 等. 光合细菌固定化及其处理含油废水的研究[J]. 农业环境科学学报, 2009, 28(7):1494-1499. doi: 10.3321/j.issn:1672-2043.2009.07.029

    MAO Xuehui, XU Mingfang, LIU Hui, et al. Immobilization of photosynthetic bacteria for oily wastewater treatment[J]. Journal of Agro-Environment Science,2009,28(7):1494-1499(in Chinese). doi: 10.3321/j.issn:1672-2043.2009.07.029
    [12] 魏平方, 邓皓, 邹斌. 含油污水处理技术与发展趋势[J]. 油气田环境保护, 2000(1):34-36. doi: 10.3969/j.issn.1005-3158.2000.01.014

    WEI Pingfang, DENG Hao, ZOU Bin. The treatment technology and development trend about oily sewage[J]. Environmental Protection of Oil & Gas Fields,2000(1):34-36(in Chinese). doi: 10.3969/j.issn.1005-3158.2000.01.014
    [13] 孙玉凤, 徐海波. 油水分离膜的应用与研究进展[J]. 现代化工, 2022, 42(6):59-63, 68. doi: 10.16606/j.cnki.issn0253-4320.2022.06.013

    SUN Yufeng, XU Haibo. Application and research progress on oil-water separation membrane[J]. Modern Chemical Industry,2022,42(6):59-63, 68(in Chinese). doi: 10.16606/j.cnki.issn0253-4320.2022.06.013
    [14] 王瑶, 曾子康, 李秋雯, 等. 油水分离膜表面结构可控合成及性能研究[J]. 过程工程学报, 2022, 22(9):1297-1304.

    WANG Yao, ZENG Zikang, LI Qiuwen, et al. Rational construction of hydrophobic interface to separate oil from water[J]. The Chinese Journal of Process Engineering,2022,22(9):1297-1304(in Chinese).
    [15] 闫红芹, 郑文瑞, 张桂玉, 等. 疏水/亲油丝瓜络制备及在油水分离中的应用[J]. 化工进展, 2021, 40(5):2893-2899. doi: 10.16085/j.issn.1000-6613.2020-2424

    YAN Hongqin, ZHENG Wenrui, ZHANG Guiyu, et al. Preparation of hydrophobic/oleophilic luffa and its application in oil-water separation[J]. Chemical Industry and Engineering Progress,2021,40(5):2893-2899(in Chinese). doi: 10.16085/j.issn.1000-6613.2020-2424
    [16] ZHANG X Y, LI Z, LIU K S, et al. Bioinspired multifunctional foam with self-cleaning and oil/water separation[J]. Advanced Functional Materials,2013,23(22):2881-2886. doi: 10.1002/adfm.201202662
    [17] 薛众鑫, 江雷. 仿生水下超疏油表面[J]. 高分子学报, 2012(10):1091-1101.

    XUE Zhongxin, JIANG Lei. Bioinspired underwater superoleophobic surfaces[J]. Acta Polymerica Sinica,2012(10):1091-1101(in Chinese).
    [18] FENG L, ZHANG Z Y, MAI Z H, et al. A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water[J]. Angewandte Chemie International Edition,2004,43(15):2012-2014. doi: 10.1002/anie.200353381
    [19] SONG Y H, SHI L A, XING H Y, et al. A magneto-heated ferrimagnetic sponge for continuous recovery of viscous crude oil[J]. Advanced Materials,2021,33(36):2100074. doi: 10.1002/adma.202100074
    [20] LI F R, KONG W T, ZHAO X Z, et al. Multifunctional TiO2-based superoleophobic/superhydrophilic coating for oil-water separation and oil purification[J]. ACS Applied Materials & Interfaces,2020,12(15):18074-18083. doi: 10.1021/acsami.9b22625
    [21] ONGUN M Z, OGUZLAR S, KARTAL U, et al. Energy harvesting nanogenerators: Electrospun beta-PVDF nanofibers accompanying ZnO NPs and ZnO@Ag NPs[J]. Solid State Sciences,2021,122:106772. doi: 10.1016/j.solidstatesciences.2021.106772
    [22] LI H, ZHANG J Q, ZHU L, et al. Reusable membrane with multifunctional skin layer for effective removal of insoluble emulsified oils and soluble dyes[J]. Journal of Hazardous Materials,2021,415:125677. doi: 10.1016/j.jhazmat.2021.125677
    [23] GUO W W, WANG X, HUANG J L, et al. Construction of durable flame-retardant and robust superhydrophobic coatings on cotton fabrics for water-oil separation application[J]. Chemical Engineering Journal,2020,398:125661. doi: 10.1016/j.cej.2020.125661
    [24] 李国滨, 刘海峰, 李金辉, 等. 超疏水材料的研究进展[J]. 高分子材料科学与工程, 2020, 36(12):142-150. doi: 10.16865/j.cnki.1000-7555.2020.0282

    LI Guobin, LIU Haifeng, LI Jinhui, et al. Progress in research of preparation of superhydrophobic[J]. Polymer Materials Science and Engineering,2020,36(12):142-150(in Chinese). doi: 10.16865/j.cnki.1000-7555.2020.0282
    [25] LIU M, ZHENG Y, ZHAI J, et al. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion[J]. Accounts of Chemical Research,2010,43(3):368-377. doi: 10.1021/ar900205g
    [26] YOU H, SONG G, LIU Q, et al. A facile route for the fabrication of a superhydrophilic and underwater superoleophobic phosphorylated PVA-coated mesh for both oil/water immiscible mixture and emulsion separation[J]. Applied Surface Science,2021,537:147986. doi: 10.1016/j.apsusc.2020.147986
    [27] GE J L, ZONG D D, JIN Q, et al. Biomimetic and superwettable nanofibrous skins for highly efficient separation of oil-in-water emulsions[J]. Advanced Functional Materials,2018,28(10):1705051. doi: 10.1002/adfm.201705051
    [28] BARKER J A, HENDERSON D. Theories of Liquids[J]. Annual Review of Physical Chemistry,1972,23(61):439-484. doi: 10.1146/annurev.pc.23.100172.002255
    [29] CHEN C L, CHEN S, CHEN L, et al. Underoil superhydrophilic metal felt fabricated by modifying ultrathin fumed silica coatings for the separation of water-in-oil emulsions[J]. ACS Applied Materials & Interfaces,2020,12(24):27663-27671. doi: 10.1021/acsami.0c03801
    [30] 生态环境部生态环境监测司、法规与标准司. 水质石油类和动植物油类的测定红外分光光度法: HJ 637—2018[S]. 北京: 中国环境出版社, 2019.

    Department of Ecological Environment Monitoring, Department of Regulations and Standards, Ministry of Ecological Environment. Water quality—Determination of petroleum, animal fats and vegetable oils—Infrared spectrophotometry: HJ 637—2018[S]. Beijing: China Environmental Press, 2019(in Chinese).
    [31] 刘晓燕, 赵雨新, 赵海谦, 等. 刻蚀法制备超疏水金属表面的研究综述[J]. 功能材料与器件学报, 2019, 25(4):221-228.

    LIU Xiaoyan, ZHAO Yuxin, ZHAO Haiqian, et al. A review on preparation of superhydrophobic metal surface by etching[J]. Journal of Functional Materials and Devices,2019,25(4):221-228(in Chinese).
    [32] YE L Q, ZHANG Y L, SONG C C, et al. A simple sol-gel method to prepare superhydrophilic silica coatings[J]. Materials Letters,2017,188:316-318. doi: 10.1016/j.matlet.2016.09.043
    [33] JUNG S W, PARK S Y, CHOI W J, et al. Organosilicate compound filler to increase the mechanical strength of superhydrophilic layer-by-layer assembled film[J]. Journal of Industrial and Engineering Chemistry,2020,84:332-339. doi: 10.1016/j.jiec.2020.01.015
    [34] KONG W T, LI F R, PAN Y L, et al. Hygro-responsive, photo-decomposed superoleophobic/superhydrophilic coating for on-demand oil-water separation[J]. ACS Applied Materials & Interfaces,2021,13(29):35142-35152. doi: 10.1021/acsami.1c08500
    [35] YOU X, WU H, ZHANG R, et al. Metal-coordinated sub-10 nm membranes for water purification[J]. Nature Communications,2019,15:313.
    [36] FU C, GU L, ZENG Z X, et al. One-step transformation of metal meshes to robust superhydrophobic and superoleophilic meshes for highly efficient oil spill cleanup and oil/water separation[J]. ACS Applied Materials & Interfaces,2020,12(1):1850-1857. doi: 10.1021/acsami.9b17052
    [37] XIE A, CUI J, YANG J, et al. Photo-Fenton self-cleaning membranes with robust flux recovery for an efficient oil/water emulsion separation[J]. Journal of Materials Chemistry A,2019,7(14):8491-8502. doi: 10.1039/C9TA00521H
    [38] DENG W S, WANG G, TANG L, et al. One-step fabrication of transparent barite colloid with dual superhydrophilicity for anti-crude oil fouling and anti-fogging[J]. Journal of Colloid and Interface Science,2022,608:186-192. doi: 10.1016/j.jcis.2021.09.178
    [39] TIAN D L, ZHANG X F, TIAN Y, et al. Photo-induced water-oil separation based on switchable superhydrophobicity-superhydrophilicity and underwater super-oleophobicity of the aligned ZnO nanorod array-coated mesh films[J]. Journal of Materials Chemistry A,2012,22:19652-19657. doi: 10.1039/c2jm34056a
    [40] ZHANG H W, QI J Y, CHE Y L, et al. Continuous and efficient oil/water separation by special wettability granular filter media[J]. Water Reuse,2022,12(2):242-259. doi: 10.2166/wrd.2022.102
    [41] ZHANG J Y, FANG W X, ZHANG F, et al. Ultrathin microporous membrane with high oil intrusion pressure for effective oil/water separation[J]. Journal of Membrane Science,2020,608:118201. doi: 10.1016/j.memsci.2020.118201
    [42] OH S T, KI S K, RYU S G, et al. Performance analysis of gravity-driven oil-water separation using membranes with special wettability[J]. Langmuir,2019,35:7769-7782. doi: 10.1021/acs.langmuir.9b00993
    [43] LIU Y H, LI W, YUAN C, et al. Two-dimensional fluorinated covalent organic frameworks with tunable hydrophobicity for ultrafast oil-water separation[J]. Angewandte Chemie International Edition,2022,61(2):e202113348. doi: 10.1002/anie.202113348
    [44] SONG M L, YU H Y, ZHU J Y, et al. Constructing stimuli-free self-healing, robust and ultrasensitive biocompatible hydrogel sensors with conductive cellulose nanocrystals[J]. Chemical Engineering Journal,2020,398:125547. doi: 10.1016/j.cej.2020.125547
    [45] TAO Q, WANG D, HUANG S, et al. Counterion-dictated self-cleaning behavior of polycation coating upon water action: Macroscopic dissection of hydration of anions[J]. Angewandte Chemie,2020,132(34):14574-14580. doi: 10.1002/ange.202002819
    [46] DENG W S, WANG G, TANG L, et al. Viscous oil de-wetting surfaces based on robust superhydrophilic barium sulfate nanocoating[J]. ACS Applied Materials & Interfaces,2021,13(23):27674-27686. doi: 10.1021/acsami.1c06913
  • 加载中
图(12)
计量
  • 文章访问数:  608
  • HTML全文浏览量:  274
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-07
  • 修回日期:  2022-12-15
  • 录用日期:  2022-12-25
  • 网络出版日期:  2023-02-15
  • 刊出日期:  2023-07-15

目录

    /

    返回文章
    返回