留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水性超亲水耐污复合涂层网膜的制备及其长效油水分离性能

王蓉辉 陈俊旭 于照鹏 余新泉 张友法

王蓉辉, 陈俊旭, 于照鹏, 等. 水性超亲水耐污复合涂层网膜的制备及其长效油水分离性能[J]. 复合材料学报, 2023, 40(7): 4079-4091
引用本文: 王蓉辉, 陈俊旭, 于照鹏, 等. 水性超亲水耐污复合涂层网膜的制备及其长效油水分离性能[J]. 复合材料学报, 2023, 40(7): 4079-4091
WANG Ronghui, CHEN Junxu, YU Zhaopeng, YU Xinquan, ZHANG Youfa. Preparation and enduring effect oil-water separation performance of water-based superhydrophilic anti-fouling composite mesh membrane[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4079-4091.
Citation: WANG Ronghui, CHEN Junxu, YU Zhaopeng, YU Xinquan, ZHANG Youfa. Preparation and enduring effect oil-water separation performance of water-based superhydrophilic anti-fouling composite mesh membrane[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4079-4091.

水性超亲水耐污复合涂层网膜的制备及其长效油水分离性能

基金项目: 国家自然科学基金 (52071076);
详细信息
    通讯作者:

    于照鹏,博士,讲师,研究方向为表界面功能材料 E-mail: yuzhaopeng@cslg.edu.cn

    张友法,博士,教授,博士生导师,研究方向为表界面功能材料 E-mail: yfzhang@seu.edu.cn

  • 中图分类号: TB332

Preparation and enduring effect oil-water separation performance of water-based superhydrophilic anti-fouling composite mesh membrane

Funds: National Natural Science Foundation of China(No. 52071076);
  • 摘要: 石油化工和机械制造等领域普遍存在含油污水,直接排放不仅浪费水、油资源,污染生态环境,还影响人类与其他生物的生存与健康。传统的油水分离方法局限性强、经济性差、分离效率不高。滤芯、滤网容易被油污堵塞,长期水泡工况下容易损坏,寿命不够长,且难以通过清洗循环使用。本文以316不锈钢丝网为基底,研发了耐长期水泡且耐油污染的超亲水水下疏油网膜。通过优选水性丙烯酸与水性环氧清漆共混树脂作为粘结剂,对基底采用植酸预处理,采用一步喷涂法制备出了纯水性涂层涂覆的超亲水水下疏油网膜。对不同含油污水的分离效率均能够达到98%以上,水通量能够达到14000 L/(m2·h·bar) 以上,耐油压为4.65 kPa。循环分离正己烷污水50次后,网膜的分离效率仍然能够达到98%以上。耐水泡180天后仍保持超亲水性及6500 L/(m2·h·bar) 以上的水通量。添加微量表面活性剂十二烷基硫酸钠,经过50次污染-清洗循环后,网膜的水通量衰减<50%。超亲水水下疏油网膜 (a) 对不同含油污水的分离效率,(b) 泡水180天期间水通量变化和 (c) 原油污染-清洗50次循环后水通量衰减情况

     

  • 图  1  超亲水网膜的制备示意图

    Figure  1.  Schematic diagram of preparation of the superhydrophilic mesh membrane

    图  2  环氧地坪漆与环氧清漆改性网膜泡水期间涂层变化

    Figure  2.  Changes of mesh membranes modified by the water-based epoxy floor and epoxy topcoat duration the water immersion

    图  3  (a) 水性丙烯酸树脂在不同预处理不锈钢丝网上的附着力,(b) 经不同预处理的丝网在空气中静置24 h后的光学照片

    Figure  3.  (a) Adhesion of water-based acrylic acid resin on different pretreated stainless steel meshes, (b) optical photos of different pretreated meshes after leaving in the air for 24 h

    图  4  超亲水网膜的润湿性:(a) 水接触角及水下CCl4接触角,(b) 空气中水滴铺展时间

    Figure  4.  Wettability of the superhydrophilic mesh membrane: (a) water contact angle and underwater contact angle of CCl4, (b) the spreading time of water droplet in air

    图  5  (a) 原始不锈钢丝网SEM,(b) 超亲水网膜形貌SEM

    Figure  5.  (a) SEM images of the original stainless steel mesh, (b) SEM images of the superhydrophilic mesh membrane

    图  6  (a) 植酸预处理制备的超亲水网膜用于分离正己烷/水混合物;(b) 油水分离原理示意图

    Figure  6.  (a) The N-hexane/water mixture was separated by the superhydrophilic mesh membrane pretreated by phytic acid; (b) Schematic diagram of oil-water separation principle

    图  7  (a) 超亲水网膜对不同含油污水的分离效率,(b) 循环分离正己烷污水50次超亲水网膜的分离效率,(c) 超亲水网膜的分离水通量

    Figure  7.  (a) Oil-water separation efficiency of the superhydrophilic mesh membrane for wastewater with different oils, (b) oil-water separation efficiency of superhydrophilic mesh membrane for wastewater with N-hexane after 50 separation cycles, (c) water flux of superhydrophilic mesh membrane during the separation

    图  8  超亲水网膜泡水180天期间:(a) 水滴铺展时间,(b) 水通量变化

    Figure  8.  Superhydrophilic mesh membrane was immersed into water for 180 days: (a) changes in spreading time, (b) changes in water flux

    图  9  超亲水网膜泡水180天内微观形貌的变化:(a) 泡水前,(b) 泡水50天,(c) 泡水80天,(d) 泡水120天,(e) 泡水150天,(f) 泡水180天

    Figure  9.  Changes in microscopic morphology of superhydrophilic mesh membrane after immersing into water for 180 days: (a) original, (b) 50 days, (c) 80 days, (d) 120 days, (e) 150 days, and (f) 180 days

    图  10  超亲水网膜润湿性的变化:(a) 不同pH环境浸泡24 h,(b) 在pH = 2、pH = 12的溶液中浸泡7天;超亲水网膜在不同pH溶液中浸泡7天后的表面形貌SEM:(c) pH = 2,(d) pH = 12

    Figure  10.  Changes in wettability of superhydrophilic mesh membrane after (a) immersing in different pH solutions for 24 h, (b) immersing in solutions of pH = 2 and pH = 12 for 7 days; SEM images of superhydrophilic mesh membrane after immersing in different pH solutions for 7 days: (c) pH = 2, (d) pH = 12

    图  11  (a) 原始不锈钢丝网无法脱附油污,(b) 超亲水网膜可有效脱附油污,(c) 干燥状态下粘附在超亲水网膜上的大豆油在水下快速自行脱附

    Figure  11.  (a) The original stainless steel mesh cannot desorb the oil, (b) the superhydrophilic mesh membrane can effectively desorb the oil, (c) the rapid self-desorption of the soybean oil adhered to the dry superhydrophilic mesh membrane underwater

    图  12  (a) 添加少量十二烷基硫酸钠后制得的超亲水网膜涂层SEM形貌;(b) 超亲水网膜及其加入SDS后分别经过原油污染-清洗50次循环后水通量衰减情况;(c) 100 g 砝码压力下1000 # 砂纸摩擦100次后超亲水网膜的润湿性变化

    Figure  12.  (a) SEM images of the superhydrophilic mesh membrane prepared by adding a small amount of sodium dodecyl sulfate; (b) Water flux attenuation of the superhydrophilic mesh membrane and after adding SDS suffering from 50 cycles of crude oil pollution and cleaning respectively; (c) Wettability change of superhydrophilic mesh membrane after 100 abrasion tests with 100 g weight and 1000 # sandpaper

  • [1] HOANG A T, Nižetić S, DUONG X Q, et al. Advanced super-hydrophobic polymer-based porous absorbents for the treatment of oil-polluted water[J]. Chemosphere,2021,277:130274. doi: 10.1016/j.chemosphere.2021.130274
    [2] GUPTA R K, DUNDERDALE G J, ENGLAND M W, et al. Oil/Water Separation Techniques: A Review of Recent Progresses and Future Directions[J]. Journal of Materials Chemistry A,2017,5(2):16025-16058.
    [3] ISMAIL N H, SALLEH W N W, ISMAIL A F, et al. Hydrophilic Polymer-Based Membrane for Oily Wastewater Treatment: A Review[J]. Seperation and Purification Technology,2020,233(3):116007.
    [4] LI S H, HUANG J Y, CHEN Z, et al. A Review on Special Wettability Textiles: Theoretical Models, Fabrication Technologies and Multifunctional Applications[J]. Journal of Materials Chemistry A,2017,5(4):31-55.
    [5] XU X T, WAN X Z, LI H N, et al. Oil-polluted water purification via the carbon-nanotubes-doped organohydrogel platform[J]. Nano Research,2022,15:5653-5662. doi: 10.1007/s12274-022-4118-8
    [6] YIN K, CHU D K, DONG X R, et al. Femtosecond Laser Induced Robust Periodic Nanoripple Structured Mesh for Highly Efficient Oil-Water Separation[J]. Nanoscale,2017,9(6):14229-14235.
    [7] ZHU Y Z, WANG D, JIANG L, et al. Recent Prgress in Developing Advanced Membranes for Emulsified Oil/Water Separation[J]. NPG Asia Materials,2014,6(7):120-131.
    [8] 邵云飞, 仲梁维. 重力沉降式油水分离技术的改进[J]. 通信电源技术, 2015, 32(8):174-177+193. doi: 10.3969/j.issn.1009-3664.2015.06.057

    SHAO Y F, ZHONG L W. The Improvement of Oil-Water Separation Technique Based on Gravittional Sedimentation[J]. Telecom Power Technology,2015,32(8):174-177+193(in Chinese). doi: 10.3969/j.issn.1009-3664.2015.06.057
    [9] 井博勋, 刘雅洁. 含油污水处理技术方法简述[J]. 天津化工, 2015, 29(9):9-10. doi: 10.3969/j.issn.1008-1267.2015.04.003

    JING B X, LIU Y J. Brief introduction of treatment technology of wastewater with oil[J]. Tianjin Chemical Industry,2015,29(9):9-10(in Chinese). doi: 10.3969/j.issn.1008-1267.2015.04.003
    [10] Ihaddadena S, Aberkanea D, Boukerrouia A, et al. Removal of methylene blue (basic dye) by coagulation-flocculation with biomaterials (bentonite and Opuntia ficus indica)[J]. Journal of Water Process Engineering,2022,49:102952. doi: 10.1016/j.jwpe.2022.102952
    [11] 毛雪慧, 徐明芳, 刘辉, 等. 光合细菌固定化及其处理含油废水的研究[J]. 农业环境科学学报, 2009, 28(11):1494-1499. doi: 10.3321/j.issn:1672-2043.2009.07.029

    MAO X H, XU M F, LIU H, et al. Immobilization of Photosynthetic Bacteria for Oily Wastewater Treatment[J]. Journal of Agro-Environment Science,2009,28(11):1494-1499(in Chinese). doi: 10.3321/j.issn:1672-2043.2009.07.029
    [12] 魏平方, 邓皓, 邹斌. 含油污水处理技术与发展趋势[J]. 油气田环境保护, 2000(12):34-36. doi: 10.3969/j.issn.1005-3158.2000.01.014

    WEI P F, DENG H, ZOU B. The Treatment Technology and Development Trend about Oily Sewage[J]. Environmental Protection of Oil & Gas Fields,2000(12):34-36(in Chinese). doi: 10.3969/j.issn.1005-3158.2000.01.014
    [13] 孙玉凤, 徐海波. 油水分离膜的应用与研究进展[J]. 现代化工, 2022, 42(6):59-63. doi: 10.16606/j.cnki.issn0253-4320.2022.06.013

    SUN Y F, XUN H B. Application and research progress on oil-water separation membrane[J]. Modern Chemical Industry,2022,42(6):59-63(in Chinese). doi: 10.16606/j.cnki.issn0253-4320.2022.06.013
    [14] 王瑶, 曾子康, 李秋雯, 等. 油水分离膜表面结构可控合成及性能研究[J]. 过程工程学报, 2022, 22(9):1297-1304.

    WANG Y, ZENG Z K, LI Q W, et al. Rational construction of hydrophobic interface to separate oil from water[J]. The Chinese Journal of Process Engineering,2022,22(9):1297-1304(in Chinese).
    [15] 闫红芹, 郑文瑞, 张桂玉, 等. 疏水/亲油丝瓜络制备及在油水分离中的应用[J]. 化工进展, 2021, 40(5):2893-2899. doi: 10.16085/j.issn.1000-6613.2020-2424

    YAN H Q, ZHENG W R, ZHANG G Y, et al. Preparation of hydrophobic/oleophilic luffa and its application in oil-water separation[J]. Chemical Industry and Engineering Progress,2021,40(5):2893-2899(in Chinese). doi: 10.16085/j.issn.1000-6613.2020-2424
    [16] ZHANG X Y, LI Z, LIU K S, et al. Bioinspired Multifunctional Foam with Self-Cleaning and Oil/Water Separation[J]. Advanced Functional Materials,2013,23(16):2881-2886.
    [17] 薛众鑫, 江雷. 仿生水下超疏油表面[J]. 高分子学报, 2012(17):1091-1101.

    XUE Z X, JIANG L. Bioinspired underwater superoleophobic surfaces[J]. ACTA POLYMERICA SINICA,2012(17):1091-1101(in Chinese).
    [18] FENG L, ZHANG Z Y, MAI Z H, et al. A Super-Hydrophobic and Super-Oleophilic Coating Mesh Film for the Separation of Oil and Water[J]. Angewandte Chemie-International Edition,2004,43(18):2012-2014.
    [19] SONG Y H, SHI L A, XING H Y, et al. A Magneto-Heated Ferrimagnetic Sponge for Continuous Recovery of Viscous Crude Oil[J]. Advanced Materials,2021,33(28):2100074.
    [20] LI F R, KONG W T, ZHAO X Z, et al. Multifunctional TiO2-Based Superoleophobic/Superhydrophilic Coating for Oil-Water Separation and Oil Purification[J]. ACS Applied Materials & Interfaces,2020,12(29):18074-18083.
    [21] ONGUN M Z, OGUZLAR S, KARTAL U, et al. Energy Harvesting Nanogenerators: Electrospun Beta-PVDF Nanofibers Accompanying ZnO NPs and ZnO@Ag NPs[J]. Solid State Sciences,2021,122(30):106772.
    [22] LI H, ZHANG J Q, ZHU L, et al. Reusable Membrane with Multifunctional Skin Layer for Effective Removal of Insoluble Emulsified Oils and Soluble Dyes[J]. Journal of Hazardous Materials,2021,415(31):125677.
    [23] GUO W W, WANG X, HUANG J L, et al. Construction of Durable Flame-Retardant and Robust Superhydrophobic Coatings on Cotton Fabrics for Water-Oil Separation Application[J]. Chemical Engineering Journal,2020,398(32):125661.
    [24] 李国滨, 刘海峰, 李金辉, 等. 超疏水材料的研究进展[J]. 高分子材料科学与工程, 2020, 36(33):142-150. doi: 10.16865/j.cnki.1000-7555.2020.0282

    LI G B, LIU H F, LI J H, et al. Progress in Research of Preparation of Superhydrophobic[J]. POLYMER MATERIALS SCIENCE AND ENGINEERING,2020,36(33):142-150(in Chinese). doi: 10.16865/j.cnki.1000-7555.2020.0282
    [25] LIU M, ZHENG Y, ZHAI J, et al. Bioinspired Super-Antiwetting Interfaces with Special Liquid-Solid Adhesion[J]. Accounts of Chemical Research,2010,43(57):368-377.
    [26] YOU H, SONG G, LIU Q, et al. A Facile Route for The Fabrication of A Superhydrophilic and Underwater Superoleophobic Phosphorylated PVA-Coated Mesh for Both Oil/Water Immiscible Mixture and Emulsion Separation[J]. Applied Surface Science,2021,537(58):624-635.
    [27] GE J L, ZONG D D, JIN Q, et al. Biomimetic and Superwettable Nanofibrous Skins for Highly Efficient Separation of Oil-in-Water Emulsions[J]. Advanced Functional Materials,2018,28(59):1705051.
    [28] BARKER J A, HENDERSON D. THEORIES OF LIQUIDS[J]. Annual Review of Physical Chemistry,1972,23(61):439.
    [29] CHEN C L, CHEN S, CHEN L, et al. Underoil Superhydrophilic Metal Felt Fabricated by Modifying Ultrathin Fumed Silica Coatings for the Separation of Water-in-Oil Emulsions[J]. ACS Applied Materials & Interfaces,2020,12(62):27663-27671.
    [30] 生态环境部生态环境监测司、法规与标准司. 水质石油类和动植物油类的测定红外分光光度法: HJ 637-2018[S]. 北京: 中国环境出版社, 2019.

    Department of Ecological Environment Monitoring, Department of Regulations and Standards, Ministry of Ecological Environment. Water quality—Determination of petroleum, animal fats and vegetable oils—Infrared spectrophotometry: HJ 637-2018[S]. Beijing: China Environmental Press, 2019(in Chinese).
    [31] 刘晓燕, 赵雨新, 赵海谦, 等. 刻蚀法制备超疏水金属表面的研究综述[J]. 功能材料与器件学报, 2019(4):8-10.

    LIU X Y, ZHAO Y X, ZHAO H Q, et al. A review on preparation of superhydrophobic metal surface by etching[J]. JOURNAL OF FUNCTIONAL MATERIALS AND DEVICES,2019(4):8-10(in Chinese).
    [32] YE L Q, ZHANG Y L, SONG C C, et al. A simple sol-gel method to prepare superhydrophilic silica coatings[J]. Materials letters,2017,188:316-318. doi: 10.1016/j.matlet.2016.09.043
    [33] Jung S W, Park S Y, Choi W J, et al. Organosilicate compound filler to increase the mechanical strength of superhydrophilic layer-by-layer assembled film[J]. Journal of Industrial and Engineering Chemistry,2020,84:332-339. doi: 10.1016/j.jiec.2020.01.015
    [34] KONG W T, LI F R, PAN Y L, et al. Hygro-responsive, Photo-decomposed Superoleophobic/Superhydrophilic Coating for On-Demand Oil-Water Separation[J]. ACS Applied Materials Interfaces,2021,13:35142-35152. doi: 10.1021/acsami.1c08500
    [35] YOU X, WU H, ZHANG R, et al. Metal-Coordinated Sub-10 nm Membranes for Water Purification[J]. Nature Communications,2019,15:313.
    [36] GUO W, WANG X, HUANG J, et al. Construction of Durable Flame-Retardant and Robust Superhydrophobic Coatings on Cotton Fabrics for Water-Oil Separation Application[J]. Chemical Engineering Journal,2020,398:125661. doi: 10.1016/j.cej.2020.125661
    [37] FU C, GU L, ZENG ZX, et al. One-Step Transformation of Metal Meshes to Robust Superhydrophobic and Superoleophilic Meshes for Highly Efficient Oil Spill Cleanup and Oil/Water Separation[J]. ACS Applied Materials and Interfaces,2020,12(1):1850-1857. doi: 10.1021/acsami.9b17052
    [38] XIE A, CUI J, YANG J, et al. Photo-Fenton Self-Cleaning Membranes with Robust Flux Recovery for An Efficient Oil/Water Emulsion Separation[J]. Journal of Materials Chemistry A,2019,7(14):8491-8502. doi: 10.1039/C9TA00521H
    [39] DENG W S, WANG G, TANG L, et al. One-Step Fabrication of Transparent Barite Colloid with Dual Superhydrophilicity for Anti-Crude Oil Fouling and Anti-Fogging[J]. Journal of Colloid and Interface Science,2022,608:186-192. doi: 10.1016/j.jcis.2021.09.178
    [40] TIAN D L, ZHANG X F, TIAN Y, et al. Photo-Induced Water-Oil Separation Based on Switchable Superhydrophobicity-Superhydrophilicity and Underwater Super-oleophobicity of the Aligned ZnO Nanorod Array-Coated Mesh Films[J]. Journal of Materials Chemistry A,2012,22:19652-19657. doi: 10.1039/c2jm34056a
    [41] ZHANG H W, QI J Y, CHE Y L, et al. Continuous and efficient oil/water separation by special wettability granular filter media[J]. Water Reuse,2022,12(2):242-259.
    [42] Zhang J Y, Fang W X, Zhang F, et al. Ultrathin microporous membrane with high oil intrusion pressure for effective oil/water separation[J]. Journal of Membrane Science,2020,608:118201. doi: 10.1016/j.memsci.2020.118201
    [43] OH S T, KI S K, RYU S G, et al. Performance Analysis of Gravity-Driven Oil−Water Separation Using Membranes with Special Wettability[J]. Langmuir,2019,35:7769-7782. doi: 10.1021/acs.langmuir.9b00993
    [44] LIU Y H, LI W, YUAN C, et al. Two-Dimensional Fluorinated Covalent Organic Frameworks with Tunable Hydrophobicity for Ultrafast Oil–Water Separation[J]. Angew. Chem.,2022,134:e202113348.
    [45] SONG M L, YU H Y, ZHU J Y, et al. Constructing Stimuli-Free Self-Healing, Robust and Ultrasensitive Biocompatible Hydrogel Sensors with Conductive Cellulose Nanocrystals[J]. Chemical Engineering Journal,2020,398:125547. doi: 10.1016/j.cej.2020.125547
    [46] TAO Q, HUANG S, LI X, et al. Counterion-Dictated Self-Cleaning Behavior of Polycation Coating upon Water Action: Macroscopic Dissection of Hydration of Anions[J]. Angewandte Chemie-International Edition,2020,59(67):14466-14472.
    [47] DENG W S, WANG G, TANG L, et al. Viscous Oil De-Wetting Surfaces Based on Robust Superhydrophilic Barium Sulfate Nanocoating[J]. ACS Applied Materials & Interfaces,2021,13(68):27674-27686.
  • 加载中
图(12)
计量
  • 文章访问数:  149
  • HTML全文浏览量:  70
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-07
  • 修回日期:  2022-12-15
  • 录用日期:  2022-12-25
  • 网络出版日期:  2023-02-17
  • 刊出日期:  2023-07-15

目录

    /

    返回文章
    返回