Photoelectrochemical cathodic protection performance of N, F-codoped SrTiO3/C3N4 composite photoanode
-
摘要: 为进一步提高SrTiO3的光响应范围并有效抑制其载流子复合的问题,本研究通过溶剂热法合成了N、F共掺杂的SrTiO3 (N、F-SrTiO3),并将N、F-SrTiO3与热缩聚法得到的C3N4混合并煅烧制备出了N、F-SrTiO3/C3N4复合材料,研究了其在模拟海水中对304不锈钢(304 SS)光电化学阴极保护的性能和强化机制。结果表明,光照时,在模拟海水中,N、F-SrTiO3/C3N4与304 SS耦连后的的光电流密度为11 μA/cm2,是SrTiO3光电流密度(2 μA/cm2)的5.5倍;N、F-SrTiO3/C3N4复合材料与304 SS耦联后开路电位为−0.52 V,比304 SS的自腐蚀电位(−0.18 V)负移了340 mV。而304 SS与SrTiO3耦联后开路电位仅负移了220 mV。N、F-SrTiO3/C3N4表现出更好的光电化学阴极保护效果的原因在于N、F共掺杂和C3N4复合两种改性方法协同增强了SrTiO3光吸收,提高电子空穴对的分离率。Abstract: To further enhance the light response range of SrTiO3 and effectively suppress the recombination of its charge carriers, this study synthesized N, F-codoped SrTiO3 (N, F-SrTiO3) using a solvothermal method. N,F-SrTiO3 was mixed with C3N4 obtained by thermal polymerization and calcined to fabricate the N,F-SrTiO3/C3N4 composite. The photoelectrochemical cathodic protection performance and strengthening mechanism of this composite material were investigated in simulated seawater for 304 stainless steel (304 SS). The results demonstrated that under illumination in simulated seawater, the photocurrent density of the N, F-SrTiO3/C3N4 coupled with 304 SS reached 11 μA/cm², which is 5.5 times that of pure SrTiO3 (2 μA/cm²). Additionally, the open-circuit potential of the N, F-SrTiO3/C3N4 coupled with 304 SS, was −0.52 V, which shifted negatively by 340 mV compared to the self-corrosion potential of 304 SS (−0.18 V). In comparison, the open-circuit potential of 304 SS coupled with SrTiO3 only shifted negatively by 220 mV. The superior photoelectrochemical cathodic protection properties of N, F-SrTiO3/C3N4 can be attributed to the synergistic enhancement of SrTiO3 photoabsorption and the increased electron-hole pair separation rate achieved by the codoping of N and F as well as the composite with C3N4.
-
Key words:
- SrTiO3 /
- co-doping /
- heterojunctions /
- photoelectrochemical cathodic protection[1]
-
表 1 SrTiO3基光阳极的光电化学阴极保护性能
Table 1. The PCP performance of SrTiO3-based photoanodes
Photoanode Metala OCP drop /mV Referrence Cr-doped SrTiO3 with H2 treatment 304 SS ~170 [4] SrTiO3 CS 270 [5] SrTiO3/g-C3N4 304 SS 300 [6] SrTiO3/TiO2 304 SS 270 [8] Ni3S2@TiO2/SrTiO3 304 SS 644 [10] SrTiO3 304 SS 240 [17] CeO2/SrTiO3 304 SS ~270 [18] SrTiO3/TiO2 403 SS ~500 [19] BaTiO3/SrTiO3 304 SS 230 [20] N、F-SrTiO3/C3N4 304 SS 340 This work Notes: a SS represents stainless steel and CS represents carbon steel. OCP means open circuit potential. -
[1] XU D, LIU Y, LIU Y, et al. A review on recent progress in the development of photoelectrodes for photocathodic protection: Design, properties, and prospects[J]. Materials & Design, 2021, 197: 109235. [2] SAJI V S. Review—Photoelectrochemical Cathodic Protection in The Dark: A Review of Nanocomposite and Energy-Storing Photoanodes[J]. Journal of The Electrochemical Society, 2020, 167(12): 121505. doi: 10.1149/1945-7111/abad70 [3] BU Y, AO J-P. A review on photoelectrochemical cathodic protection semiconductor thin films for metals[J]. Green Energy & Environment, 2017, 2(4): 331-362. [4] JING J, CHEN Z, BU Y, et al. Significantly enhanced photoelectrochemical cathodic protection performance of hydrogen treated Cr-doped SrTiO3 by Cr6+ reduction and oxygen vacancy modification[J]. Electrochimica Acta, 2019, 304: 386-395. doi: 10.1016/j.electacta.2019.03.020 [5] OHKO Y, SAITOH S, TATSUMA T, et al. Photoelectrochemical anticorrosion effect of SrTiO3 for carbon steel[J]. Electrochemical and Solid-State Letters, 2001, 5(2): B9-B12. [6] KONG C H, QING D, SU X Y, et al. Improved photoelectrochemical cathodic protection properties of a flower-like SrTiO3 photoanode decorated with g-C3N4[J]. Journal of Alloys and Compounds, 2022: 166629. [7] 王建省, 孔存辉, 曾雄丰, 等. F掺杂SrTiO3的制备及光电化学阴极保护性能研究[J]. 人工晶体学报, 2024, 53(4): 707-713. doi: 10.3969/j.issn.1000-985X.2024.04.017WANG Jiansheng, KONG Cunhui, ZENG Xiongfeng, et al. Preparation and Photoelectrochemical Cathodic Protection Properties of F-Doped SrTiO3[J]. Journal of Synthetic Crystals, 2024, 53(4): 707-713(in Chinese). doi: 10.3969/j.issn.1000-985X.2024.04.017 [8] 许进博, 董晓珠, 孔存辉, 等. SrTiO3/TiO2复合薄膜的制备及其光电化学阴极保护性能[J]. 复合材料学报, 2022, 39(8): 3922-3928.XU Jinbo, DONG Xiaozhu, KONG Cunhui, et al. Preparation of SrTiO3/TiO2 composite film for photoelectrochemical cathodic protection[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3922-3928(in Chinese). [9] BU Y, CHEN Z, AO J, et al. Study of the photoelectrochemical cathodic protection mechanism for steel based on the SrTiO3-TiO2 composite[J]. Journal of Alloys and Compounds, 2018, 731: 1214-1224. doi: 10.1016/j.jallcom.2017.10.165 [10] KONG L N, TANG X X, DU X R, et al. Surface engineering of TiO2@SrTiO3 heterojunction with Ni2S3 for efficient visible-light-driven photoelectrochemical cathodic protection[J]. Journal of Alloys and Compounds, 2022, 927: 166861. doi: 10.1016/j.jallcom.2022.166861 [11] ZHAO Y N, SU X Y, QING D, et al. WO3/SrTiO3 energy-storing heterojunction composite: a promising photoanode for photochemical cathodic protection in the dark[J]. Russian Journal of Physical Chemistry A, 2024, 98(4): 795-804. doi: 10.1134/S0036024424040319 [12] RUMAIZ A K, WOICIK J C, COCKAYNE E, et al. Oxygen vacancies in N doped anatase TiO2: Experiment and first-principles calculations[J]. Applied Physics Letters, 2009, 95(26): 262111. doi: 10.1063/1.3272272 [13] CORBY S, FRANCAS L, KAFIZAS A, et al. Determining the role of oxygen vacancies in the photoelectrocatalytic performance of WO3 for water oxidation[J]. Chemical Science, 2020, 11(11): 2907-2914. doi: 10.1039/C9SC06325K [14] ABDI M, MAHDIKHAH V, SHEIBANI S. Visible light photocatalytic performance of La-Fe co-doped SrTiO3 perovskite powder[J]. Optical Materials Mater, 2020, 102: 358-361. [15] MAMBA G, MISHRA A K. Graphitic carbon nitride (g-C3N4) nanocomposites: a new and exciting generation of visible light driven photocatalysts for environmental pollution remediation[J]. Applied Catalysis B: Environmental, 2016, 198: 347-377. doi: 10.1016/j.apcatb.2016.05.052 [16] XU D W, YANG M K. LIU Y, et al. Fabrication of an innovative designed SrTiO3 nanosheets/CdSe/polyaniline/graphene quaternary composite and its application as in-situ photocathodic protection coatings on 304 SS[J]. Journal of Alloys and Compounds, 2020, 822: 153685. doi: 10.1016/j.jallcom.2020.153685 [17] KONG C H, SU X Y, QING D, et al. Controlled synthesis of various SrTiO3 morphologies and their effects on photoelectrochemical cathodic protection performance[J]. Ceramics International, 2022, 48(14): 20228-20236. doi: 10.1016/j.ceramint.2022.03.302 [18] YANG Y, CHENG Y F. Bi-layered CeO2/SrTiO3 nanocomposite photoelectrode for energy storage and photocathodic protection[J]. Electrochimica Acta, 2017, 253: 134-141. doi: 10.1016/j.electacta.2017.09.044 [19] ZHU Y F, XU L, HU J, et al. Fabrication of heterostructured SrTiO3/TiO2 nanotube array films and their use in photocathodic protection of stainless steel[J]. Electrochimica Acta, 2014, 121: 361-368. doi: 10.1016/j.electacta.2013.12.178 [20] 庆达, 王建省, 苏新悦, 等. BaTiO3/SrTiO3复合薄膜的制备及其光电化学阴极保护性能[J]. 复合材料学报, 2024, 41(4): 1945-1953.QING Da, WANG Jiansheng, SU Xinyue, et al. Preparation of BaTiO3/SrTiO3 composite film and its photoelectrochemical cathodic protection performance[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 1945-1953(in Chinese). [21] HU F, LUO W, HU Y, et al. Insight into the kinetics and mechanism of visible-light photocatalytic degradation of dyes onto the P doped mesoporous graphitic carbon nitride[J]. Journal of Alloys and Compounds, 2019, 794: 594-605. doi: 10.1016/j.jallcom.2019.04.235
点击查看大图
计量
- 文章访问数: 26
- HTML全文浏览量: 26
- 被引次数: 0