Preparation and performance of graphene oxide /ZIF-7 composites
-
摘要:
金属有机框架(Metal organic frameworks,MOFs)因其大的比表面积和孔隙率、可调节的孔径和可变的功能基团等优点,在水资源净化领域吸引了越来越多的研究。但是MOFs材料在水中分散性差、不能长期稳定存在,对染料的吸附性能也有一定的限度,严重阻碍了它的实际应用。本文通过原位生长法制备了系列氧化石墨烯/ZIF-7复合材料(GZR-n)。实现了ZIF-7晶体在氧化石墨烯表面及其片层间的原位生长,部分ZIF-7晶体被氧化石墨烯包裹。由于氧化石墨烯表面的含氧官能团以及ZIF-7晶体在其表面的均匀装饰,为染料吸附提供了额外的活性位点和结合位点(π-π共轭作用和氢键作用),同时,复合材料形成的新孔隙,极大地增强了复合材料对染料的吸附性能。其最大吸附量较ZIF-7晶体分别提高了226%、302%和278%。 氧化石墨烯/ZIF-7复合材料的制备、形貌和吸附亚甲基蓝的对比 Abstract: ZIF-7 crystals were in situ grown on graphene oxide (Go) by three synthetic routes, and the resulting graphene oxide/ZIF-7 composites (GZR-n) were characterized by PXRD, FT-IR, SEM, TEM, and N2 isothermal adsorption-desorption. The effects of the synthetic routes on the growth, crystallinity, microscopic morphology and pore size of ZIF-7 crystals on graphene oxide were investigated. ZIF-7 crystals were grown on the surface and sheet of graphene oxide by three synthetic routes. The crystallinity of ZIF-7 crystals on GZR-n was significantly enhanced and some were wrapped by graphene oxide. The shape and size of ZIF-7 crystals growing on GZR-n were modulated by the synthesis routes. In particular, the ZIF-7 crystals were spherical particle with a dimeter of 50 nm in GZR-II. For GZR-I and GZR-III, the ZIF-7 crystals were regular polyhedron with a size of 200 nm. Additional, their dispersion properties in solvents, adsorption properties and kinetic simulations for organic dyes were explored. GZR-n showed good dispersion in methanol and chloroform. Compared with ZIF-7 crystals, the adsorption capacities of GZR-I, GZR-II and GZR-III for methylene blue were increased by 226%, 302% and 278%, respectively. The kinetic simulations indicated that the adsorption of GZR-II and GZR-III for methylene blue was chemisorption and that of GZR-I was physical adsorption.-
Key words:
- graphene oxide /
- metal organic framework /
- ZIF-7 /
- composite materials /
- dye adsorption
-
图 10 Go、ZIF-7晶体和GZR-n对亚甲基蓝的吸附量(a) Langmuir吸附等温线(b)Freundlich吸附等温线(c)
Figure 10. (a) The adsorption of Go, ZIF-7 and GZR-n for methylene blue, (b) Langmuir adsorption isotherm and (c) Freundlich adsorption isotherm
ce − Concentration at adsorption equilibrium; qe − Adsorption capacity at adsorption equilibrium
表 1 GZR-n的制备
Table 1. Experimental of GZR-n
GZR-na m(Zn(NO3)2·6 H2O)/g m(BIM)/g Route GZR-I 0.32 0.79 I GZR-II 0.80 1.99 II GZR-III 0.32 0.79 III NOTES: a Go/ZIF-7 composites (GZR-n, where n is the synthetic routes in the preparation process.) were prepared in DMF dispersion of graphene oxide by three routes; The molar ratio of Zn2+ to benzimidazole was kept at 4:25. 表 2 GZR-n对亚甲基蓝、甲基橙、孔雀石绿的平衡吸附容量
Table 2. Adsorption Capacity of MB, MO and MG onto GZR-n
adsorption qe /(mg·g−1) MB MO MG Go 6.45 9.16 11.29 ZIF-7 3.88 5.56 7.01 GZR-I 13.22 11.90 11.47 GZR-II 16.34 14.61 15.76 GZR-III 15.34 13.48 11.77 Notes: qe−Equilibrium adsorption capacity 表 3 Go、ZIF-7和GZR-n对亚甲基蓝的吸附动力学参数
Table 3. The adsorption kinetic parameter of Go, ZIF-7 and GZR-n for methylene blue
Sample Go ZIF-7 GZR-I GZR-II GZR-III Experimental qe/(mg·g−1) 6.45 3.88 13.22 16.34 15.34 Calculated qe/(mg·g−1) 6.38 3.77 12.99 16.34 16.07 Pseudo
first-order kinetick1/min 0.869 0.745 0.737 0.841 0.707 R2 0.960 0.799 0.951 0.848 0.890 Pseudo second-order kinetic k2/(g·mmol−1·min−1) 0.066 0.085 0.008 0.003 0.003 R2 0.994 0.979 0.939 0.905 0.895 Notes: R2−Fitting constant; qe−Equilibrium adsorption capacity; k−Adsorption kinetics constant. 表 4 Go、ZIF-7和GZR-n对亚甲基蓝的吸附等温线参数
Table 4. The Adsorption isotherm parameters of Go, ZIF-7 and GZR-n for methylene blue
Sample Go ZIF-7 GZR-I GZR-II GZR-III Langmuir adsorption isotherm R2 0.9379 0.7481 0.9843 0.8566 0.7705 Freundlich adsorption isotherm KF 1.884 1.2432 1.002 1.252 1.1466 1/n 0.5581 0.5238 1.1167 1.1127 1.2329 R2 0.8673 0.7171 0.9983 0.9972 0.9741 Notes: R2−Fittingconstant; KF−Freundlich constants related to adsorption capacity; n−Freundlich constants related to adsorption strength. -
[1] CHENG P, WANG C H, KANETI Y V, et al. Practical MOF Nanoarchitectonics: New Strategies for Enhancing the Processability of MOFs for Practical Applications[J]. Langmuir,2020,36(16):4231-4249. doi: 10.1021/acs.langmuir.0c00236 [2] LI S Z, HUO F W. Metal-organic framework composites: from fundamentals to applications[J]. Nanoscale,2015,7(17):7482-7501. doi: 10.1039/C5NR00518C [3] WANG P, LI X H, ZHANG P, et al. Transitional MOFs: Exposing Metal Sites with Porosity for Enhancing Catalytic Reaction Performance[J]. ACS Applied Materials & Interfaces,2020,12(21):23968-23975. [4] XU J, LIU J, LI Z, et al. Optimized synthesis of Zr(iv) metal organic frameworks (MOFs-808) for efficient hydrogen storage[J]. New Journal of Chemistry,2019,43(10):4092-4099. doi: 10.1039/C8NJ06362A [5] LI C, HE N P, ZHAO X Z, et al. Chitosan/ZIF-8 Composite Beads Fabricated by In Situ Growth of MOFs Crystals on Chitosan Beads for CO2 Adsorption[J]. ChemistrySelect,2022,7(4):e202103927. [6] LIAN X, YAN B. Phosphonate MOFs Composite as Off-On Fluorescent Sensor for Detecting Purine Metabolite Uric Acid and Diagnosing Hyperuricuria[J]. Inorganic Chemistry,2017,56(12):6802-6808. doi: 10.1021/acs.inorgchem.6b03009 [7] 李禹红, 乔瑶雨, 李 超, 等. ZIF-8@PDMAPMA复合材料的构筑及其性能研究[J]. 高分子学报, 2021, 52(9):1174-1183. doi: 10.11777/j.issn1000-3304.2021.21041LI Yuhong, QIAO Yaoyu, LI Chao, et al. Fabrication and Properties of ZIF-8@PDMAPMA Composite Materials[J]. Acta Polymerica Sinica,2021,52(9):1174-1183(in Chinese). doi: 10.11777/j.issn1000-3304.2021.21041 [8] BEN T, LU C J, PEI C Y, et al. Polymer-Supported and Free-Standing Metal-Organic Framework Membrane[J]. Chemistry A European Journal,2012,18(33):10250-10253. doi: 10.1002/chem.201201574 [9] FAN L L, XUE M, KANG Z X, et al. Electrospinning technology applied in zeolitic imidazolate framework membrane synthesis[J]. Journal of Materials Chemistry,2012,22(48):25272-25276. doi: 10.1039/c2jm35401b [10] AGUADO S, CANIVET J, FARRUSSENG D. Facile shaping of an imidazolate-based MOF on ceramic beads for adsorption and catalytic applications[J]. Chemical Communications,2010,46(42):7999-8001. doi: 10.1039/c0cc02045a [11] LEE H A, MA Y F, ZHOU F, et al. Material-Independent Surface Chemistry beyond Polydopamine Coating[J]. Accounts of Chemical Research,2019,52(3):704-713. doi: 10.1021/acs.accounts.8b00583 [12] SHANG L, YU H J, HUANG X, et al. Well-Dispersed ZIF-Derived Co, N-Co-doped Carbon Nanoframes through Mesoporous-Silica-Protected Calcination as Efficient Oxygen Reduction Electrocatalysts[J]. ADVANCED MATERIALS,2016,28(8):1668-1674. doi: 10.1002/adma.201505045 [13] CHEN L Y, XU Q. Metal-Organic Framework Composites for Catalysis[J]. Matter,2019,1(1):57-89. doi: 10.1016/j.matt.2019.05.018 [14] CHEN Z L, WU R B, LIU Y, et al. Ultrafine Co Nanoparticles Encapsulated in Carbon-Nanotubes-Grafted Graphene Sheets as Advanced Electrocatalysts for the Hydrogen Evolution Reaction[J]. ADVANCED MATERIALS,2018,30(30):1802011. doi: 10.1002/adma.201802011 [15] HE N P, LI C, ZHAO X Z, et al. The lamellar MOFs@polymer networks hybrids fabricated in reversed microemulsion for efficient CO2 capture[J]. Polymers advanced technologies,2021,33(3):750-759. [16] TEPLENSKY M H, FANTHAM M, POUDEL C, etal. A Highly Porous Metal-Organic Framework System to Deliver Payloads for Gene Knockdown[J]. Chem,2019,5(11):2926-2941. doi: 10.1016/j.chempr.2019.08.015 [17] YANG S L, KARVE V V, JUSTIN A, et al. Enhancing MOF performance through the introduction of polymer guests[J]. Coordination Chemistry Reviews,2021,427:213525. doi: 10.1016/j.ccr.2020.213525 [18] 乔瑶雨, 张学辉, 赵晓竹, 等. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5):1181-1190.QIAO Yaoyu, ZHANG Xuehui, ZHAO Xiaozhu, et al. Preparation and Application of Graphene/Metal-Organic Frameworks Composites[J]. Progress in Chemistry,2022,34(5):1181-1190(in Chinese). [19] GEIM A K, NOVOSELOV K S. The rise of graphene[J]. Nature Materials,2007,6:183-191. doi: 10.1038/nmat1849 [20] QIAO Y Y, HE N P, ZHANG X H, et al. In situ growth of MOF crystals to synthesize a graphene oxide/ZIF-7 gel with enhanced adsorption capacity for methylene blue[J]. New Journal of Chemistry,2022,46(29):14103-14111. doi: 10.1039/D2NJ02293A [21] TKACHEV S V, BUSLAEVA E Y, NAUMKIN A V, et al. Reduced graphene oxide[J]. Inorganic Materials,2012,48(8):796-802. doi: 10.1134/S0020168512080158 [22] PARK S, AN J, JUNG I, et al. Colloidal Suspensions of Highly Reduced Graphene Oxide in a Wide Variety of Organic Solvents[J]. Nano Letters,2009,9(4):1593-1597. doi: 10.1021/nl803798y [23] KUMAR G, MASRAM D T. Sustainable Synthesis of MOF-5@GO Nanocomposites for Efficient Removal of Rhodamine B from Water[J]. ACS Omega,2021,6(14):9587-9599. doi: 10.1021/acsomega.1c00143 [24] ZHENG Y, ZHENG S S, XUE H G, et al. Metal-Organic Frameworks/Graphene-Based Materials: Preparations and Applications[J]. ADVANCED FUNCTIONALMATERIALS,2018,28(47):1804950. [25] PARK J S, GOO N I, KIM D E. Mechanism of DNA Adsorption and Desorption on Graphene Oxide[J]. Langmuir,2014,30(42):12587-12595. doi: 10.1021/la503401d [26] CAI W X, LEE T, LEE M, et al. Thermal Structural Transitions and Carbon Dioxide Adsorption Properties of Zeolitic Imidazolate Framework-7 (ZIF-7)[J]. Journal of the American Chemical Society,2014,136(22):7961-7971. doi: 10.1021/ja5016298 [27] XIAO T, LIU D X. Progress in the synthesis, properties and applications of ZIF-7 and its derivatives[J]. Materials Today Energy,2019,14:100357. doi: 10.1016/j.mtener.2019.100357 [28] ZHENG J, CHENG C, FANG W J, et al. Surfactant-free synthesis of a Fe3 O4@ZIF-8 core-shell heterostructure for adsorption of methylene blue[J]. CrystEngComm,2014,16(19):3960-3964. doi: 10.1039/c3ce42648c [29] PETIT C, BURRESS J, BANDOSZ T J. The synthesis and characterization of copper-based metal-organic framework/graphite oxide composites[J]. Carbon,2011,49(2):563-572. doi: 10.1016/j.carbon.2010.09.059 [30] LI S S, DAI J, YAN Q, et al. Effect of zeolitic imidazole framework (ZIFs) shells of core-shell microspheres on adsorption of Roselle red dye from water[J]. Inorganic Chemistry Communications,2018,97:113-118. doi: 10.1016/j.inoche.2018.09.015 [31] MARCANO D C, KOSYNKIN D V, BERLIN J M, et al. Improved synthesis of graphene oxide[J]. ACS Nano,2010,4(8):4806-4814. doi: 10.1021/nn1006368 [32] STOCK N, BISWAS S. Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites[J]. Chemical Reviews,2012,112(2):933-969. doi: 10.1021/cr200304e [33] KANG C H, LIN Y F, HUANG Y S, et al. Synthesis of ZIF-7/chitosan mixed-matrix membranes with improved separation performance of water/ethanol mixtures[J]. Journal of Membrane Science,2013,438:105-111. doi: 10.1016/j.memsci.2013.03.028 [34] YANG Q X, LU R, REN S S, et al. Three dimensional reduced graphene oxide/ZIF-67 aerogel: Effective removal cationic and anionic dyes from water[J]. Chemical Engineering Journal,2018,348:202-211. doi: 10.1016/j.cej.2018.04.176 [35] RATTANA, CHAIYAKUN S, WITIT-ANUN N, et al. Preparation and characterization of graphene oxide nanosheets[J]. Procedia Engineering,2012,32:759-764. doi: 10.1016/j.proeng.2012.02.009 [36] STRANKOWSKI M, WTOdDARCZYK D, PISZCZYK A, et al. Polyurethane Nanocomposites Containing Reduced Graphene Oxide, FTIR, Raman, and XRD Studies[J]. Journal of Spectroscopy,2016,2016:1-6. [37] HUANG A S, LIU Q, WANG N Y, et al. Bicontinuous Zeolitic Imidazolate Framework ZIF-8@GO Membrane with Enhanced Hydrogen Selectivity[J]. Jouranl of the American Chemical Society,2014,136(42):14686-14689. doi: 10.1021/ja5083602 [38] SAHIN F, TOPUZ B, KALIPCILAR H. Synthesis of ZIF-7, ZIF-8, ZIF-67 and ZIF-L from recycled mother liquors[J]. Microporous Mesoporous Materials,2018,261:259-267. doi: 10.1016/j.micromeso.2017.11.020 [39] JIANG D N, CHEN M, WANG H, et al. The application of different typological and structural MOFs-based materials for the dyes adsorption[J]. Coordination Chemistry Reviews,2019,380:471-483. doi: 10.1016/j.ccr.2018.11.002 [40] GUO H Y, JIAO T F, ZHANG Q R, et al. Preparation of Graphene Oxide-Based Hydrogels as Efficient Dye Adsorbents for Wastewater Treatment[J]. Nanoscale Research Letters,2015,10(1):272. doi: 10.1186/s11671-015-0931-2 [41] HASAN Z, JHUNG S H. Removal of hazardous organics from water using metal-organic frameworks (MOFs): Plausible mechanisms for selective adsorptions[J]. Journal of Hazardous Materials,2015,283:329-339. doi: 10.1016/j.jhazmat.2014.09.046 [42] JABBARI V, VELETA J M, ZAREI-CHALESHTORI M, et al. Green synthesis of magnetic MOF@GO and MOF@CNT hybrid nanocomposites with high adsorption capacity towards organic pollutants[J]. Chemical Engineering Journal,2016,304:774-783. doi: 10.1016/j.cej.2016.06.034 -

计量
- 文章访问数: 269
- HTML全文浏览量: 121
- 被引次数: 0