留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧化石墨烯/ZIF-7复合材料的制备与性能

何乃普 张学辉 赵学瑞 乔瑶雨 李雯 赵晓竹 郭凤钏 李宗馨

何乃普, 张学辉, 赵学瑞, 等. 氧化石墨烯/ZIF-7复合材料的制备与性能[J]. 复合材料学报, 2022, 41(0): 1-10
引用本文: 何乃普, 张学辉, 赵学瑞, 等. 氧化石墨烯/ZIF-7复合材料的制备与性能[J]. 复合材料学报, 2022, 41(0): 1-10
Naipu HE, Xuehui ZHANG, Xuerui ZHAO, Yaoyu QIAO, Wen LI, Xiaozhu ZHAO, Fengchuan GUO, Zongxin LI. Preparation and performance of graphene oxide /ZIF-7 composites[J]. Acta Materiae Compositae Sinica.
Citation: Naipu HE, Xuehui ZHANG, Xuerui ZHAO, Yaoyu QIAO, Wen LI, Xiaozhu ZHAO, Fengchuan GUO, Zongxin LI. Preparation and performance of graphene oxide /ZIF-7 composites[J]. Acta Materiae Compositae Sinica.

氧化石墨烯/ZIF-7复合材料的制备与性能

基金项目: 甘肃省科技计划 (20 YF8 GA032)
详细信息
    通讯作者:

    何乃普,博士,教授,硕士生导师,研究方向为智能与功能高分子 E-mail: henaipu@mail.lzjtu.cn

  • 中图分类号: (TB333)

Preparation and performance of graphene oxide /ZIF-7 composites

Funds: Science and Technology Plan of Gansu Province(No. 20 YF8 GA032)
  • 摘要: 金属有机框架(Metal organic frameworks,MOFs)因其大的比表面积和孔隙率、可调节的孔径和可变的功能基团等优点,在水资源净化领域吸引了越来越多的研究。但是MOFs材料在水中分散性差、不能长期稳定存在,对染料的吸附性能也有一定的限度,严重阻碍了它的实际应用。本文通过原位生长法制备了系列氧化石墨烯/ZIF-7复合材料(GZR-n)。实现了ZIF-7晶体在氧化石墨烯表面及其片层间的原位生长,部分ZIF-7晶体被氧化石墨烯包裹。由于氧化石墨烯表面的含氧官能团以及ZIF-7晶体在其表面的均匀装饰,为染料吸附提供了额外的活性位点和结合位点(π-π共轭作用和氢键作用),同时,复合材料形成的新孔隙,极大地增强了复合材料对染料的吸附性能。其最大吸附量较ZIF-7晶体分别提高了226%、302%和278%。氧化石墨烯/ZIF-7复合材料的制备、形貌和吸附亚甲基蓝的对比

     

  • 图  1  采用三种合成方法制备石墨烯/ZIF-7复合材料(GZR-n,其中n为制备过程中的合成路线)

    Figure  1.  Preparation of graphene/ZIF-7 composites (GZR-n, where n is the synthetic route in the preparation process) by three synthetic routes.

    图  2  氧化石墨烯(Go)、ZIF-7晶体和GZR-n的PXRD图谱

    Figure  2.  PXRD patterns of graphene oxide (Go), ZIF-7 crystals and GZR-n

    图  3  Go、ZIF-7晶体和GZR-n的FT-IR光谱图

    Figure  3.  FT-IR of Go, ZIF-7 crystals and GZR-n

    图  4  ZIF-7晶体和GZR-n的N2吸附-脱附等温线(a)和孔径分布(b)

    Figure  4.  (a) N2 adsorption-desorption isotherms and (b) pore distribution of ZIF-7 crystals and GZR-n.

    图  5  SEM 图:(a) Go, (b) ZIF-7 crystals, (c, d) GZR-I, (e, f) GZR-II 和 (g, h) GZR-III

    Figure  5.  SEM images of (a) Go, (b) ZIF-7 crystals, (c, d) GZR-I, (e, f) GZR-II and (g, h) GZR-III

    图  6  TEM 图:(a) Go, (b) ZIF-7, (c, d) GZR-I, (e, f) GZR-II 和(g, h) GZR-III

    Figure  6.  TEM images of (a) Go, (b) ZIF-7, (c, d) GZR-I, (e, f) GZR-II and (g, h) GZR-III

    图  7  ZIF-7晶体, Go和GZR-n的分散性:(a)石油醚, (b)苯, (c)氯仿, (d)乙酸乙酯, (e)甲醇, (f)乙酸, (g)水

    Figure  7.  Solubility and dispersibility of ZIF-7 crystals, Go and GZR-n in polar solutions (a) Petroleum ether, (b) Benzene, (c) Chloroform, (d) Ethyl acetate, (e) Methanol, (f) Acetic acid, (g)water.

    图  9  Go、ZIF-7晶体和GZR-n对亚甲基蓝吸附的动力学模拟(a)伪一级动力学模拟和(b)伪二级动力学模拟

    Figure  9.  (a) Pseudo first-order kinetics simulation and (b) pseudo second-order kinetics simulation of methylene blue adsorption capacity of Go, ZIF-7 crystals and GZR-n

    qe−Equilibrium adsorption capacity

    图  8  Go、ZIF-7和GZR-n对MB的吸附作用

    Figure  8.  Adsorption of Go, ZIF-7 and GZR-n for MB

    t − Adsorption time; qt − Adsorption capacity at time t

    图  10  Go、ZIF-7晶体和GZR-n对亚甲基蓝的吸附量(a) Langmuir吸附等温线(b)Freundlich吸附等温线(c)

    Figure  10.  (a) The adsorption of Go, ZIF-7 and GZR-n for methylene blue, (b) Langmuir adsorption isotherm and (c) Freundlich adsorption isotherm

    ce − Concentration at adsorption equilibrium; qe − Adsorption capacity at adsorption equilibrium

    表  1  GZR-n的制备

    Table  1.   Experimental of GZR-n

    GZR-nam(Zn(NO3)2·6 H2O)/gm(BIM)/gRoute
    GZR-I0.320.79I
    GZR-II0.801.99II
    GZR-III0.320.79III
    NOTES: a Go/ZIF-7 composites (GZR-n, where n is the synthetic routes in the preparation process.) were prepared in DMF dispersion of graphene oxide by three routes; The molar ratio of Zn2+ to benzimidazole was kept at 4:25.
    下载: 导出CSV

    表  2  GZR-n对亚甲基蓝、甲基橙、孔雀石绿的平衡吸附容量

    Table  2.   Adsorption Capacity of MB, MO and MG onto GZR-n

    adsorptionqe /(mg·g−1)
    MBMOMG
    Go6.459.1611.29
    ZIF-73.885.567.01
    GZR-I13.2211.9011.47
    GZR-II16.3414.6115.76
    GZR-III15.3413.4811.77
    Notes: qe−Equilibrium adsorption capacity
    下载: 导出CSV

    表  3  Go、ZIF-7和GZR-n对亚甲基蓝的吸附动力学参数

    Table  3.   The adsorption kinetic parameter of Go, ZIF-7 and GZR-n for methylene blue

    SampleGoZIF-7GZR-IGZR-IIGZR-III
    Experimental qe/(mg·g−1) 6.45 3.88 13.22 16.34 15.34
    Calculated qe/(mg·g−1) 6.38 3.77 12.99 16.34 16.07
    Pseudo
    first-order kinetic
    k1/min 0.869 0.745 0.737 0.841 0.707
    R2 0.960 0.799 0.951 0.848 0.890
    Pseudo second-order kinetic k2/(g·mmol−1·min−1) 0.066 0.085 0.008 0.003 0.003
    R2 0.994 0.979 0.939 0.905 0.895
    Notes: R2−Fitting constant; qe−Equilibrium adsorption capacity; k−Adsorption kinetics constant.
    下载: 导出CSV

    表  4  Go、ZIF-7和GZR-n对亚甲基蓝的吸附等温线参数

    Table  4.   The Adsorption isotherm parameters of Go, ZIF-7 and GZR-n for methylene blue

    SampleGoZIF-7GZR-IGZR-IIGZR-III
    Langmuir adsorption isothermR20.93790.74810.98430.85660.7705
    Freundlich adsorption isothermKF1.8841.24321.0021.2521.1466
    1/n0.55810.52381.11671.11271.2329
    R20.86730.71710.99830.99720.9741
    Notes: R2−Fittingconstant; KF−Freundlich constants related to adsorption capacity; n−Freundlich constants related to adsorption strength.
    下载: 导出CSV
  • [1] CHENG P, WANG C H, KANETI Y V, et al. Practical MOF Nanoarchitectonics: New Strategies for Enhancing the Processability of MOFs for Practical Applications[J]. Langmuir,2020,36(16):4231-4249. doi: 10.1021/acs.langmuir.0c00236
    [2] LI S Z, HUO F W. Metal-organic framework composites: from fundamentals to applications[J]. Nanoscale,2015,7(17):7482-7501. doi: 10.1039/C5NR00518C
    [3] WANG P, LI X H, ZHANG P, et al. Transitional MOFs: Exposing Metal Sites with Porosity for Enhancing Catalytic Reaction Performance[J]. ACS Applied Materials & Interfaces,2020,12(21):23968-23975.
    [4] XU J, LIU J, LI Z, et al. Optimized synthesis of Zr(iv) metal organic frameworks (MOFs-808) for efficient hydrogen storage[J]. New Journal of Chemistry,2019,43(10):4092-4099. doi: 10.1039/C8NJ06362A
    [5] LI C, HE N P, ZHAO X Z, et al. Chitosan/ZIF-8 Composite Beads Fabricated by In Situ Growth of MOFs Crystals on Chitosan Beads for CO2 Adsorption[J]. ChemistrySelect,2022,7(4):e202103927.
    [6] LIAN X, YAN B. Phosphonate MOFs Composite as Off-On Fluorescent Sensor for Detecting Purine Metabolite Uric Acid and Diagnosing Hyperuricuria[J]. Inorganic Chemistry,2017,56(12):6802-6808. doi: 10.1021/acs.inorgchem.6b03009
    [7] 李禹红, 乔瑶雨, 李 超, 等. ZIF-8@PDMAPMA复合材料的构筑及其性能研究[J]. 高分子学报, 2021, 52(9):1174-1183. doi: 10.11777/j.issn1000-3304.2021.21041

    LI Yuhong, QIAO Yaoyu, LI Chao, et al. Fabrication and Properties of ZIF-8@PDMAPMA Composite Materials[J]. Acta Polymerica Sinica,2021,52(9):1174-1183(in Chinese). doi: 10.11777/j.issn1000-3304.2021.21041
    [8] BEN T, LU C J, PEI C Y, et al. Polymer-Supported and Free-Standing Metal-Organic Framework Membrane[J]. Chemistry A European Journal,2012,18(33):10250-10253. doi: 10.1002/chem.201201574
    [9] FAN L L, XUE M, KANG Z X, et al. Electrospinning technology applied in zeolitic imidazolate framework membrane synthesis[J]. Journal of Materials Chemistry,2012,22(48):25272-25276. doi: 10.1039/c2jm35401b
    [10] AGUADO S, CANIVET J, FARRUSSENG D. Facile shaping of an imidazolate-based MOF on ceramic beads for adsorption and catalytic applications[J]. Chemical Communications,2010,46(42):7999-8001. doi: 10.1039/c0cc02045a
    [11] LEE H A, MA Y F, ZHOU F, et al. Material-Independent Surface Chemistry beyond Polydopamine Coating[J]. Accounts of Chemical Research,2019,52(3):704-713. doi: 10.1021/acs.accounts.8b00583
    [12] SHANG L, YU H J, HUANG X, et al. Well-Dispersed ZIF-Derived Co, N-Co-doped Carbon Nanoframes through Mesoporous-Silica-Protected Calcination as Efficient Oxygen Reduction Electrocatalysts[J]. ADVANCED MATERIALS,2016,28(8):1668-1674. doi: 10.1002/adma.201505045
    [13] CHEN L Y, XU Q. Metal-Organic Framework Composites for Catalysis[J]. Matter,2019,1(1):57-89. doi: 10.1016/j.matt.2019.05.018
    [14] CHEN Z L, WU R B, LIU Y, et al. Ultrafine Co Nanoparticles Encapsulated in Carbon-Nanotubes-Grafted Graphene Sheets as Advanced Electrocatalysts for the Hydrogen Evolution Reaction[J]. ADVANCED MATERIALS,2018,30(30):1802011. doi: 10.1002/adma.201802011
    [15] HE N P, LI C, ZHAO X Z, et al. The lamellar MOFs@polymer networks hybrids fabricated in reversed microemulsion for efficient CO2 capture[J]. Polymers advanced technologies,2021,33(3):750-759.
    [16] TEPLENSKY M H, FANTHAM M, POUDEL C, etal. A Highly Porous Metal-Organic Framework System to Deliver Payloads for Gene Knockdown[J]. Chem,2019,5(11):2926-2941. doi: 10.1016/j.chempr.2019.08.015
    [17] YANG S L, KARVE V V, JUSTIN A, et al. Enhancing MOF performance through the introduction of polymer guests[J]. Coordination Chemistry Reviews,2021,427:213525. doi: 10.1016/j.ccr.2020.213525
    [18] 乔瑶雨, 张学辉, 赵晓竹, 等. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5):1181-1190.

    QIAO Yaoyu, ZHANG Xuehui, ZHAO Xiaozhu, et al. Preparation and Application of Graphene/Metal-Organic Frameworks Composites[J]. Progress in Chemistry,2022,34(5):1181-1190(in Chinese).
    [19] GEIM A K, NOVOSELOV K S. The rise of graphene[J]. Nature Materials,2007,6:183-191. doi: 10.1038/nmat1849
    [20] QIAO Y Y, HE N P, ZHANG X H, et al. In situ growth of MOF crystals to synthesize a graphene oxide/ZIF-7 gel with enhanced adsorption capacity for methylene blue[J]. New Journal of Chemistry,2022,46(29):14103-14111. doi: 10.1039/D2NJ02293A
    [21] TKACHEV S V, BUSLAEVA E Y, NAUMKIN A V, et al. Reduced graphene oxide[J]. Inorganic Materials,2012,48(8):796-802. doi: 10.1134/S0020168512080158
    [22] PARK S, AN J, JUNG I, et al. Colloidal Suspensions of Highly Reduced Graphene Oxide in a Wide Variety of Organic Solvents[J]. Nano Letters,2009,9(4):1593-1597. doi: 10.1021/nl803798y
    [23] KUMAR G, MASRAM D T. Sustainable Synthesis of MOF-5@GO Nanocomposites for Efficient Removal of Rhodamine B from Water[J]. ACS Omega,2021,6(14):9587-9599. doi: 10.1021/acsomega.1c00143
    [24] ZHENG Y, ZHENG S S, XUE H G, et al. Metal-Organic Frameworks/Graphene-Based Materials: Preparations and Applications[J]. ADVANCED FUNCTIONALMATERIALS,2018,28(47):1804950.
    [25] PARK J S, GOO N I, KIM D E. Mechanism of DNA Adsorption and Desorption on Graphene Oxide[J]. Langmuir,2014,30(42):12587-12595. doi: 10.1021/la503401d
    [26] CAI W X, LEE T, LEE M, et al. Thermal Structural Transitions and Carbon Dioxide Adsorption Properties of Zeolitic Imidazolate Framework-7 (ZIF-7)[J]. Journal of the American Chemical Society,2014,136(22):7961-7971. doi: 10.1021/ja5016298
    [27] XIAO T, LIU D X. Progress in the synthesis, properties and applications of ZIF-7 and its derivatives[J]. Materials Today Energy,2019,14:100357. doi: 10.1016/j.mtener.2019.100357
    [28] ZHENG J, CHENG C, FANG W J, et al. Surfactant-free synthesis of a Fe3 O4@ZIF-8 core-shell heterostructure for adsorption of methylene blue[J]. CrystEngComm,2014,16(19):3960-3964. doi: 10.1039/c3ce42648c
    [29] PETIT C, BURRESS J, BANDOSZ T J. The synthesis and characterization of copper-based metal-organic framework/graphite oxide composites[J]. Carbon,2011,49(2):563-572. doi: 10.1016/j.carbon.2010.09.059
    [30] LI S S, DAI J, YAN Q, et al. Effect of zeolitic imidazole framework (ZIFs) shells of core-shell microspheres on adsorption of Roselle red dye from water[J]. Inorganic Chemistry Communications,2018,97:113-118. doi: 10.1016/j.inoche.2018.09.015
    [31] MARCANO D C, KOSYNKIN D V, BERLIN J M, et al. Improved synthesis of graphene oxide[J]. ACS Nano,2010,4(8):4806-4814. doi: 10.1021/nn1006368
    [32] STOCK N, BISWAS S. Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites[J]. Chemical Reviews,2012,112(2):933-969. doi: 10.1021/cr200304e
    [33] KANG C H, LIN Y F, HUANG Y S, et al. Synthesis of ZIF-7/chitosan mixed-matrix membranes with improved separation performance of water/ethanol mixtures[J]. Journal of Membrane Science,2013,438:105-111. doi: 10.1016/j.memsci.2013.03.028
    [34] YANG Q X, LU R, REN S S, et al. Three dimensional reduced graphene oxide/ZIF-67 aerogel: Effective removal cationic and anionic dyes from water[J]. Chemical Engineering Journal,2018,348:202-211. doi: 10.1016/j.cej.2018.04.176
    [35] RATTANA, CHAIYAKUN S, WITIT-ANUN N, et al. Preparation and characterization of graphene oxide nanosheets[J]. Procedia Engineering,2012,32:759-764. doi: 10.1016/j.proeng.2012.02.009
    [36] STRANKOWSKI M, WTOdDARCZYK D, PISZCZYK A, et al. Polyurethane Nanocomposites Containing Reduced Graphene Oxide, FTIR, Raman, and XRD Studies[J]. Journal of Spectroscopy,2016,2016:1-6.
    [37] HUANG A S, LIU Q, WANG N Y, et al. Bicontinuous Zeolitic Imidazolate Framework ZIF-8@GO Membrane with Enhanced Hydrogen Selectivity[J]. Jouranl of the American Chemical Society,2014,136(42):14686-14689. doi: 10.1021/ja5083602
    [38] SAHIN F, TOPUZ B, KALIPCILAR H. Synthesis of ZIF-7, ZIF-8, ZIF-67 and ZIF-L from recycled mother liquors[J]. Microporous Mesoporous Materials,2018,261:259-267. doi: 10.1016/j.micromeso.2017.11.020
    [39] JIANG D N, CHEN M, WANG H, et al. The application of different typological and structural MOFs-based materials for the dyes adsorption[J]. Coordination Chemistry Reviews,2019,380:471-483. doi: 10.1016/j.ccr.2018.11.002
    [40] GUO H Y, JIAO T F, ZHANG Q R, et al. Preparation of Graphene Oxide-Based Hydrogels as Efficient Dye Adsorbents for Wastewater Treatment[J]. Nanoscale Research Letters,2015,10(1):272. doi: 10.1186/s11671-015-0931-2
    [41] HASAN Z, JHUNG S H. Removal of hazardous organics from water using metal-organic frameworks (MOFs): Plausible mechanisms for selective adsorptions[J]. Journal of Hazardous Materials,2015,283:329-339. doi: 10.1016/j.jhazmat.2014.09.046
    [42] JABBARI V, VELETA J M, ZAREI-CHALESHTORI M, et al. Green synthesis of magnetic MOF@GO and MOF@CNT hybrid nanocomposites with high adsorption capacity towards organic pollutants[J]. Chemical Engineering Journal,2016,304:774-783. doi: 10.1016/j.cej.2016.06.034
  • 加载中
计量
  • 文章访问数:  269
  • HTML全文浏览量:  121
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-09
  • 修回日期:  2022-12-13
  • 录用日期:  2022-12-15
  • 网络出版日期:  2023-01-03

目录

    /

    返回文章
    返回