留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低介电耐温改性空心SiO2填充含氟聚芳醚腈复合材料的制备及性能

杨威 詹迎青 奉庆萤 孙傲 董洪雨

杨威, 詹迎青, 奉庆萤, 等. 低介电耐温改性空心SiO2填充含氟聚芳醚腈复合材料的制备及性能[J]. 复合材料学报, 2022, 39(5): 2121-2132. doi: 10.13801/j.cnki.fhclxb.20210707.002
引用本文: 杨威, 詹迎青, 奉庆萤, 等. 低介电耐温改性空心SiO2填充含氟聚芳醚腈复合材料的制备及性能[J]. 复合材料学报, 2022, 39(5): 2121-2132. doi: 10.13801/j.cnki.fhclxb.20210707.002
YANG Wei, ZHAN Yingqing, FENG Qingying, et al. Preparation and properties of low dielectric and temperature-resistant poly (aryl ether nitrile) composites filled with modified hollow SiO2[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2121-2132. doi: 10.13801/j.cnki.fhclxb.20210707.002
Citation: YANG Wei, ZHAN Yingqing, FENG Qingying, et al. Preparation and properties of low dielectric and temperature-resistant poly (aryl ether nitrile) composites filled with modified hollow SiO2[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2121-2132. doi: 10.13801/j.cnki.fhclxb.20210707.002

低介电耐温改性空心SiO2填充含氟聚芳醚腈复合材料的制备及性能

doi: 10.13801/j.cnki.fhclxb.20210707.002
基金项目: 国家自然科学青年基金(51903215)
详细信息
    通讯作者:

    詹迎青,博士(后),副教授,硕士生导师,研究方向为特种功能高分子材料 E-mail:201599010032@swpu.edu.cn

  • 中图分类号: TB33

Preparation and properties of low dielectric and temperature-resistant poly (aryl ether nitrile) composites filled with modified hollow SiO2

  • 摘要: 开发低介电常数、低介电损耗和同时兼具耐温、高力学强度的聚合物介电材料对于满足5G领域的高性能介电材料具有重要的研究意义。采用含氟1H,1H,2H,2H-全氟取代癸基三乙氧基硅烷(PTES)对空心SiO2纳米粒子(HS)进行表面改性,并基于含氟聚芳醚腈共聚物(PEN-F),分别以流延法和相转换法制备了两种PTES改性HS填充的PEN-F复合材料(HS@PTES/PEN-F)。采用FTIR和1H NMR证实了PEN-F共聚物的成功合成;通过FTIR、TGA和XPS等技术手段表征了PTES改性的HS结构和形貌;同时研究了HS@PTES/PEN-F复合材料的介电性能、力学强度和热稳定性等。研究结果表明,经PTES改性后的HS纳米粒子在PEN-F基体树脂中具有较好的分散性与界面相容性。在介电性能方面,当改性SiO2纳米粒子填充含量为7wt%时,通过流延法制备的HS@PTES/PEN-F复合膜在1 kHz时介电常数达2.88,介电损耗为0.0198;通过相转换法制备的HS@PTES/PEN-F复合膜在1 kHz时介电常数达1.19,介电损耗为0.0043。在力学性能方面,以相转换法为例,改性SiO2纳米粒子填充含量为5wt%时,其拉伸强度和弹性模量分别达到10.34 MPa和365.32 MPa。此外,HS@PTES/PEN-F复合膜的玻璃化转变温度可达到160℃,具有较好的热稳定性。

     

  • 图  1  相转换法的制备过程

    Figure  1.  Preparation process of phase conversion method

    PEN-F—Fluorinated poly (aryl ether nitrile); NMP—N-methyl pyrrolidone

    图  2  PEN-F的核磁氢谱(a)和FTIR图谱(b)

    Figure  2.  1H NMR (a) and FTIR spectrum (b) of PEN-F

    图  3  HS的改性过程(a)、PTES的分子结构(b)、HS@PTES的微观形貌(c)以及PTES、HS和HS@PTES的FTIR图谱(d)

    Figure  3.  Modification process of HS (a), molecular structure of PTES (b), morphology of HS@PTES (c) and FTIR spectra of PTES, HS and HS@PTES (d)

    图  4  改性后HS@PTES的TEM图像

    Figure  4.  TEM images of the HS@PTES

    图  5  HS和HS@PTES的TG测试(a)及HS@PTES的XPS图谱(b)

    Figure  5.  TG test of HS and HS@PTES (a) and XPS spectrum of HS@PTES (b)

    图  6  流延法制备HS@PTES/PEN-F复合膜的拉伸强度(a)、弹性模量(b)和断裂伸长率(c)随HS@PTES填充含量的变化曲线

    Figure  6.  Change curves of tensile strength (a), elasticity modulus (b) and elongation at break (c) along with the filling content of HS@PTES of the HS@PTES/PEN-F composite film prepared by solution casting method

    图  7  相转换法制备不同HS@PTES含量HS@PTES/PEN-F复合膜的拉伸强度(a)、弹性模量(b)及断裂伸长率(c)

    Figure  7.  Tensile strength (a), elasticity modulus (b) and elongation at break (c) of the HS@PTES/PEN-F prepared by phase conversion method

    图  8  流延法(a)和相转换法(b) HS@PTES/PEN-F膜的断面SEM图像以及不同比例HS@PTES的流延法和相转换法HS@PTES/PEN-F膜的实物(c)

    Figure  8.  Cross-sectional SEM images of HS@PTES/PEN-F composite films prepared by solution casting method (a) and phase conversion method (b), as well as digital photos of HS@PTES/PEN-F composite films with different HS@PTES contents (c)

    图  9  流延法制备的HS@PTES含量为1wt% (a)、5wt% (c)和7wt% (e)的HS@PTES/PEN-F复合膜和相转换法制备的HS@PTES含量为1wt% (b)、5wt% (d)和7wt% (f)的HS@PTES/PEN-F复合膜截面微观形貌

    Figure  9.  Cross-sectional SEM images of HS@PTES/PEN-F composite films prepared by solution casting method with the HS@PTES loading content of 1wt% (a), 5wt% (c) and 7wt% (e), and prepared by phase conversion method with the HS@PTES loading content of 1wt% (b), 5wt% (d) and 7wt% (f)

    图  10  流延法制备HS@PTES/PEN-F膜的介电常数(a)和介电损耗(b)以及相转换法制备HS@PTES/PEN-F膜的介电常数(c)和介电损耗(d)

    Figure  10.  Dielectric constant (a) and dielectric loss (b) of the HS@PTES/PEN-F composite films prepared by solution casting method, dielectric constant (c) and dielectric loss (d) of the HS@PTES/PEN-F composite films prepared by phase conversion method

    图  11  1 kHz频率下流延法(a)和相转换法(b) HS@PTES/PEN-F膜的介电常数和损耗随HS@PTES的含量变化曲线

    Figure  11.  Changes of dielectric constant and dielectric loss of HS@PTES/PEN-F composite films with various loading contents of HS@PTES prepared by solution casting method (a) and phase conversion method (b) under 1 kHz frequency

    图  12  相转换法HS@PTES/PEN-F膜的DSC曲线

    Figure  12.  DSC curves of HS@PTES/PEN-F films prepared by phase conversion method

    表  1  含氟1H,1H,2H,2H-全氟取代癸基三乙氧基硅烷(PTES)改性空心SiO2(HS)填充的含氟聚芳醚腈复合材料(HS@PTES/PEN-F)铸膜液中各组分的比例

    Table  1.   Proportion of components in casting solution of fluorinated poly (aryl ether nitrile) composites filled with 1H, 2H, 2H-perfluorooctyltriethoxysilane (PTES) modified hollow silica (HS@PTES/PEN-F)

    SampleHS@PTES/gPEN-F/gNMP/mLHS@PTES content/wt%
    PEN-F 0 1.300 8.7 0
    1wt%HS@PTES/PEN-F 0.013 1.287 8.7 1
    3wt%HS@PTES/PEN-F 0.039 1.261 8.7 3
    5wt%HS@PTES/PEN-F 0.065 1.235 8.7 5
    7wt%HS@PTES/PEN-F 0.091 1.209 8.7 7
    下载: 导出CSV

    表  2  相关聚合物介电材料性能比较

    Table  2.   Performance comparison of related polymer dielectric materials

    SampleK (1 kHz)tanδ (1 kHz)Tensile strength/MPaTg/℃Ref.
    PI/POSS 2.56 0.012 62 [23]
    PE/SiO2 2.2 0.005 5.6 104 [24]
    F-GO/F-PI 2.09 0.0019 300 [25]
    PEN/SiO2 1.71 0.0047 50 175 [26]
    PI/SiO2 1.32 0.006 [27]
    HS@PTES/PEN-F 2.88 0.0198 101 This work
    HS@PTES/PEN-F 1.19 0.0043 10.34 160 This work
    Notes: K—Dielectric constant; tanδ—Dielectric loss; Tg—Glass transition temperature; PI—Polyimide; POSS—Polysesquisiloxane; PE—Polyethylene; F-GO—Fluorinated graphene oxide; F-PI—Fluorinated polyimidel.
    下载: 导出CSV
  • [1] LIU Y, QIAN C, QU L, et al. A bulk dielectric polymer film with intrinsic ultralow dielectric constant and outstanding comprehensive properties[J]. Chemistry of Materials,2015,27(19):6543-6549. doi: 10.1021/acs.chemmater.5b01798
    [2] SHI H, LIU X, LOU Y. Materials and micro drilling of high frequency and high speed printed circuit board: A review[J]. The International Journal of Advanced Manufacturing Technology,2018,100(4):827-841.
    [3] ZHANG J, TANG P, TIAN L, et al. 6–100 GHz research progress and challenges from a channel perspective for fifth generation (5G) and future wireless communication[J]. Science China Information Sciences,2017,60(8):1-18.
    [4] 陆亚宁. 低介电常数POSS/聚芳醚酮复合材料的制备及其性能研究[D]. 吉林: 吉林大学, 2017.

    LU Yaning. Preparation and properties of POSS/poly (aryl ether ketone) composites with low dielectric constant[D]. Jilin: Jilin University, 2017(in Chinese).
    [5] 杨盟辉. 高频PCB基材介电常数与介电损耗的特性与改性进展[J]. 印制电路信息, 2009(4):27-31.

    YANG Menghui. Characteristics and modification progress of dielectric constant and dielectric loss of high frequency PCB substrate[J]. Printed Circuit Information,2009(4):27-31(in Chinese).
    [6] 李鸿韬. 低介电常数聚酰亚胺复合薄膜的制备及性能研究[D]. 安徽: 中国科学院大学, 2020.

    LI Hongtao. Preparation and properties of polyimide composite films with low dielectric constant[D]. Anhui: University of Chinese Academy of Sciences, 2020(in Chinese).
    [7] 潘晨. 聚四氟乙烯材料介电和导热性能研究[D]. 陕西: 西北工业大学, 2019.

    PAN Chen. Study on dielectric and thermal conductivity of polytetrafluoroethylene materials[D]. Shaanxi: Northwest University of Technology, 2019(in Chinese).
    [8] WANG J Y, YANG S Y, HUANG Y L, et al. Preparation and properties of graphene oxide/polyimide composite films with low dielectric constant and ultrahigh strength via in situ polymerization[J]. Journal of Materials Chemistry,2011,21(35):13569-13575. doi: 10.1039/c1jm11766a
    [9] CHENG Y, CHEN W, LI Z, et al. Hydrolysis and condensation of a benzocyclobutene-functionalized precursor for the synthesis of high performance low-K polymers[J]. RSC Advances,2017,7(24):14406-14412. doi: 10.1039/C7RA00141J
    [10] CHAO Q, FAN Z, ZHENG W. A facile strategy for non-fluorinated intrinsic low-k and low-loss dielectric polymers: Valid exploitation of secondary relaxation behaviors[J]. Chinese Journal of Polymer Science,2020,38(1):213-219.
    [11] 皇甫梦鸽, 李一丹, 张燕, 等. 面向5G应用需求的低介电高分子材料研究与应用进展[J]. 绝缘材料, 2020, 8(53):1-9.

    HUANG Fumengge, LI Yidan, ZHANG Yan, et al. Progress in research and application of low dielectric polymer materials for 5G applications[J]. Insulation Materials,2020,8(53):1-9(in Chinese).
    [12] YOU Y, LIU S, TU L, et al. Controllable fabrication of poly(arylene ether nitrile) dielectrics for thermal-resistant film capacitors[J]. Macromolecules,2019,52(15):5850-5859. doi: 10.1021/acs.macromol.9b00799
    [13] 唐晓赫. 氧化石墨烯/聚芳醚腈复合材料的制备及在薄膜电容器中的应用[D]. 四川: 电子科技大学, 2019.

    TANG Xiaohe. Preparation of graphene oxide/poly (arylene ether nitrile) composite and its application in thin film capacitor[D]. Sichuan: University of Electronic Science and Technology, 2019(in Chinese).
    [14] WEI J, MENG X, CHEN X, et al. Facile synthesis of fluorinated poly(arylene ether nitrile) and its dielectric properties[J]. Journal of Applied Polymer Science,2018,135(47):46837-46844. doi: 10.1002/app.46837
    [15] CHENG Y L, LIN Y L, LEE C Y, et al. Electrical characteristics and reliability of nitrogen-stuffed porous low-k SiOCH/Mn2O3-xN/Cu integration[J]. Molecules,2019,24(21):3882-3894. doi: 10.3390/molecules24213882
    [16] 魏东阳. SiO2空心球及氧化石墨烯协同改性聚酰亚胺低介电常数复合薄膜的研究[D]. 黑龙江: 哈尔滨理工大学, 2016.

    WEI Dongyang. Study on low dielectric constant polyimide composite film co modified by SiO2 hollow spheres and graphene oxide[D]. Heilongjiang: Harbin University of Science and Technology, 2016(in Chinese).
    [17] ZHANG G, ZHAN Y, HE S, et al. Construction of superhydrophilic/underwater superoleophobic polydopamine-modified h-BN/poly (arylene ether nitrile) composite membrane for stable oil-water emulsions separation[J]. Polymers for Advanced Technologies,2020,31(5):1007-1018. doi: 10.1002/pat.4835
    [18] ZHAN Y, WAN X, HE S, et al. Design of durable and efficient poly(arylene ether nitrile)/bioinspired polydopa-mine coated graphene oxide nanofibrous composite membrane for anionic dyes separation[J]. Chemical Engi-neering Journal,2018,333(1):132-145.
    [19] WAN X, ZHAN Y, ZENG G, et al. Nitrile functionalized halloysite nanotubes/poly(arylene ether nitrile) nanocompo-sites: Interface control, characterization, and improved properties[J]. Applied Surface Science,2017,393(30):1-10.
    [20] 王海. 含氟低介电常数有机材料研究进展[J]. 有机氟工业, 2020, 1(2):30-34.

    WANG Hai. Research progress of fluorine containing organic materials with low dielectric constant[J]. Organic Fluorine Industry,2020,1(2):30-34(in Chinese).
    [21] 金霞, 张立欣, 鲁思如, 等. 低吸水率和低介电损耗PTFE/SiO2复合材料制备[J]. 工程塑料应用, 2020, 48(7):33-37. doi: 10.3969/j.issn.1001-3539.2020.07.007

    JIN Xia, ZHANG Lixin, LU Siru, et al. Preparation of low water absorption and dielectric loss PTFE/SiO2 composites[J]. Application of Engineering Plastics,2020,48(7):33-37(in Chinese). doi: 10.3969/j.issn.1001-3539.2020.07.007
    [22] 廖凌元, 彭忠泉, 章明秋, 等. 高频印制电路板用低介电高分子材料的研究进展[J]. 功能高分子学报, 2021, 4(34):1-16.

    LIAO Lingyuan, PENG Zhongquan, ZHANG Mingqiu, et al. Research progress of low dielectric polymer materials for high frequency printed circuit board[J]. Acta Functional Polymer Sinica,2021,4(34):1-16(in Chinese).
    [23] WANG C Y, CHEN W T, ZHAO X Y, et al. Fluorinated polyimide/POSS hybrid polymers with high solubility and low dielectric constant[J]. Chinese Journal of Polymer Science,2016,11(34):1363−1372.
    [24] YANG X P, SHAN Y X, HUANG Y W, et al. Polyethylene/silica nanorod composites with reduced dielectric constant and enhanced mechanical strength[J]. Journal of Applied Polymer Science,2018,9(136):47143.
    [25] YIN X D, FENG Y Y, FENG W, et al. Highly transparent, strong, and flexible fluorographene/fluorinated polyimide nanocomposite films with low dielectric constant[J]. Journal of Materials Chemistry C,2018,24(6):6378-6384.
    [26] YI Q Q, ZHENG P L, LIU X B, et al. Design of bi-modal pore structure polyarylene ether nitrile/SiO2 foams with ultralow-k dielectric and wave transparent properties by supercritical carbon dioxide[J]. Composites Part B: Engineering,2019,15(173):106915.
    [27] LIU L P, LU F Z, ZHANG Y H, et al. Preparation of ultra-low dielectric constant silica/polyimide nanofiber membranes by electrospinning[J]. Composites Part A: Applied Science and Manufacturing,2016,5(84):292-298.
    [28] PU Z, XIA J, LIU X, et al. Novel polyethersulfone dielectric films with high temperature resistance, intrinsic low dielectric constant and low dielectric loss[J]. Journal of Materials Science: Materials in Electronics,2020,32(1):967-976.
    [29] ZHOU W, ZHANG Y, WANG J, et al. Lightweight porous polystyrene with high thermal conductivity by constructing 3D interconnected network of boron nitride nanosheets[J]. ACS Applied Materials & Interfaces,2020,12(41):46767-46778. doi: 10.1021/acsami.0c11543
    [30] PU Z, ZHENG X, XIA J, et al. Novel low-dielectric-constant fluorine-functionalized polysulfone with outstanding comprehensive properties[J]. Polymer International,2020,69(7):604-610. doi: 10.1002/pi.5995
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  1149
  • HTML全文浏览量:  433
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-10
  • 修回日期:  2021-06-20
  • 录用日期:  2021-06-30
  • 网络出版日期:  2021-07-07
  • 刊出日期:  2022-03-23

目录

    /

    返回文章
    返回