留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自洽聚类分析的2D C/SiC压缩性能快速预报

戴新航 许承海 王琨杰 高博

戴新航, 许承海, 王琨杰, 等. 基于自洽聚类分析的2D C/SiC压缩性能快速预报[J]. 复合材料学报, 2024, 41(8): 4359-4370. doi: 10.13801/j.cnki.fhclxb.20231206.002
引用本文: 戴新航, 许承海, 王琨杰, 等. 基于自洽聚类分析的2D C/SiC压缩性能快速预报[J]. 复合材料学报, 2024, 41(8): 4359-4370. doi: 10.13801/j.cnki.fhclxb.20231206.002
DAI Xinhang, XU Chenghai, WANG Kunjie, et al. Fast prediction of 2D C/SiC compression performance based on self-consistent clustering analysis[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 4359-4370. doi: 10.13801/j.cnki.fhclxb.20231206.002
Citation: DAI Xinhang, XU Chenghai, WANG Kunjie, et al. Fast prediction of 2D C/SiC compression performance based on self-consistent clustering analysis[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 4359-4370. doi: 10.13801/j.cnki.fhclxb.20231206.002

基于自洽聚类分析的2D C/SiC压缩性能快速预报

doi: 10.13801/j.cnki.fhclxb.20231206.002
详细信息
    通讯作者:

    高博,博士,助理教授,研究方向为复合材料热结构力学行为研究与不确定性量化 E-mail: 20230194@hit.edu.cn

  • 中图分类号: TB332

Fast prediction of 2D C/SiC compression performance based on self-consistent clustering analysis

  • 摘要: 本文利用自洽聚类分析(Self-consistent clustering analysis,SCA)方法研究了2D C/SiC在单轴压缩载荷下的渐进损伤行为,SCA方法通过应变集中张量对网格单元进行聚类,在不显著降低计算精度的前提下,大幅度降低了模型的自由度,使模型的计算效率得以提高。整个方法由离线和在线两个阶段组成:离线阶段,利用 k-means算法对高保真度的复合材料单胞进行分解、聚类并计算不同聚类间的相互作用张量,最终生成降阶模型;在线阶段,基于降阶模型求解离散的Lippmann-Schwinger方程组获取力学响应。将SCA方法应用于2D C/SiC压缩强度的预报,当聚类总数量为64时,与试验相比,压缩强度求解的计算精度与传统有限元相比降低了1%,但整体计算效率提升了34倍。当不考虑离线阶段花费的聚类时间,即事先已知材料的细观构型对其力学行为进行求解时,其一次在线计算的时间仅为6 s,计算效率比传统有限元提升了10 4倍,在结构性能快速设计、结构状态快速预报等领域,有着广阔的应用前景。

     

  • 图  1  自洽聚类分析(SCA)计算流程图

    RVE—Representative volume element; FEM—

    Figure  1.  Self-consistent clustering analysis (SCA) calculation flow chart

    图  2  聚类算法示意图

    Figure  2.  Clustering analysis diagram

    图  3  2D C/SiC复合材料的显微形貌

    Figure  3.  Microstructure of 2D C/SiC composites

    图  4  2D C/SiC的RVE

    Figure  4.  RVE of 2D C/SiC

    图  5  2D C/SiC纤维束的微观结构

    Figure  5.  Microstructure of 2D C/SiC fiber bundles

    图  6  2D C/SiC断裂表面的SEM图像

    Figure  6.  SEM image of 2D C/SiC fracture surface

    图  7  2D C/SiC试样的原位变形

    Figure  7.  In-situ deformation of 2D C/SiC specimen

    图  8  碳化硅基体聚类可视化结果

    Figure  8.  Visualization results of silicon carbide matrix clustering

    图  9  碳纤维束两次聚类示意图

    Figure  9.  Twice clustering diagram of carbon fiber bundles

    图  10  碳纤维束聚类可视化结果

    Figure  10.  Visualization results of carbon fiber bundle clustering

    图  11  2D C/SiC单轴压缩试验、FEM、SCA应力-应变曲线

    Figure  11.  Test, FEM, SCA stress-strain curves of 2D C/SiC under uniaxial compression load

    图  12  碳纤维束和碳化硅基体损伤变量

    Figure  12.  Damage variables of carbon fiber bundles and silicon carbide matrix

    图  13  2D C/SiC的应力云图

    Figure  13.  Stress cloud of 2D C/SiC

    表  1  代表性体积单元(RVE)几何参数

    Table  1.   Representative volume element (RVE) geometric parameters

    Parameter Mean value/mm
    Long axis of fiber bundle 2 a 0.80
    Short axis of fiber bundle 2 b 0.24
    Unit cell side length c 1.85
    Unit cell height 0.26
    下载: 导出CSV

    表  2  SiC基体和T300弹性常数

    Table  2.   SiC matrix and T300 elastic constants

    Elastic constant SiC T300 carbon fiber
    E 1(compress)/GPa 300.00 130.00
    E 2/GPa 40.00
    G 12/GPa 120.00 24.00
    ν 12 0.25 0.26
    ν 23 0.44
    下载: 导出CSV

    表  3  纤维束弹性常数

    Table  3.   Elastic constant of fiber bundle

    Parameter E 1/GPa E 2/GPa G 12/GPa ν 12 ν 23
    Value 173.38 66.80 40.06 0.25 0.43
    下载: 导出CSV

    表  4  有限元与SCA对2D C/SiC刚度性能的计算结果

    Table  4.   Results of FEM and SCA calculations for stiffness of 2D C/SiC

    Method Clustering combination E 11/GPa G 12/GPa
    FEM 130.8 46.2
    SCA Matrix: 32, Yarn: 32 127.6(2.5%) 45.9(0.6%)
    Matrix: 64, Yarn: 32 127.7(2.4%) 46.0(0.4%)
    Matrix: 128, Yarn: 32 128.1(2.1%) 46.0(0.4%)
    Matrix: 32, Yarn: 64 128.6(1.7%) 46.0(0.4%)
    Matrix: 32, Yarn: 128 128.8(1.5%) 46.1(0.2%)
    下载: 导出CSV

    表  5  2D C/SiC试验、FEM、SCA计算时间与计算结果

    Table  5.   Calculation time and results of test, FEM and SCA for 2D C/SiC

    Method Clustering combination Time/s Strength/MPa Error
    Experiment 382.7
    FEM 61200 364.4 4.8%
    Offline Online
    SCA Matrix: 32, Yarn: 32 1800 6 361.0 5.7%
    Matrix: 64, Yarn: 32 11 367.9 3.9%
    Matrix: 128, Yarn: 32 25 367.4 4.0%
    Matrix: 32, Yarn: 64 11 361.3 5.6%
    Matrix: 32, Yarn: 128 29 360.7 5.7%
    下载: 导出CSV
  • [1] 冯志海, 李俊宁, 田跃龙, 等. 航天先进复合材料研究进展[J]. 复合材料学报, 2022, 39(9): 4187-4195.

    FENG Zhihai, LI Junning, TIAN Yuelong, et al. Advances in advanced composites for aerospace[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4187-4195(in Chinese).
    [2] FAES J C, REZAEI A, VAN PAEPEGEM W, et al. Accuracy of 2D FE models for prediction of crack initiation in nested textile composites with inhomogeneous intra-yarn fiber volume fractions[J]. Composite Structures, 2016, 140: 11-20. doi: 10.1016/j.compstruct.2015.12.024
    [3] GUAN G, JIAO G, HUANG T. Experimental research on failure mechanism of a CVI-fabricated ceramic matrix composite under compression[J]. Key Engineering Materials, 2006, 326-328: 1841-1844. doi: 10.4028/www.scientific.net/KEM.326-328.1841
    [4] 程相伟, 张大旭, 杜永龙, 等. 基于X射线CT原位试验的平纹SiC f/SiC压缩损伤演化机理[J]. 上海交通大学学报, 2020, 54(10): 1074-1083.

    CHENG Xiangwei, ZHANG Daxu, DU Yonglong, et al. Compression damage evolution mechanism of flat SiC f/SiC based on X-ray CT in-situ test[J]. Journal of Shanghai Jiao Tong University, 2020, 54(10): 1074-1083(in Chinese).
    [5] 王奇志, 林慧星, 许赟泉. 二维编织陶瓷基复合材料偏轴拉伸力学性能预测[J]. 复合材料学报, 2018, 35(12): 3423-3432.

    WANG Qizhi, LIN Huixing, XU Yunquan. Prediction of off-axis tensile mechanical properties of two-dimensional braided ceramic matrix composites[J]. Acta MateriaeCompositae Sinica, 2018, 35(12): 3423-3432(in Chinese).
    [6] LIU G, ZHANG L, GUO L, et al. Multi-scale progressive failure simulation of 3D woven composites under uniaxial tension[J]. Composite Structures, 2019, 208: 233-243. doi: 10.1016/j.compstruct.2018.09.081
    [7] 刘文台, 程坤, 周何乐子, 等. 针刺C/C复合材料面内拉伸强度预测[J]. 复合材料学报, 2023, 40(2): 1142-1153.

    LIU Wentai, CHENG Kun, ZHOU Helezi, et al. Prediction of in-plane tensile strength of needle-punched C/C composites[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 1142-1153(in Chinese).
    [8] HE C, GAO J, LI H, et al. A data-driven self-consistent clustering analysis for the progressive damage behavior of 3D braided composites[J]. Composite Structures, 2020, 249: 112471. doi: 10.1016/j.compstruct.2020.112471
    [9] DVORAK G J, ZHANG J. Transformation field analysis of damage evolution in composite materials[J]. Journal of the Mechanics and Physics of Solids, 2001, 49(11): 2517-2541. doi: 10.1016/S0022-5096(01)00066-7
    [10] MICHEL J C, SUQUET P. Computational analysis of nonlinear composite structures using the nonuniform transformation field analysis[J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(48): 5477-5502.
    [11] DVORAK G J, BAHEI-EL-DIN Y A, WAFA A M. The modeling of inelastic composite materials with the transformation field analysis[J]. Modelling and Simulation in Materials Science and Engineering, 1994, 2(3A): 571. doi: 10.1088/0965-0393/2/3A/011
    [12] LIU Z, BESSA M A, LIU W K. Self-consistent clustering analysis: An efficient multi-scale scheme for inelastic heterogeneous materials[J]. Computer Methods in Applied Mechanics and Engineering, 2016, 306: 319-341. doi: 10.1016/j.cma.2016.04.004
    [13] SCHNEIDER M. On the mathematical foundations of the self-consistent clustering analysis for non-linear materials at small strains[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 354: 783-801. doi: 10.1016/j.cma.2019.06.003
    [14] MOJUMDER S, GAO J, LIU W K. Self-consistent clustering analysis for modeling of theromelastic heterogeneous materials[J]. AIP Conference Proceedings, 2021, 2324(1): 030029.
    [15] BAI X, BESSA M A, MELRO A R, et al. High-fidelity micro-scale modeling of the thermo-visco-plastic behavior of carbon fiber polymer matrix composites[J]. Composite Structures, 2015, 134: 132-141. doi: 10.1016/j.compstruct.2015.08.047
    [16] MACQUEEN J. Some methods for classification and analysis of multivariate observations [C] //Proc. Fifth Berkeley Symposium on Mathematical Statistics and Probability. 1967: 281-297.
    [17] 韩新星. 基于聚类分析的编织复合材料多尺度计算方法研究 [D]. 哈尔滨: 哈尔滨工业大学, 2020.

    HAN Xinxing. Study on multi-scale calculation method of braided composites based on cluster analysis [D]. Harbin: Harbin Institute of Technology, 2020(in Chinese).
    [18] LIU Z, KAFKA O L, YU C, et al. Data-driven self-consistent clustering analysis of heterogeneous materials with crystal plasticity [M]//OATE E, PERIC D, DE SOUZA NETO E, et al. Advances in computational plasticity: A book in honour of D Roger J Owen. Cham: Springer International Publishing, 2018: 221-242.
    [19] HASHIN Z. Failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics, 1980, 47(2): 329-334. doi: 10.1115/1.3153664
    [20] LAPCZYK I, HURTADO J A. Progressive damage modeling in fiber-reinforced materials[J]. Composites Part A:Applied Science and Manufacturing, 2007, 38(11): 2333-2341. doi: 10.1016/j.compositesa.2007.01.017
    [21] 徐凯. 2D C/C复合材料的力学性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2014.

    XU Kai. Study on the mechanical properties of 2D C/C composites [D]. Harbin: Harbin Institute of Technology, 2014(in Chinese).
    [22] ZHOU L, CHEN M, LIU C, et al. A multi-scale stochastic fracture model for characterizing the tensile behavior of 2D woven composites[J]. Composite Structures, 2018, 204: 536-547. doi: 10.1016/j.compstruct.2018.07.128
    [23] RAMAKRISHNAN N R, ARUNACHALAM V S. Effective elastic moduli of porous ceramic materials[J]. Journal of the American Ceramic Society, 1993, 76: 2745-2752. doi: 10.1111/j.1151-2916.1993.tb04011.x
    [24] 梁仕飞, 矫桂琼. 2.5维自愈合C/SiC复合材料弹性性能预测[J]. 固体力学学报, 2013, 34(2): 181-187. doi: 10.19636/j.cnki.cjsm42-1250/o3.2013.02.010

    LIANG Shifei, YOU Guiqiong. Prediction of elastic properties of 2.5D self-healing C/SiC composites[J]. Chinese Journal of Solid Mechanics, 2013, 34(2): 181-187(in Chinese). doi: 10.19636/j.cnki.cjsm42-1250/o3.2013.02.010
    [25] 董士博. 碳/碳化硅复合材料的高温力学性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2021.

    DONG Shibo. Research on high temperature mechanical properties of carbon/silicon carbide composites [D]. Harbin: Harbin Institute of Technology, 2021(in Chinese).
    [26] WANG L, WU J, CHEN C, et al. Progressive failure analysis of 2D woven composites at the meso-micro scale[J]. Composite Structures, 2017, 178: 395-405. doi: 10.1016/j.compstruct.2017.07.023
    [27] BUDIANSKY B, FLECK N A. Compressive failure of fibre composites[J]. Journal of the Mechanics and Physics of Solids, 1993, 41(1): 183-211. doi: 10.1016/0022-5096(93)90068-Q
    [28] GUO-DONG F, JUN L, YU W, et al. The effect of yarn distortion on the mechanical properties of 3D four-directional braided composites[J]. Composites Part A: Applied Science and Manufacturing, 2009, 40(4): 343-350. doi: 10.1016/j.compositesa.2008.12.007
    [29] American Society of Testing Materials. Standard test method for monotonic compressive strength testing of continuous fiber-reinforced advanced ceramics with solid rectangular cross-section test specimens at ambient temperatures: ASTM C1358—2018 [S]. West Conshohocken: ASTM International, 2018.
    [30] 纤维增强塑料压缩性能试验方法: GB/T 1448—2005 [S]. 北京: 中国标准出版社, 2005.

    Test method for compression performance of fiber reinforced plastics: GB/T 1448—2005 [S]. Beijing: China Standard Press, 2005(in Chinese).
  • 加载中
图(13) / 表(5)
计量
  • 文章访问数:  208
  • HTML全文浏览量:  146
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-11
  • 修回日期:  2023-11-09
  • 录用日期:  2023-11-29
  • 网络出版日期:  2023-12-07
  • 刊出日期:  2024-08-15

目录

    /

    返回文章
    返回