留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自洽聚类分析的2D C/SiC压缩性能快速预报

戴新航 许承海 王琨杰 高博

戴新航, 许承海, 王琨杰, 等. 基于自洽聚类分析的2D C/SiC压缩性能快速预报[J]. 复合材料学报, 2023, 42(0): 1-12.
引用本文: 戴新航, 许承海, 王琨杰, 等. 基于自洽聚类分析的2D C/SiC压缩性能快速预报[J]. 复合材料学报, 2023, 42(0): 1-12.
DAI Xinhang, XU Chenghai, WANG Kunjie, et al. Fast prediction of 2D C/SiC compression performance based on self-consistent clustering analysis[J]. Acta Materiae Compositae Sinica.
Citation: DAI Xinhang, XU Chenghai, WANG Kunjie, et al. Fast prediction of 2D C/SiC compression performance based on self-consistent clustering analysis[J]. Acta Materiae Compositae Sinica.

基于自洽聚类分析的2D C/SiC压缩性能快速预报

详细信息
    通讯作者:

    高博,博士,助理教授,研究方向为复合材料热结构力学行为研究与不确定性量化 E-mail: 20230194@hit.edu.cn

  • 中图分类号: TB332

Fast prediction of 2D C/SiC compression performance based on self-consistent clustering analysis

  • 摘要: 本文利用自洽聚类分析(Self-consistent Clustering Analysis,SCA)方法研究了2D C/SiC在单轴压缩载荷下的渐进损伤行为,SCA方法通过应变集中张量对网格单元进行聚类,在不显著降低计算精度的前提下,大幅度降低了模型的自由度,使得模型的计算效率得以提高。整个方法由离线和在线两个阶段组成:离线阶段,利用k-means算法对高保真度的复合材料单胞进行分解、聚类并计算不同聚类间的相互作用张量,最终生成降阶模型;在线阶段,基于降阶模型求解离散的Lippmann–Schwinger方程组获取力学响应。将SCA方法应用于2D C/SiC压缩强度的预报,当聚类总数量为64时,与试验相比,压缩强度求解的计算精度与传统有限元相比降低了1%,但整体计算效率提升了34倍。当不考虑离线阶段花费的聚类时间,即事先已知材料的细观构型对其力学行为进行求解时,其一次在线计算的时间仅为6 s,计算效率比传统有限元提升了104倍,在结构性能快速设计、结构状态快速预报等领域,有着广阔的应用前景。

     

  • 图  1  SCA计算流程图

    Figure  1.  SCA calculation flow chart

    图  2  聚类算法示意图

    Figure  2.  Clustering analysis diagram

    图  3  2D C/SiC复合材料显微形貌

    Figure  3.  Microstructure of 2D C/SiC composites

    图  4  2D C/SiC RVE

    Figure  4.  2D C/SiC RVE

    图  5  2D C/SiC纤维束微观结构

    Figure  5.  Microstructure of 2D C/SiC fiber bundles

    图  6  2D C/SiC断裂表面SEM图像

    Figure  6.  SEM image of 2D C/SiC fracture surface

    图  7  2D C/SiC试样原位变形

    Figure  7.  In-situ deformation of 2D C/SiC specimen

    图  8  碳化硅基体聚类可视化结果

    Figure  8.  Visualization results of silicon carbide matrix clustering

    图  9  碳纤维束两次聚类示意图

    Figure  9.  Twice clustering diagram of carbon fiber bundles

    图  10  碳纤维束聚类可视化结果

    Figure  10.  Visualization results of carbon fiber bundle clustering

    图  11  2D C/SiC单轴压缩试验、FEM、SCA应力-应变曲线

    Figure  11.  Test, FEM, SCA stress-strain curves of 2D C/SiC under uniaxial compression load

    图  12  碳纤维束和碳化硅基体损伤变量

    Figure  12.  Damage variables of carbon fiber bundles and silicon carbide matrix

    图  13  2D C/SiC应力云图

    Figure  13.  Stress cloud of 2D C/SiC

    表  1  RVE几何参数

    Table  1.   RVE geometric parameters

    ParameterMean value /mm
    Long axis of fiber bundle: 2a0.80
    Short axis of fiber bundle: 2b0.24
    Unit cell side length: c1.85
    Unit cell height0.26
    下载: 导出CSV

    表  2  SiC基体和T300弹性常数

    Table  2.   SiC matrix and T300 elastic constants

    Elastic constant SiC T300 carbon fiber
    E1(compress)/GPa 300.00 130.00
    E2/GPa 40.00
    G12/GPa 120.00 24.00
    V12 0.25 0.26
    V23 0.44
    下载: 导出CSV

    表  3  纤维束弹性常数

    Table  3.   Elastic constant of fiber bundle

    ParameterE1/GPaE2/GPaG12/GPaV12V23
    Value173.3866.8040.060.250.43
    下载: 导出CSV

    表  4  有限元与SCA对2D C/SiC刚度性能的计算结果

    Table  4.   Results of FEM and SCA calculations for stiffness of 2D C/SiC

    MethodClustering combinationE11/GPaG12/GPa
    FEM130.846.2
    SCAMatrix:32,Yarn:32127.6(2.5%)45.9(0.6%)
    Matrix:64,Yarn:32127.7(2.4%)46.0(0.4%)
    Matrix:128,Yarn:32128.1(2.1%)46.0(0.4%)
    Matrix:32,Yarn:64128.6(1.7%)46.0(0.4%)
    Matrix:32,Yarn:128128.8(1.5%)46.1(0.2%)
    下载: 导出CSV

    表  5  2D C/SiC试验、FEM、SCA计算时间与计算结果

    Table  5.   Calculation time and results of Test, FEM and SCA for 2D C/SiC

    MethodClustering combinationTime/sStrength/MPaError
    Experiment382.7
    FEM61200364.44.8%
    OfflineOnline
    Matrix:32,Yarn:32

    1800
    6361.05.7%
    SCAMatrix:64,Yarn:3211367.93.9%
    Matrix:128,Yarn:3225367.44.0%
    Matrix:32,Yarn:6411361.35.6%
    Matrix:32,Yarn:12829360.75.7%
    下载: 导出CSV
  • [1] 冯志海, 李俊宁, 田跃龙, 等. 航天先进复合材料研究进展[J]. 复合材料学报, 2022, 39(09): 4187-95.

    FENG Z H, LI J N, TIAN Y L, et al. Advances in Advanced Composites for Aerospace[J]. Journal of Composites, 2022, 39(09): 4187-95(in Chinese).
    [2] FAES J C, REZAEI A, VAN PAEPEGEM W, et al. Accuracy of 2D FE models for prediction of crack initiation in nested textile composites with inhomogeneous intra-yarn fiber volume fractions[J]. Composite Structures, 2016, 140: 11-20. doi: 10.1016/j.compstruct.2015.12.024
    [3] GUAN G, JIAO G, HUANG T. Experimental Research on Failure Mechanism of a CVI-Fabricated Ceramic Matrix Composite under Compression[J]. Key Engineering Materials - KEY ENG MAT, 2006, 326-328: 1841-4. doi: 10.4028/www.scientific.net/KEM.326-328.1841
    [4] 程相伟, 张大旭, 杜永龙, 等. 基于X射线CT原位试验的平纹SiCf/SiC压缩损伤演化机理[J]. 上海交通大学学报, 2020, 54(10): 1074-1083.

    CHENG X W, ZHANG D X, DU Y L, et al. Compression damage evolution mechanism of flat SiCf/SiC based on X-ray CT in-situ test[J]. Journal of Shanghai Jiao Tong University, 2020, 54(10): 1074-1083(in Chinese).
    [5] 王奇志, 林慧星, 许赟泉. 二维编织陶瓷基复合材料偏轴拉伸力学性能预测[J]. 复合材料学报, 2018, 35(12): 3423-32.

    WANG Q Z, LIN H X, XU Y Q. Prediction of off-axis tensile mechanical properties of two-dimensional braided ceramic matrix composites[J]. Journal of Composites, 2018, 35(12): 3423-32(in Chinese).
    [6] LIU G, ZHANG L, GUO L, et al. Multi-scale progressive failure simulation of 3D woven composites under uniaxial tension[J]. Composite Structures, 2019, 208: 233-43. doi: 10.1016/j.compstruct.2018.09.081
    [7] 刘文台, 程坤, 周何乐子, 等. 针刺C/C复合材料面内拉伸强度预测[J]. 复合材料学报, 2023, 40(02): 1142-53.

    LIU W T, CHENG K, ZHOU H L Z, et al. Prediction of in-plane tensile strength of needle-punched C/C composites[J]. Composite Journal, 2023, 40(02): 1142-53(in Chinese).
    [8] HE C, GAO J, LI H, et al. A data-driven self-consistent clustering analysis for the progressive damage behavior of 3D braided composites[J]. Composite Structures, 2020, 249: 112471. doi: 10.1016/j.compstruct.2020.112471
    [9] DVORAK G J, ZHANG J. Transformation field analysis of damage evolution in composite materials[J]. Journal of the Mechanics and Physics of Solids, 2001, 49(11): 2517-41. doi: 10.1016/S0022-5096(01)00066-7
    [10] MICHEL J C, SUQUET P. Computational analysis of nonlinear composite structures using the nonuniform transformation field analysis[J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(48): 5477-502.
    [11] DVORAK G J, BAHEI-EL-DIN Y A, WAFA A M. The modeling of inelastic composite materials with the transformation field analysis[J]. Modelling and Simulation in Materials Science and Engineering, 1994, 2(3A): 571. doi: 10.1088/0965-0393/2/3A/011
    [12] LIU Z, BESSA M A, LIU W K. Self-consistent clustering analysis: An efficient multi-scale scheme for inelastic heterogeneous materials[J]. Computer Methods in Applied Mechanics and Engineering, 2016, 306: 319-41. doi: 10.1016/j.cma.2016.04.004
    [13] SCHNEIDER M. On the mathematical foundations of the self-consistent clustering analysis for non-linear materials at small strains[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 354: 783-801. doi: 10.1016/j.cma.2019.06.003
    [14] MOJUMDER S, GAO J, LIU W K. Self-consistent clustering analysis for modeling of theromelastic heterogeneous materials[J]. AIP Conference Proceedings, 2021, 2324(1): 030029.
    [15] BAI X, BESSA M A, MELRO A R, et al. High-fidelity micro-scale modeling of the thermo-visco-plastic behavior of carbon fiber polymer matrix composites[J]. Composite Structures, 2015, 134: 132-41. doi: 10.1016/j.compstruct.2015.08.047
    [16] MACQUEEN J. Some methods for classification and analysis of multivariate observations [C] //Proc. Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1967, 281-297.
    [17] 韩新星. 基于聚类分析的编织复合材料多尺度计算方法研究 [D]. 哈尔滨工业大学, 2020.

    HAN X X. Study on multi-scale calculation method of braided composites based on cluster analysis [D]. Harbin Institute of Technology, 2020. (in Chinese).
    [18] LIU Z, KAFKA O L, YU C, et al. Data-Driven Self-consistent Clustering Analysis of Heterogeneous Materials with Crystal Plasticity [M]//OATE E, PERIC D, DE SOUZA NETO E, et al. Advances in Computational Plasticity: A Book in Honour of D Roger J Owen. Cham; Springer International Publishing. 2018: 221-42.
    [19] HASHIN Z. Failure Criteria for Unidirectional Fiber Composites[J]. Journal of Applied Mechanics, 1980, 47(2): 329-34. doi: 10.1115/1.3153664
    [20] LAPCZYK I, HURTADO J A. Progressive damage modeling in fiber-reinforced materials[J]. Composites Part A:Applied Science and Manufacturing, 2007, 38(11): 2333-41. doi: 10.1016/j.compositesa.2007.01.017
    [21] 徐凯. 2DC/C复合材料的力学性能研究 [D]. 哈尔滨工业大学, 2014.

    XU K. Study on the mechanical properties of 2DC/C composites [D]. Harbin Institute of Technology, 2014. (in Chinese).
    [22] ZHOU L, CHEN M, LIU C, et al. A multi-scale stochastic fracture model for characterizing the tensile behavior of 2D woven composites[J]. Composite Structures, 2018, 204: 536-47. doi: 10.1016/j.compstruct.2018.07.128
    [23] RAMAKRISHNAN N R, ARUNACHALAM V S. Effective Elastic Moduli of Porous Ceramic Materials[J]. Journal of the American Ceramic Society, 1993, 76: 2745-52. doi: 10.1111/j.1151-2916.1993.tb04011.x
    [24] 梁仕飞, 矫桂琼. 2.5维自愈合C/SiC复合材料弹性性能预测[J]. 固体力学学报, 2013, 34(02): 181-7. doi: 10.19636/j.cnki.cjsm42-1250/o3.2013.02.010

    LIANG S F, YOU G Q. Prediction of elastic properties of 2.5D self-healing C / SiC composites[J]. Chinese Journal of Solid Mechanics, 2013, 34(02): 181-7(in Chinese). doi: 10.19636/j.cnki.cjsm42-1250/o3.2013.02.010
    [25] 董士博. 碳/碳化硅复合材料的高温力学性能研究 [D]. 哈尔滨工业大学, 2021.

    DONG S B. Research on high temperature mechanical properties of carbon / silicon carbide composites [D]. Harbin Institute of Technology, 2021. (in Chinese).
    [26] WANG L, WU J, CHEN C, et al. Progressive failure analysis of 2D woven composites at the meso-micro scale[J]. Composite Structures, 2017, 178: 395-405. doi: 10.1016/j.compstruct.2017.07.023
    [27] BUDIANSKY B, FLECK N A. Compressive failure of fibre composites[J]. Journal of the Mechanics and Physics of Solids, 1993, 41(1): 183-211. doi: 10.1016/0022-5096(93)90068-Q
    [28] GUO-DONG F, JUN L, YU W, et al. The effect of yarn distortion on the mechanical properties of 3D four-directional braided composites[J]. Composites Part A:Applied Science and Manufacturing, 2009, 40(4): 343-50. doi: 10.1016/j.compositesa.2008.12.007
    [29] American Society of Testing Materials. Standard test method for monotonic compressive strength testing of continuous fiber-reinforced advanced ceramics with solid rectangular cross-section test specimens at ambient temperatures: ASTM C1358-05 [S]. Philadelphia: ASTM International, 2005.
    [30] 纤维增强塑料压缩性能试验方法: GB/T 1448—2005 [S]. 北京: 中国标准出版社, 2005.

    Test Method for Compression Performance of Fiber Reinforced Plastics: GB/T 1448-2005 [S]. Beijing: China Standard Press, 2005. (in Chinese).
  • 加载中
计量
  • 文章访问数:  162
  • HTML全文浏览量:  108
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-11
  • 修回日期:  2023-11-09
  • 录用日期:  2023-11-29
  • 网络出版日期:  2023-12-18

目录

    /

    返回文章
    返回