留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Kevlar纤维UD片材复合材料的防弹性能

闫卫星 郭艳文 徐柠浩 黄晓梅 曹海建

闫卫星, 郭艳文, 徐柠浩, 等. Kevlar纤维UD片材复合材料的防弹性能[J]. 复合材料学报, 2025, 42(1): 6996-7006.
引用本文: 闫卫星, 郭艳文, 徐柠浩, 等. Kevlar纤维UD片材复合材料的防弹性能[J]. 复合材料学报, 2025, 42(1): 6996-7006.
YAN Weixing, GUO Yanwen, XU Ninghao, et al. Ballistic performance of Kevlar fiber UD sheets composite materials[J]. Acta Materiae Compositae Sinica, 2025, 42(1): 6996-7006.
Citation: YAN Weixing, GUO Yanwen, XU Ninghao, et al. Ballistic performance of Kevlar fiber UD sheets composite materials[J]. Acta Materiae Compositae Sinica, 2025, 42(1): 6996-7006.

Kevlar纤维UD片材复合材料的防弹性能

基金项目: 国家重点研发计划(2018YFC0810300);江苏省研究生科研与实践创新计划项目(KYCX23_3406)。
详细信息
    通讯作者:

    曹海建,教授,主要从事防弹防机械伤害复合材料的研发。 E-mail:caohaijian@ntu.edu.cn

  • 中图分类号: TB332

Ballistic performance of Kevlar fiber UD sheets composite materials

Funds: National Key Research and Development Program of China (2018YFC0810300); Graduate Research and Practice Innovation Program of Jiangsu Province (KYCX23_3406)
  • 摘要: 为探究Kevlar纤维单向(UD)片材复合材料防弹性能,以水性丙烯酸树脂/水性聚氨酯为基体,采用湿法缠绕技术与热压工艺制备了Kevlar纤维UD片材复合材料。探究共混树脂配比,树脂含量,热压工艺等因素对Kevlar纤维UD片材复合材料防弹性能的影响规律,揭示材料的防弹机制,以及对靶板结构进行优化。结果表明:随着水性丙烯酸树脂在共混树脂中比重的增加,Kevlar纤维UD片材复合材料防弹性能呈先增大后减小的趋势,当水性聚氨酯与水性丙烯酸树脂的比例为1∶2时,防弹性能较好。随着树脂含量的增加,Kevlar纤维UD片材复合材料防弹性能呈先增大后减小的趋势,当树脂含量为19wt%时,防弹性能较好。Kevlar纤维UD片材复合材料防弹性能随着热压压力、热压温度、热压时间的增大呈先增大后减小的趋势。Kevlar纤维UD片材复合材料的防弹机制主要分成三个阶段,第一阶段主要以纤维剪切破坏的方式吸收能量,第二阶段主要以纤维拉伸断裂的方式吸收能量为主,第三阶段主要以纤维拉伸变形的方式吸收能量。8UD/4UD/8UD结构的Kevlar纤维UD片材复合材料防弹性能较好。

     

  • 图  1  Kevlar纤维单向(UD)片材制备流程

    Figure  1.  Preparation process of Kevlar fiber unidirectional (UD) sheets

    图  2  热压示意图

    Figure  2.  Schematic diagram of hot pressing process

    图  3  靶板结构示意图

    Figure  3.  Schematic diagram of target plate structure

    图  4  弹道侵彻实验装置

    Figure  4.  Experimental setup for ballistic penetration

    图  5  不同树脂比例的靶板背凸深度(BFS)和贯穿层所占比例

    Figure  5.  Back projection depth (BFS) of target plates and proportion of penetration layer in target plates with different resin rations

    图  6  不同树脂比例的靶板破坏形貌

    Figure  6.  Morphology of Impact damage on target plate with different resin ratios

    图  7  不同树脂含量的靶板背凸深度和贯穿层所占比例

    Figure  7.  BFS of target plates and proportion of penetration layer in target plates with different resin content

    图  8  不同树脂含量的靶板破坏形貌

    Figure  8.  Morphology of impact damage on target pate with different resin content

    图  10  4#靶板破坏形貌

    Figure  10.  The failure morphology of each layer of the 4# target plate

    图  9  不同热压工艺的靶板BFS和贯穿层所占比例

    Figure  9.  BFS of target plates and proportion of penetration layer in target plates with different hot pressing processes

    图  11  4#靶板的微观破坏形貌

    Figure  11.  The microscopic damage morphology of 4# target plate

    图  12  4#靶板的各层靶片变形面积

    Figure  12.  The deformation area of each layer of the 4# target plate

    图  13  靶板结构示意图

    Figure  13.  The deformation area of each layer of the 4# target plate

    图  14  不同结构靶板的背凸深度和贯穿层所占比例

    Figure  14.  BFS of target plates and proportion of penetration layer in target plates with different structures

    表  1  弹道侵彻试验标准参数

    Table  1.   Ballistic penetration test standard parameters

    Bullet specifications Impact velocity /(m·s−1) Back face deformation depth /mm Shooting distance /m Impact angle /(°)
    7.62×17 445±10 <25 5 0
    下载: 导出CSV

    表  2  不同树脂比例靶板打靶结果

    Table  2.   Shooting results of target plates with different resin ratios

    Serial number Resin (Polyurethane:
    Acrylic acid)
    Number of layers Resin content /wt% Single-layer areal
    density/(g·m−2)
    Target plate areal
    density /(kg·m−2)
    Penetration
    1 2∶1 45 17 187 8.40 NO
    2 1∶1 44 18 190 8.36 NO
    3 2∶3 45 17 188 8.46 NO
    4 1∶2 44 19 192 8.42 NO
    5 2∶5 44 17 189 8.30 NO
    6 Acrylic acid 44 18 190 8.36 YES
    下载: 导出CSV

    表  3  不同树脂含量靶板打靶结果

    Table  3.   Shooting results of target plates with different resin content

    Serial number Resin (Polyurethane:
    Acrylic acid)
    Number of layers Resin content /wt% Single-layer areal
    density y/(g·m−2)
    Target plate areal
    density /(kg·m−2)
    Penetration
    7 1∶2 50 10 168 8.32 NO
    4 1∶2 44 19 192 8.42 NO
    8 1∶2 40 26 208 8.30 NO
    9 1∶2 37 32 227 8.37 NO
    下载: 导出CSV

    表  4  不同热压工艺靶板打靶结果

    Table  4.   Shooting results of target plates with different hot pressing processes

    Serial number Hot pressing process Number of layers Resin content /wt% Target plate areal density /(kg·m−2) Penetration
    10 7 MPa, 130℃, 20 min 42 21 8.34 NO
    4 10 MPa, 130℃, 20 min 44 19 8.40 NO
    11 14 MPa, 130℃, 20 min 42 21 8.30 NO
    12 17 MPa, 130℃, 20 min 42 22 8.42 NO
    13 10 MPa, 100℃, 20 min 42 22 8.39 NO
    14 10 MPa, 160℃, 20 min 44 18 8.37 NO
    15 10 MPa, 190℃, 20 min 43 20 8.43 YES
    16 10 MPa, 130℃, 10 min 43 20 8.33 NO
    17 10 MPa, 130℃, 15 min 43 20 8.37 NO
    18 10 MPa, 130℃, 25 min 44 17 8.30 NO
    下载: 导出CSV

    表  5  不同结构 Kevlar纤维UD片材复合材料打靶结果

    Table  5.   Target shooting results of Kevlar fiber UD sheet composites with different structures

    Serial number Structure Number of layers Mass ratio Resin content /wt% Target plate areal density /(kg·m−2) Penetration
    20 4UD 44 - 18 8.37 NO
    21 8UD/4UD 34 1∶1.2 18 8.37 NO
    22 4UD/8UD 34 1.2∶1 18 8.38 NO
    23 8UD/4UD/8UD 29 1∶1.1∶1 19 8.43 NO
    下载: 导出CSV
  • [1] 袁子舜, 陆振乾, 许玥等. 超高分子量聚乙烯纤维平纹织物-单向布混合堆叠板的防弹机制[J]. 复合材料学报, 2022, 39(6): 2707-2715.

    YUAN Zishun, LU Zhenqian, XU Yue, et al. Ballistic mechanism of the hybrid panels with UHMWPE woven fabrics and UD laminates[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2707-2715(in Chinese).
    [2] BHATNAGAR A. 3[J]. 19 Lightweight fiber-reinforced composites for ballistic applications[J], 2018, 3: 527-544.
    [3] CHEESEMAN B A, BOGETTI T A. Ballistic impact into fabric and compliant composite laminates[J]. Composite structures, 2003, 61(1-2): 161-173. doi: 10.1016/S0263-8223(03)00029-1
    [4] ABTEW M A, BOUSSU F, BRUNIAUX P, et al. Ballistic impact mechanisms–a review on textiles and fibre-reinforced composites impact responses[J]. Composite structures, 2019, 223: 110966. doi: 10.1016/j.compstruct.2019.110966
    [5] WANG M, ZHONG L, CAO H, et al. Research on Bending and Ballistic Performance of Three-Dimensional Ply-to-Ply Angle Interlock Kevlar/EP Armor Material[J]. Materials, 2022, 15(19): 6994. doi: 10.3390/ma15196994
    [6] CROUCH I G. Body armour–New materials, new systems[J]. Defence Technology, 2019, 15(3): 241-253. doi: 10.1016/j.dt.2019.02.002
    [7] 董彬, 魏汝斌, 王小伟, 等. 纤维增强树脂基复合材料防弹头盔研究进展[J]. 兵器材料科学与工程, 2022, 45(4): 125-132.

    DONG Bin, WEI Rubin, WANG Xiaowei, et al. Progress of bulletproof helmet made by fibre reinforced polymer composites[J]. Ordnance Material Science And Engineering, 2022, 45(4): 125-132(in Chinese).
    [8] 艾青松, 潘智勇, 吴中伟, 等. 胶粘剂配方对芳纶防弹板性能的影响[J]. 高科技纤维与应用, 2019, 44(6): 33-37.

    AI Qingsong, PAN Zhiyong, WU Zhongwei, et al. The Influence of Adhesive Formula on the Performance of Aramid Bulletproof Board[J]. Hi-Tech Fiber and Application, 2019, 44(6): 33-37(in Chinese).
    [9] KARAHAN M. Comparison of ballistic performance and energy absorption capabilities of woven and unidirectional aramid fabrics[J]. Textile Research Journal, 2008, 78(8): 718-730. doi: 10.1177/0040517508090487
    [10] 艾青松, 李宗家, 吴中伟, 等. 芳纶机织布混杂芳纶无纬布的防弹性能研究[J]. 高科技纤维与应用, 2022, 47(1): 27-31. doi: 10.3969/j.issn.1007-9815.2022.01.003

    AI Qingsong, LI Zongjia, WU Zhongwei, et al. Study on bulletproof performance of aramid woven fabric mixed with aramid UD cloth[J]. Hi-Tech Fiber and Application, 2022, 47(1): 27-31(in Chinese). doi: 10.3969/j.issn.1007-9815.2022.01.003
    [11] 吴中伟, 张慧, 艾青松等. 芳纶防弹防刺材料研究[J]. 合成纤维, 2021, 50(6): 36-40.

    WU Zhongwei, ZHANG Hui, AI Qingsong, et al. Study on Bullet-Proof and Stab-Proof Aramid Materials[J]. Synthetic Fiber in China, 2021, 50(6): 36-40(in Chinese).
    [12] YANG Y, CHEN X. Investigation of failure modes and influence on ballistic performance of Ultra-High Molecular Weight Polyethylene (UHMWPE) uni-directional laminate for hybrid design[J]. Composite Structures, 2017, 174: 233-243. doi: 10.1016/j.compstruct.2017.04.033
    [13] CAO M, ZHOU D, WANG Z, et al. An Experimental Study of the Penetration Resistance of UHMWPE Laminates with limited thickness[J]. Thin-Walled Structures, 2023: 111438.
    [14] LäSSIG T R, MAY M, HEISSERER U, et al. Effect of consolidation pressure on the impact behavior of UHMWPE composites[J]. Composites Part B: Engineering, 2018, 147: 47-55. doi: 10.1016/j.compositesb.2018.04.030
    [15] 贾文星, 贾子琪, 田国峰, 等. 聚酰亚胺/超高分子量聚乙烯纤维混杂增强复合材料防弹性能[J]. 复合材料学报, 2023, 40(7): 3921-3927.

    JIA Wenxing, JIA Ziqi, TIAN Guofeng, et al. Bulletproof performance of polyimide/UHMWPE fiber hybrid reinforced composites[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3921-3927(in Chinese).
    [16] HAN F, ZHANG Y, WANG C, et al. Analysis of ballistic performance and penetration damage mechanisms of aramid woven fabric reinforced polycarbonate composites with different matrix content[J]. Chemical Engineering Journal, 2023, 453: 139470. doi: 10.1016/j.cej.2022.139470
    [17] 胡建海, 唐鋆磊, 李湉, 等. 碳纤维和芳纶纤维的蚀刻改性及其复合材料界面结合性能研究进展[J]. 表面技术, 2021, 50(10): 94-116.

    HU Jianhai, TANG Junlei, LI Tian, et al. Research Progress on Etching Modification of Carbon Fiber and Aramid Fiber and the Interface Bonding Performance of Their Composite Materials[J]. Surface technology, 2021, 50(10): 94-116(in Chinese).
    [18] 李婷, 王增效, 胡祖明, 等. 对位芳纶表面改性的最新研究进展[J]. 合成纤维工业, 2018, 41(6): 42-47. doi: 10.3969/j.issn.1001-0041.2018.06.016

    LI Ting, WANG Zengxiao, HU Zuming, et al. Latest research progress in surface modification of p-aramid fiber[J]. China Synthetic Fiber Industry, 2018, 41(6): 42-47(in Chinese). doi: 10.3969/j.issn.1001-0041.2018.06.016
    [19] 曾国屏, 董清龙, 刘德旺, 等. 水性聚氨酯/丙烯酸树脂合成及改性技术的研究进展[J]. 化工新型材料, 2021, 49(12): 12-15+26.

    ZENG Guoping, DONG Qinglong, LI Dewang, et al. Research progress on synthesis and modification of waterborne polyurethane/acrylic resin[J]. New Chemical Materials, 2021, 49(12): 12-15+26(in Chinese).
    [20] 张洋洋, 赵洪山, 彭伟, 等. 国内外防弹标准防护等级的研究与对比[J]. 兵工学报, 2022, 43(9): 2017-2036.

    ZHANG Yangyang, ZHAO Hongshan, PENG Wei, et al. Research and Comparison of Protection Rating in Domestic and Foreign Bulletproof Standards[J]. Acta Armamentarii, 2022, 43(9): 2017-2036(in Chinese).
    [21] FUNCHESS III P N, KRAMER L D, BINETTI V R, et al. Ballistic Material with Enhanced Polymer Matrix and Method for Production Thereof. Google Patents, 2010.
    [22] ZHENG Z, HUANG X, LI Y, et al. Influence factors of internal structure and interfacial compatibility of UHMWPE fiber/SEBS resin composites: Processing parameters, structure of fiber and nature of resin[J]. Composites Part B: Engineering, 2012, 43(3): 1538-1544. doi: 10.1016/j.compositesb.2011.11.011
    [23] 成航航. 核壳型丙烯酸树脂乳液的制备及性能研究[D]. 陕西: 陕西科技大学, 2021.

    CHENG Hanghang. Preparation and Properties of Core-shell Acrylic Resin Emulsion[D]. Shanxi: Shaanxi University of Science & Technology, Shanxi: 2021. (in Chinese)
    [24] LANGSTON T. An analytical model for the ballistic performance of ultra-high molecular weight polyethylene composites[J]. Composite Structures, 2017, 179: 245-257. doi: 10.1016/j.compstruct.2017.07.074
    [25] 马华菁, 时娟娟, 沈文东, 等. 防弹无纬布的研究概况[J]. 棉纺织技术, 2021, 49(5): 14-18. doi: 10.3969/j.issn.1001-7415.2021.05.005

    MA Huajing SHI Juanjuan SHEN Wendong, et al. Research Overview of Bulletproof Unidirectional Cloth[J]. Cotton Textile Technology, 2021, 49(5): 14-18(in Chinese). doi: 10.3969/j.issn.1001-7415.2021.05.005
    [26] 闫卫星, 郭艳文, 陈红霞, 等. 防弹防刺面料研究概况[J]. 产业用纺织品, 2022, 40(7): 1-7+32. doi: 10.3969/j.issn.1004-7093.2022.07.001

    YAN Weixing, GUO Yanwen, CHEN Hongxia, et al. Research overview of bulletproof and stab-resistant fabrics[J]. Technical Textiles, 2022, 40(7): 1-7+32(in Chinese). doi: 10.3969/j.issn.1004-7093.2022.07.001
    [27] 王孟, 刘程, 张玉, 等. 成型温度对CF/PPEK复合材料的缺陷和力学性能影响[J]. 复合材料科学与工程, 2024, 1-9.

    WANG Meng, LIU Cheng, ZHANG Yu, et al. Effect of molding temperature on defects and mechanical properties of CF/PPEK composites[J]. Composites Science and Engineering, 2024, 1-9. (in Chinese)
    [28] 徐英凯, 朱姝, 袁象恺, 等. 纺织结构碳纤维增强尼龙6(CFF/PA6)复合材料的模压成型工艺[J]. 塑料工业, 2015, 43(7): 48-51+68. doi: 10.3969/j.issn.1005-5770.2015.07.012

    XU Yingkai, ZHU Shu, YUAN Xiangkai, et al. Compression Molding Processing of Carbon Fiber Fabric Reinforced Nylon6 ( CFF /PA6) Composites[J]. China Plastics Industry, 2015, 43(7): 48-51+68(in Chinese). doi: 10.3969/j.issn.1005-5770.2015.07.012
    [29] 周庆, 何业茂, 刘婷. 层间混杂复合材料装甲板防弹性能及其防弹机制[J]. 复合材料学报, 2019, 36(4): 837-847.

    ZHOU Qing, HE Yemao, LIU Ting. Bulletproof performance and bulletproof mechanism of interlaminar hybrid composite armor plate[J]. Acta Materiae Compositae Sinica, 2019, 36(4): 837-847(in Chinese).
  • 加载中
图(14) / 表(5)
计量
  • 文章访问数:  238
  • HTML全文浏览量:  146
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-24
  • 修回日期:  2024-03-13
  • 录用日期:  2024-03-22
  • 网络出版日期:  2024-04-25
  • 刊出日期:  2025-01-15

目录

    /

    返回文章
    返回