留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

BFRP网格布对超高性能混凝土粘结性能的影响

殷雨时 苏庆田 张冠华

殷雨时, 苏庆田, 张冠华. BFRP网格布对超高性能混凝土粘结性能的影响[J]. 复合材料学报, 2023, 40(6): 3473-3485. doi: 10.13801/j.cnki.fhclxb.20220819.002
引用本文: 殷雨时, 苏庆田, 张冠华. BFRP网格布对超高性能混凝土粘结性能的影响[J]. 复合材料学报, 2023, 40(6): 3473-3485. doi: 10.13801/j.cnki.fhclxb.20220819.002
YIN Yushi, SU Qingtian, ZHANG Guanhua. Effect of BFRP mesh cloth on bonding properties of ultra-high performance concrete[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3473-3485. doi: 10.13801/j.cnki.fhclxb.20220819.002
Citation: YIN Yushi, SU Qingtian, ZHANG Guanhua. Effect of BFRP mesh cloth on bonding properties of ultra-high performance concrete[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3473-3485. doi: 10.13801/j.cnki.fhclxb.20220819.002

BFRP网格布对超高性能混凝土粘结性能的影响

doi: 10.13801/j.cnki.fhclxb.20220819.002
基金项目: 国家自然科学基金(51978501;51774163)
详细信息
    通讯作者:

    苏庆田,博士,教授,研究方向为桥梁界面力学和钢桥加固技术 E-mail:sqt@tongji.edu.cn

  • 中图分类号: TU745.39

Effect of BFRP mesh cloth on bonding properties of ultra-high performance concrete

Funds: National Natural Science Foundation of China (51978501; 51774163)
  • 摘要: 为分析玄武岩纤维增强树脂复合材料(BFRP)网格布对超高性能混凝土(UHPC)粘结性能的影响,以干/湿粘结类型、BFRP网格布锚固深度和网格布厚度3个参数,分别开展BFRP-UHPC界面正拉粘结试验(48块)和切向剪切试验(21块),研究了BFRP网格布对其与UHPC界面破坏模态、粘结性能、剪应力-滑移曲线、拉伸比和韧性的影响,同时利用SEM,揭示BFRP-UHPC界面破坏机制。结果表明:锚固深度直接决定BFRP-UHPC界面破坏模式;法向粘结应力和切向粘结应力在界面变化规律上具有正向相关性;BFRP-UHPC界面湿粘结强度高于干粘结工艺水平;随着BFRP厚度和锚固深度逐渐增加,BFRP与UHPC界面粘结应力均呈现逐渐减小的规律;钢纤维对BFRP-UHPC界面增韧效果显著,其端勾构造使UHPC损伤后仍具有残余刚度和强度;当BFRP锚固深度为5 mm时,此时界面粘结应力达到最大,正拉粘结试验中粘结应力最大提升幅度达到74%,拉伸强度比高达1.74。

     

  • 图  1  玄武岩纤维增强树脂复合材料(BFRP)网格布

    Figure  1.  Basalt fiber reinforced polymer (BFRP) mesh cloth

    图  2  BFRP网格布粘贴区域示意图

    Figure  2.  Schematic diagram of BFRP mesh cloth paste area

    图  3  湿粘结BFRP网格锚固深度(上:一侧锚固深度T为20 mm;下:另一侧锚固深度T为20 mm)

    Figure  3.  Anchoring depth of wet bonded BFRP mesh (Up: 20 mm anchoring depth T on one side; Down: 20 mm anchoring depth T on the other side)

    图  4  正拉粘结待做试件

    Figure  4.  Pull-out bond test specimens to be tested

    图  5  BFRP-UHPC正拉粘结试验

    Figure  5.  BFRP-UHPC pull out bond test

    图  6  UHPC试件尺寸

    Figure  6.  UHPC size figure

    图  7  切向剪切试件纵向示意图

    Figure  7.  Longitudinal schematic of shear test specimen

    图  8  粘结区域及应变片俯视图

    Figure  8.  Area of test concrete to be tested

    图  9  切向剪切试验图

    Figure  9.  Single shear experimental setup

    LVDT—Linear variable differential transformer

    图  10  BFRP-UHPC正拉试验干粘结破坏形态

    Figure  10.  Failure mode of dry bond in pull-out test of BFRP-UHPC

    ti (i=1,2,3)—Thicknesses of BFRP mesh cloth t1—0.85 mm; t2—1.16 mm; t3—1.45 mm

    图  11  BFRP-UHPC湿粘结界面破坏形态

    Figure  11.  Wet bonding interface destroyed performance of BFRP-UHPC

    a-b at the bottom left of the figure: a—BFRP mesh cloth has three thicknesses (1—0.85 mm; 2—1.16 mm; 3—1.45 mm); b—Three anchoring depths of BFRP mesh cloth (5—5 mm; 15—15 mm; 20—20 mm)

    图  12  BFRP-UHPC切向剪切试验破坏模式(干粘结)

    Figure  12.  Tangential shear test failure mode of BFRP-UHPC (Dry bonding)

    图  13  BFRP-UHPC切向剪切试验破坏模式(湿粘结)

    Figure  13.  Tangential shear test failure mode of BFRP-UHPC (Wet bonding)

    图  14  BFRP单筋轴拉试验

    Figure  14.  Axial tension test of BFRP single rib

    图  15  BFRP单筋荷载-应变关系曲线

    Figure  15.  Strain load relation curves of BFRP single rib

    图  16  干粘结工艺下BFRP-UHPC界面粘结强度随网格厚度变化

    Figure  16.  Variation of interface bond strength with mesh thickness of BFRP-UHPC under dry bond process

    图  17  BFRP-UHPC干、湿粘结工艺下界面粘结强度对比

    Figure  17.  Comparison of interfacial bond strength of BFRP-UHPC under dry and wet bond process

    图  18  BFRP-UHPC粘结区域应变变化

    Figure  18.  Strain change in bonding area of BFRP-UHPC

    图  19  BFRP-UHPC粘结区域剪应力变化

    Figure  19.  Shear stress change in bonding area of BFRP-UHPC

    P—Interface load

    图  20  BFRP-UHPC剪应力-滑移量关系曲线

    Figure  20.  Slip-shear stress relationship curves of BFRP-UHPC

    图  21  BFRP-UHPC界面拉伸强度及拉伸强度比

    Figure  21.  Interfacial tensile strength and tensile-strength ratio of interface between BFRP and UHPC

    图  22  玄武岩纤维丝在胶体中形貌

    Figure  22.  Morphology of BFRP filament in colloid

    图  23  玄武岩纤维丝在胶体中脱粘

    Figure  23.  Debonding of BFRP filament in colloid

    图  24  钢纤维丝在UHPC中形貌

    Figure  24.  Morphology steel fiber in UHPC

    图  25  钢纤维丝链接UHPC分离混凝土

    Figure  25.  Steel fiber link UHPC between separation concrete

    表  1  超高性能混凝土(UHPC)配合比(相对质量比)

    Table  1.   Ultra-high performance concrete (UHPC) mix proportion (Relative mass ratio)

    Portland cementSilica fumeWaterWater reducerSteel fiberFine sandCrushed stoneW/C
    10.2250.2250.0170.1770.9000.2250.184
    Notes: W—Water; C—Cement.
    下载: 导出CSV

    表  2  UHPC力学性能

    Table  2.   Mechanical properties of UHPC

    ItemCompressive strength
    /MPa
    Elastic modulus
    /GPa
    Initial crack strength/MPa
    UHPC13640.28.3
    下载: 导出CSV

    表  3  其他材料性能参数

    Table  3.   Performance parameters of other materials

    DesignationTensile strength/MPaThickness
    t1, t2, t3/mm
    Mass/
    (g·m−2)
    Mesh size
    /mm
    Elastic modulus
    /MPa
    Elongation
    /%
    BFRP1848, 2887, 53770.85, 1.16, 1.45200/372/5825×581500, 82300, 831002.76, 2.88, 2.97
    Colloid382.4×103
    Steel colloid301.2×104
    下载: 导出CSV

    表  4  BFRP-UHPC切向剪切试验数据值

    Table  4.   Shear test values of BFRP-UHPC

    DesignationSeries$ {p_{\text{u}}} $/kN$ {\tau _{\text{u}}} $/MPa$ {s_{\text{u}}} $/mm
    DB9.817.021.48
    t=0.85 mmWB-519.8814.233.00
    WB-1516.6512.002.60
    WB-2014.0011.022.20
    h=15 mmWB0.8516.6512.002.60
    WB1.1615.3511.062.40
    WB1.4516.2211.692.53
    Notes: $ {p_{\text{u}}} $—Interface ultimate load; $ {\tau _{\text{u}}} $—Interfacial adhesion strength; $ {s_{\text{u}}} $—Local maximum slip value of the interface; DB—Adhesion; WB—Wet bonding; WB-a—Anchorage depth of mesh cloth under wet bonding condition; WBb—Thickness of mesh cloth under wet bonding condition; h—Anchorage depth.
    下载: 导出CSV
  • [1] 周傲, 李烁, 刘铁军, 等. 疏水改性玄武岩纤维增强树脂复合材料筋的力学性能及耐久性[J]. 复合材料学报, 2022, 39(11): 5228-5238.

    ZHOU Ao, LI Shuo, LIU Tiejun, et al. Mechanical properties and durability of hydrophobically modified basalt fiber reinforced polymer bars[J]. Acta Materiae Compositae Sinica Materials, 2022, 39(11): 5228-5238(in Chinese).
    [2] 潘毅, 刘茜, 任宇, 等. 基于不同黏结材的CFRP链-混凝土界面黏结性能试验研究[J]. 土木工程学报, 2021, 54 (1): 26-37, 96.

    PAN Yi, LIU Qian, REN Yu, et al. Experimental study on bonding performance of CFRP chain concrete interface based on different bonding materials[J]. Journal of Civil Engineering, 2021, 54 (1): 26-37, 96(in Chinese).
    [3] 连德攀, 郭广磊, 梅迎军, 等. 材料特征对新浇筑混凝土与基体混凝土界面黏结性能的影响[J]. 公路, 2022, 67(3):306-311.

    LIAN Depan, GUO Guanglei, MEI Yingjun, et al. Effect of material characteristics on the interfacial adhesion between newly poured concrete and matrix concrete[J]. Highway,2022,67(3):306-311(in Chinese).
    [4] DESKOVIC N, TRIANTAFILLOU T, MEIER U. Innovative design of FRP combined with concrete: Short-term behavior[J]. Journal of Structural Engineering,1995,121(7):1069-1078. doi: 10.1061/(ASCE)0733-9445(1995)121:7(1069)
    [5] 张普, 高丹盈, 朱虹. FRP板-混凝土湿黏结界面性能的试验研究与数值模拟[J]. 土木工程学报, 2013, 46(2):108-113.

    ZHANG Pu, GAO Danying, ZHU Hong. Experimental study and numerical simulation of wet bonding interface between FRP plate and concrete[J]. Journal of Civil Engi-neering,2013,46(2):108-113(in Chinese).
    [6] HULATT J, HOLLAWAY L, THORNE A. Short term testing of hybrid beam made of new material[J]. Journal of Compo-sites for Construction,2003,7(2):133-144.
    [7] ZHANG P, WU G, ZHU H, et al. Mechanical performance of the wet-bond interface between FRP plates and cast-in-place concrete[J]. Journal of Composites for Construction,2014,18(6):1121-1137.
    [8] ZHANG P, LIU H N, GAO D Y, et al. Shear-bond behavior of the interface between FRP profiles and concrete by the double-lap push shear method[J]. Journal of Composites for Construction,2017,21(4):963-978.
    [9] 任翔, 王怡, 余兴, 等. 冻融/干湿环境影响下CFRP板-钢界面黏结性能试验[J]. 中国公路学报, 2022, 35(2): 247-258.

    REN Xiang, WANG Yi, YU Xing, et al. Experimental study on interfacial bonding performance of CFRP plate steel under freeze-thaw/dry wet environment[J]. Chinese Jour-nal of Highway, 2022, 35(2): 247-258(in Chinese).
    [10] 张普, 朱虹, 孟少平. 混杂FRP-混凝土T形组合梁受弯性能试验研究[J]. 东南大学学报(自然科学版), 2010, 40(3): 548-553.

    ZHANG Pu, ZHU Hong, MENG Shaoping. Experimental study on flexural behavior of hybrid FRP concrete T-shaped composite beams[J]. Journal of Southeast University (Natural Science Edition), 2010, 40 (3): 548-553(in Chinese).
    [11] 吕国栋. 桥梁湿接缝施工工艺对混凝土界面黏结力的影响研究[J]. 公路, 2020, 65(9):113-118.

    LYU Guodong. Study on the influence of bridge wet joint construction technology on concrete interface adhesion[J]. Highway,2020,65(9):113-118(in Chinese).
    [12] CANNING L, HOLLAWAY L, THORNE A M. Aninvestigation of the composite action of an FRP/concrete prismatic beam[J]. Construction and Building Materials,1999,13(8):417-426. doi: 10.1016/S0950-0618(99)00050-1
    [13] CHOI S, GARTNER A L, ETTEN N V, et al. Durability of concrete beams externally reinforced with CFRP composites exposed to various environments[J]. Journal of Compo-sites for Construction,2012,10(10):61-71.
    [14] HUANG H, WANG W, ZHAO F. Experimental study on thebond behavior at the GFRP-concrete interface under wet bonding technique[J]. Industry Construction,2013,43:192-195.
    [15] ZHU H T, ZHANG Q M, TIAN X Y, et al. Analysis on effective bonding length between hybrid fiber reinforced plastics and casting-in-place concrete[C]//Proceedings of the Tenth International Symposium on Structural Engineering for Young Experts. Changsha: Hunan University Press, 2008: 766-775.
    [16] WU Z, LI W, SAKUMA N. Innovative externally bonded FRP/concrete hybrid flexural members[J]. Composite Structures,2006,72(3):289-300. doi: 10.1016/j.compstruct.2004.12.002
    [17] ZHANG P, ZHU H, WU G, et al. Flexural performance of HFRP-RC composite T-beams with different interfaces[J]. Journal of Composites for Construction,2017,21(3):1956-1977.
    [18] 殷雨时, 范颖芳, 徐义洪. 粗糙度对CFRP-混凝土界面剪切黏结性能的影响[J]. 建筑材料学报, 2018, 21(2):202-207. doi: 10.3969/j.issn.1007-9629.2018.02.005

    YIN Yushi, FAN Yingfang, XU Yihong. Effect of roughness on shear bond properties of CFRP concrete interface[J]. Journal of Building Materials,2018,21(2):202-207(in Chinese). doi: 10.3969/j.issn.1007-9629.2018.02.005
    [19] 殷雨时, 范颖芳, 郭馨艳. 粗糙度对FRP-混凝土界面黏结性能的影响[J]. 华南理工大学学报(自然科学版), 2019, 47(5):130-138.

    YIN Yushi, FAN Yingfang, GUO Xinyan. Effect of roughness on FRP concrete interface bonding performance[J]. Journal of South China University of Technology (Natural Science Edition),2019,47(5):130-138(in Chinese).
    [20] 中华人民共和国交通运输部. 碳纤维片材加固混凝土结构技术规程: CECS 146: 2003[S]. 北京: 人民交通出版社, 2002.

    Ministry of Transport of the People's Republic of China. Technical specification for strengthening concrete structures with carbon fiber sheets: CECS 146: 2003[S]. Beijing: People's Communications Press, 2002(in Chinese).
    [21] 任小明. 扫描电镜/能谱原理及特殊分析技术[M]. 北京: 化学工业出版社, 2020.

    REN Xiaoming. Scanning electron microscope/energy spectrum principle and special analysis technology[M]. Beijing: Chemical Industry Press, 2020(in Chinese).
    [22] 马莹, 高磊, 张峰. 钢筋混凝土T梁HU-FRP抗剪加固试验和数值模拟[J]. 建筑材料学报, 2021, 24(5):1073-1081.

    MA Ying, GAO Lei, ZHANG Feng. Test and numerical simulation of shear strengthening of reinforced concrete T-beam with HU-FRP[J]. Journal of Building Materials,2021,24(5):1073-1081(in Chinese).
    [23] 李晓林, 樊新波, 王建锋. 加工芳纶纳米纤维/聚乙烯醇水凝胶制备高强度复合薄膜[J]. 复合材料学报, 2021, 38(12):3986-3995. doi: 10.13801/j.cnki.fhclxb.20210205.001

    LI Xiaolin, FAN Xinbo, WANG Jianfeng. Preparation of high strength composite films by processing aramid nanofibers/polyvinyl alcohol hydrogels[J]. Acta Materiae Compositae Sinica Materials,2021,38(12):3986-3995(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210205.001
    [24] 江培成, 郎利辉, 邱超斌, 等. 拉伸比对2 A16铝合金板材双向拉伸性能的影响[J]. 塑性工程学报, 2022, 29(1):126-132. doi: 10.3969/j.issn.1007-2012.2022.01.018

    JIANG Peicheng, LANG Lihui, QIU Chaobin, et al. Effect of tensile ratio on biaxial tensile properties of 2 A16 aluminum alloy sheet[J]. Journal of Plastic Engineering,2022,29(1):126-132(in Chinese). doi: 10.3969/j.issn.1007-2012.2022.01.018
    [25] 刘加平, 汤金辉, 韩方玉. 现代混凝土增韧防裂原理及应用[J]. 土木工程学报, 2021, 54(10):47-54, 63.

    LIU Jiaping, TANG Jinhui, HAN Fangyu. Toughening and crack prevention of modern concrete: Mechanisms and applications[J]. China Civil Engineering Journal,2021,54(10):47-54, 63(in Chinese).
  • 加载中
图(25) / 表(4)
计量
  • 文章访问数:  580
  • HTML全文浏览量:  356
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-15
  • 修回日期:  2022-07-16
  • 录用日期:  2022-08-03
  • 网络出版日期:  2022-08-22
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回