留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于反式聚异戊二烯/乙烯醋酸乙烯酯共聚三重形状记忆复合材料的制备及性能

辛华 李阳帆 彭琪 陈悦 李新琦

辛华, 李阳帆, 彭琪, 等. 基于反式聚异戊二烯/乙烯醋酸乙烯酯共聚三重形状记忆复合材料的制备及性能[J]. 复合材料学报, 2023, 40(7): 4039-4047. doi: 10.13801/j.cnki.fhclxb.20221021.002
引用本文: 辛华, 李阳帆, 彭琪, 等. 基于反式聚异戊二烯/乙烯醋酸乙烯酯共聚三重形状记忆复合材料的制备及性能[J]. 复合材料学报, 2023, 40(7): 4039-4047. doi: 10.13801/j.cnki.fhclxb.20221021.002
XIN Hua, LI Yangfan, PENG Qi, et al. Preparation and properties of triple shape memory composites based on trans-polyisopren/poly(ethylene-co-vinyl acetate)[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4039-4047. doi: 10.13801/j.cnki.fhclxb.20221021.002
Citation: XIN Hua, LI Yangfan, PENG Qi, et al. Preparation and properties of triple shape memory composites based on trans-polyisopren/poly(ethylene-co-vinyl acetate)[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4039-4047. doi: 10.13801/j.cnki.fhclxb.20221021.002

基于反式聚异戊二烯/乙烯醋酸乙烯酯共聚三重形状记忆复合材料的制备及性能

doi: 10.13801/j.cnki.fhclxb.20221021.002
基金项目: 国家自然科学基金 (51603117)
详细信息
    通讯作者:

    辛华,博士,副教授,硕士生导师,研究方向为功能高分子材料等 E-mail: xinhua@sust.edu.cn

  • 中图分类号: O636.9

Preparation and properties of triple shape memory composites based on trans-polyisopren/poly(ethylene-co-vinyl acetate)

Funds: National Natural Science Foundation of China (51603117)
  • 摘要: 本文将反式聚异戊二烯(TPI)和乙烯醋酸乙烯酯共聚物(EVA)复合,设计过氧化二异丙苯交联反应连接两相,制备TPI-EVA三重形状记忆复合材料。采用无转子硫化特性曲线、万能试验机、XRD、DSC、动态力学分析(DMA)对TPI-EVA复合材料进行了表征。探究了EVA质量比对TPI-EVA复合材料的力学性能、相结构、结晶性能及三重形状记忆性能的影响。结果表明,随着EVA质量比增加,TPI的结晶温度(Tc)从14.7℃降低至8.2℃,EVA的Tc略有上升。SEM结果表明,随EVA质量比增加,复合材料的相界面由光滑变为粗糙;DMA测试结果表明,EVA比例的增加使样品的第一临时形状固定率从57.6%提升至88.5%。此外,TPI-EVA复合材料表现出优异的力学强度,其中拉伸强度高达30.3 MPa,断裂伸长率达490%。

     

  • 图  1  不同TPI-EVA比例的复合材料室温下的应力-应变曲线 (a) 和拉伸强度与断裂伸长率 (b)

    Figure  1.  Stress-strain curves (a) and tensile strength and elongation at breaking (b) of the TPI-EVA composites with different ratios

    图  2  不同TPI-EVA比例的复合材料的XRD图谱

    Figure  2.  XRD patterns of the TPI-EVA composites with different ratios

    图  3  不同TPI-EVA比例的复合材料的DSC曲线:(a) 第一次降温曲线;(b) 第二次升温曲线

    Figure  3.  DSC curves of the TPI-EVA composites with different ratios: (a) First cooling curves; (b) Secondary heating curves

    图  4  不同TPI-EVA比例的复合材料的动态力学分析(DMA)曲线:(a) T9E1;(b) T8E2;(c) T7E3;(d) T6E4;(e) T5E5

    Figure  4.  Dynamic mechanical analysis (DMA) curves of the TPI-EVA composites with different ratios: (a) T9E1; (b) T8E2; (c) T7E3; (d) T6E4; (e) T5E5

    S1,load, S2,load—Strain corresponding to the first stress applied and the second stress applied; S1,rec, S2,rec—Increase the temperature to 55℃ and 105℃ in sequence to restore the strain of the sample; S0—Initial strain; S1, S2—Final deformation of the sample after stress is applied

    图  5  TPI-EVA复合材料的三重形状记忆行为的数码照片:(a) T7E3;(b) T6E4

    Figure  5.  Photographs of the tripe shape memory effect of the TPI-EVA composites: (a) T7E3; (b) T6E4

    图  6  不同TPI-EVA比例的复合材料的SEM图像:(a) T9E1;(b) T8E2;(c) T7E3;(d) T6E4;(e) T5E5

    Figure  6.  SEM images of the TPI-EVA composites with different ratios: (a) T9E1; (b) T8E2; (c) T7E3; (d) T6E4; (e) T5E5

    图  7  TPI-EVA复合材料的三重形状记忆机制图

    Figure  7.  Schematic diagrams of TPI-EVA composites in tripe shape memory process

    表  1  TPI-EVA复合材料配方

    Table  1.   Formulation of TPI-EVA composites

    Sample codeTPI/gEVA/g
    T101000
    T9E19010
    T8E28020
    T7E37030
    T6E46040
    T5E55050
    Notes: TPI—Trans-polyisoprene; EVA—Poly(ethylene-co-vinyl acetate). 2 g of stearic acid, 8 g of zinc oxide and 1 g of dicumyl peroxide were added.
    下载: 导出CSV

    表  2  不同TPI-EVA比例复合材料在175℃下硫化特性参数

    Table  2.   Vulcanization characteristic parameters of TPI-EVA composites with different ratios at 175℃

    PropertiesT10T9E1T8E2T7E3T6E4T5E5
    MH/(dN·m)3.773.152.692.531.581.30
    ML/(dN·m)0.370.270.140.470.000.00
    MHML/(dN·m)3.402.882.552.061.581.30
    T90/min4.034.174.395:045.125.39
    Cure rate index/min−128.426.424.422.621.221.0
    Notes: MH—Maximum torque; ML—Minimum torque; T90—Optimum curing time.
    下载: 导出CSV

    表  3  不同TPI-EVA比例的复合材料的三重形状记忆性能

    Table  3.   Tripe shape memory properties of the TPI-EVA composites with different ratios

    Sample codeRf(0→1)/%Rf(1→2)/%Rr(2→1)/%Rr(1→0)/%
    T8E257.699.079.6 99.8
    T7E366.998.179.2100.0
    T6E477.997.678.9 99.9
    T5E588.597.177.2 75.1
    Notes: Rf—Shape fixity ratio; Rr—Shape recovery ratio.
    下载: 导出CSV
  • [1] WANG F, ZHANG C, TAN A, et al. Photothermal and magnetocaloric-stimulated shape memory and self-healing via magnetic polymeric composite with dynamic crosslinking[J]. Polymer,2021,223:123677. doi: 10.1016/j.polymer.2021.123677
    [2] LIU Y J, LV H B, LAN X, et al. Review of electro-active shape-memory polymer composite[J]. Composites Science and Technology,2009,69(13):2064-2068. doi: 10.1016/j.compscitech.2008.08.016
    [3] SONG Q, CHEN H, ZHOU S, et al. Thermo- and pH-sensitive shape memory polyurethane containing carboxyl groups[J]. Polymer Chemistry,2016,7(9):1739-1746. doi: 10.1039/C5PY02010G
    [4] XIAO X L, KONG D Y, QIU X Y, et al. Shape-memory polymers with adjustable high glass transition temperatures[J]. Macromolecules,2015,48(11):3582-3589. doi: 10.1021/acs.macromol.5b00654
    [5] YANDE C, DONG L, CHEN G, et al. Bioinspired shape memory hydrogel artificial muscles driven by solvents[J]. ACS Nano,2021,15(8):13712-13720. doi: 10.1021/acsnano.1c05019
    [6] ZHANG H J, XIA H S, ZHAO Y. Light-controlled complex deformation and motion of shape-memory polymers using a temperature gradient[J]. ACS Macro Letters,2014,3(9):940-943. doi: 10.1021/mz500520b
    [7] LI Z, ZHANG X, WANG S, et al. Polydopamine coated shape memory polymer: Enabling light triggered shape recovery, light controlled shape reprogramming and surface functionalization[J]. Chemical Science,2016,7(7):4741-4747. doi: 10.1039/C6SC00584E
    [8] ZHANG F H, ZHANG Z C, LUO C J, et al. Remote, fast actuation of programmable multiple shape memory composites by magnetic fields[J]. Journal of Materials Chemistry C,2015,3(43):11290-11293. doi: 10.1039/C5TC02464A
    [9] KARASU F, WEDER C. Blends of poly(ester urethane)s and polyesters as a general design approach for triple-shape memory polymers[J]. Journal of Applied Polymer Science,2020,138(9):49935.
    [10] DELAEY J, DUBRUEL P, VAN VLIERBERGHE S. Shape-memory polymers for biomedical applications[J]. Advanced Functional Materials,2020,30(44):1909047. doi: 10.1002/adfm.201909047
    [11] XU C, ZHENG Z, LIN M, et al. Strengthened, antibacterial, and conductive flexible film for humidity and strain sensors[J]. ACS Applied Materials & Interfaces,2020,12(31):35482-35492. doi: 10.1021/acsami.0c10101
    [12] ARUN D I, KUMAR K S S, KUMAR B S, et al. High glass-transition polyurethane-carbon black electro-active shape memory nanocomposite for aerospace systems[J]. Materials Science and Technology,2019,35(5):596-605. doi: 10.1080/02670836.2019.1575054
    [13] ALSHEBLY Y S, NAFEA M, MOHAMED ALI M S, et al. Review on recent advances in 4D printing of shape memory polymers[J]. European Polymer Journal,2021,159:110708. doi: 10.1016/j.eurpolymj.2021.110708
    [14] RAMARAJU H, AKMAN R E, SAFRANSKI D L, et al. Designing biodegradable shape memory polymers for tissue repair[J]. Advanced Functional Materials,2020,30(44):2002014. doi: 10.1002/adfm.202002014
    [15] ZHENG X Y, ZHOU B, XUE S F. A viscoelastic-plastic constitutive model of shape memory polymer[J]. Journal of Mechanics,2019,35(5):601-611. doi: 10.1017/jmech.2018.56
    [16] HUANG Y N, FAN L F, RONG M Z, et al. External stress-free reversible multiple shape memory polymers[J]. ACS Applied Materials & Interfaces,2019,11(34):31346-31355. doi: 10.1021/acsami.9b10052
    [17] NIE J, HUANG J, FAN J, et al. Strengthened, self-healing, and conductive ENR-based composites based on multiple hydrogen bonding interactions[J]. ACS Sustainable Chemistry & Engineering,2020,8(36):13724-13733.
    [18] ZHENG Y, JI X, YIN M, et al. Strategy for fabricating multiple-shape-memory polymeric materials via the multilayer assembly of co-continuous blends[J]. ACS Applied Materials & Interfaces,2017,9(37):32270-32279. doi: 10.1021/acsami.7b10345
    [19] 严瑞芳. 一种古老而又年轻的天然高分子—杜仲胶[J]. 高分子通报, 1989(2):39-44.

    YAN Ruifang. An age-old and young natural polymer—Gutta-percha[J]. Polymer Bulletin,1989(2):39-44(in Chinese).
    [20] 张继川, 薛兆弘, 严瑞芳, 等. 天然高分子材料—杜仲胶的研究进展[J]. 高分子学报, 2011(10):1105-1117.

    ZHANG Jichuan, XUE Zhaohong, YAN Ruifang, et al. Natural polymer material—Recent studies on eucommia ulmoides gum[J]. Acta Polymerica Sinica,2011(10):1105-1117(in Chinese).
    [21] WANG Y, PEI X, XIA L, et al. Covalent crosslinks turn natural Eucommia ulmoides gum/polybutene-1 composites into multiple shape memory materials[J]. Polymer Composites,2021,43(3):1371-1382.
    [22] KANG H, GONG M, XU M, et al. Fabricated biobased eucommia ulmoides gum/polyolefin elastomer thermoplastic vulcanizates into a shape memory material[J]. Industrial & Engineering Chemistry Research,2019,58(16):6375-6384.
    [23] QI X, ZHAO X, LI Y, et al. A high toughness elastomer based on natural Eucommia ulmoides gum[J]. Journal of Applied Polymer Science,2020,138(11):50007.
    [24] WANG Y, LIU J, XIA L, et al. Fully biobased shape memory thermoplastic vulcanizates from poly(lactic acid) and modified natural Eucommia ulmoides gum with co-continuous structure and super toughness[J]. Polymers (Basel),2019,11(12):2040. doi: 10.3390/polym11122040
    [25] TIAN M, GAO W, HU J, et al. Multidirectional triple-shape-memory polymer by tunable cross-linking and crystallization[J]. ACS Applied Materials & Interfaces,2020,12(5):6426-6435.
    [26] WANG Y, XIA L, XIN Z. Triple shape memory effect of foamed natural Eucommia ulmoides gum/high density polyethylene composites[J]. Polymers for Advanced Technologies,2018,29(1):190-197. doi: 10.1002/pat.4102
    [27] HAN J L, LAI S M, CHIU Y T. Two-way multi-shape memory properties of peroxide crosslinked ethylene vinyl-acetate copolymer (EVA)/polycaprolactone (PCL) blends[J]. Polymers for Advanced Technologies,2018,29(7):2010-2024. doi: 10.1002/pat.4309
    [28] GU P, ZHANG J. Vinyl acetate content influence on thermal, non-isothermal crystallization, and optical characteristics of ethylenevinyl acetate copolymers[J]. Iranian Polymer Journal,2022,31:905-917. doi: 10.1007/s13726-022-01048-6
    [29] HAO C, WANG K, WANG Z, et al. Triple one-way and two-way shape memory poly(ethylene-co-vinyl acetate)/poly(ε-caprolactone) immiscible blends[J]. Journal of Applied Polymer Science,2021,139(1):51426.
    [30] LAI S M, LI C H, KAO H C, et al. Shape memory properties of melt-blended olefin block copolymer (OBC)/ethylene-vinyl acetate blends[J]. Journal of Macromolecular Science, Part B,2019,58(1):174-191. doi: 10.1080/00222348.2018.1558593
    [31] QI X M, DONG Y B, ISLAM M Z, et al. Excellent triple-shape memory effect and superior recovery stress of ethylene-vinyl acetate copolymer fiber[J]. Composites Science and Technology,2021,203:108609. doi: 10.1016/j.compscitech.2020.108609
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  641
  • HTML全文浏览量:  264
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-21
  • 修回日期:  2022-09-24
  • 录用日期:  2022-10-16
  • 网络出版日期:  2022-10-21
  • 刊出日期:  2023-07-15

目录

    /

    返回文章
    返回