留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于反式聚异戊二烯/乙烯醋酸乙烯酯共聚三重 形状记忆复合材料的制备及性能

辛华 李阳帆 彭琪 陈悦 李新琦

辛华, 李阳帆, 彭琪, 等. 基于反式聚异戊二烯/乙烯醋酸乙烯酯共聚三重 形状记忆复合材料的制备及性能[J]. 复合材料学报, 2023, 40(7): 4036-4044
引用本文: 辛华, 李阳帆, 彭琪, 等. 基于反式聚异戊二烯/乙烯醋酸乙烯酯共聚三重 形状记忆复合材料的制备及性能[J]. 复合材料学报, 2023, 40(7): 4036-4044
XIN Hua, LI Yangfan, PENG Qi, CHEN Yue, LI Xinqi. Preparation and properties of triple shape memory composites based on trans-polyisopren / poly (ethylene-co-vinyl acetate)[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4036-4044.
Citation: XIN Hua, LI Yangfan, PENG Qi, CHEN Yue, LI Xinqi. Preparation and properties of triple shape memory composites based on trans-polyisopren / poly (ethylene-co-vinyl acetate)[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4036-4044.

基于反式聚异戊二烯/乙烯醋酸乙烯酯共聚三重 形状记忆复合材料的制备及性能

基金项目: 国家自然科学基金 (51603117)
详细信息
    通讯作者:

    辛华,博士,副教授,硕士生导师,研究方向为功能高分子材料等 E-mail:xinhua@sust.edu.cn

  • 中图分类号: O636.9

Preparation and properties of triple shape memory composites based on trans-polyisopren / poly (ethylene-co-vinyl acetate)

Funds: National Natural Science Foundation of China(No.51603117)
  • 摘要: 三重形状记忆材料以其可调节性、多种刺激和多功能性,广泛应用于传感器、航空航天、4D打印及生物医学等领域。但由于材料内部存在相分离,导致其断裂伸长率较差,严重阻碍了它的实际应用。本文采用TPI和EVA复合,设计过氧化二异丙苯交联反应增强其相容性,制备出具有三重形状记忆功能的复合材料。探究了TPI与EVA比例对TPI-EVA复合材料的力学性能、相结构、结晶性能以及三重形状记忆性能的影响。结果表明,随着EVA质量比增加,TPI的结晶温度(Tc)从14.7℃降低至8.2℃,EVA的Tc略有上升。SEM结果表明,随EVA质量比增加,复合材料的相界面由光滑变为粗糙;DMA测试结果表明,EVA比例的增加使样品的第一临时形状固定率从57.6%提升至88.5%。此外,TPI-EVA复合材料表现出优异的力学强度,其中拉伸强度高达30.3MPa,断裂伸长率达490%。所制备的TPI-EVA复合材料可用于机器人、致动器以及生物医学应用领域。这项工作有助于设计具有良好相容性的三重形状记忆聚合物,为传统商业聚合物的实际应用奠定了基础。(a) TPI-EVA三重形状记忆复合材料的DMA图,(b) 复合材料力学性能图以及(c)三重形状记忆宏观恢复图

     

  • 图  1  不同TPI-EVA比例的复合材料室温下的(a)应力应变曲线和(b)拉伸强度和断裂伸长率

    Figure  1.  (a) Stress-strain curves and tensile strength and elongation at breaking of the TPI-EVA composites with different ratios

    图  2  不同TPI-EVA比例的复合材料的XRD图

    Figure  2.  X-ray diffractograms curves of the TPI-EVA composites with different ratios

    图  3  不同TPI-EVA比例的复合材料的DSC曲线:(a)第一次降温曲线和(b)第二次升温曲线

    Figure  3.  DSC curves of the TPI-EVA composites with different ratios: (a) DSC cooling curves and (b) secondary heating curves

    图  4  不同TPI-EVA比例的复合材料的DMA测试图:(a)T9 E1; (b)T8 E2; (c)T7 E3; (d)T6 E4; (e)T5 E5

    Figure  4.  DMA curves of the TPI-EVA composites with different ratios: (a)T9 E1; (b)T8 E2; (c)T7 E3; (d)T6 E4; (e)T5 E5

    图  5  TPI-EVA复合材料的三重形状记忆行为的数码照片:(a)T7 E3;(b)T6 E4

    Figure  5.  Photographs of the tripe shape memory effect of the TPI-EVA composites: (a)T7 E3;(b)T6 E4

    图  6  不同TPI-EVA比例的复合材料的SEM图:(a)T9 E1;(b)T8 E2;(c)T7 E3;(d)T6 E4;(e)T5 E5

    Figure  6.  SEM photos of the TPI-EVA composites with different ratios: (a)T9 E1; (b)T8 E2; (c)T7 E3; (d)T6 E4; (e)T5 E5

    图  7  TPI-EVA复合材料的三重形状记忆机制图

    Figure  7.  Schematic diagrams of TPI-EVA composites in tripe shape memory process

    表  1  TPI-EVA的复合材料配方

    Table  1.   The formulation of TPI-EVA composites

    Sample CodeTPI/gEVA/g
    T101000
    T9 E19010
    T8 E28020
    T7 E37030
    T6 E46040
    T5 E55050
    Notes: 2 g of stearic acid, 8 g of zinc oxide and 1 g of dicumyl peroxide were added.
    下载: 导出CSV

    表  2  不同TPI-EVA比例复合材料在175℃下硫化特性参数

    Table  2.   Vulcanization characteristic parameters of TPI-EVA composites with different ratios at 175℃

    PropertiesT10T9 E1T8 E2T7 E3T6 E4T5 E5
    MH/(dN·m)3.773.152.692.531.581.30
    ML/(dN·m)0.370.270.140.470.000.00
    MH-ML/(dN·m)3.402.882.552.061.581.30
    T90/min4.034.174.395:045.125.39
    Cure rate index/min−128.426.424.422.621.221.0
    下载: 导出CSV

    表  3  不同TPI-EVA比例的复合材料的三重形状记忆性能

    Table  3.   Tripe shape memory properties of the TPI-EVA composites with different ratios

    Sample CodeRf (0→1)/%Rf (1→2) /%Rr (2→1) /%Rr (1→0) (%)
    T8 E257.699.079.699.8
    T7 E366.998.179.2100
    T6 E477.997.678.999.9
    T5 E588.597.177.275.1
    Notes: Rf—Shape fixity ratio; Rr—Shape recovery ratio.
    下载: 导出CSV
  • [1] Fei W, Cheng Z, Anzhong T, et al. Photothermal and magnetocaloric-stimulated shape memory and self-healing via magnetic polymeric composite with dynamic crosslinking[J]. Polymer,2021,223:123677. doi: 10.1016/j.polymer.2021.123677
    [2] Liu Y J, Lv H B, Lan X, et al. Review of electro-active shape-memory polymer composite[J]. Composites Science and Technology,2009,69(13):2064-2068. doi: 10.1016/j.compscitech.2008.08.016
    [3] Song Q, Chen H, Zhou S, et al. Thermo- and pH-sensitive shape memory polyurethane containing carboxyl groups[J]. Polymer Chemistry,2016,7(9):1739-1746. doi: 10.1039/C5PY02010G
    [4] Xiao X L, Kong D Y, Qiu X Y, et al. Shape-Memory Polymers with Adjustable High Glass Transition Temperatures[J]. Macromolecules,2015,48(11):3582-3589. doi: 10.1021/acs.macromol.5b00654
    [5] Yande C, Dong L, Chen G, et al. Bioinspired Shape Memory Hydrogel Artificial Muscles Driven by Solvents[J]. ACS Nano,2021,15(8):13712-13720. doi: 10.1021/acsnano.1c05019
    [6] Zhang H J, Xia H S, Zhao Y. Light-Controlled Complex Deformation and Motion of Shape-Memory Polymers Using a Temperature Gradient[J]. Acs Macro Letters,2014,3(9):940-943. doi: 10.1021/mz500520b
    [7] Zhen L, Xiaoyong Z, Shiqi W, et al. Polydopamine coated shape memory polymer: enabling light triggered shape recovery, light controlled shape reprogramming and surface functionalization†[J]. Chemical Science,2016,7:4741-4747. doi: 10.1039/C6SC00584E
    [8] Zhang F H, Zhang Z C, Luo C J, et al. Remote, fast actuation of programmable multiple shape memory composites by magnetic fields[J]. Journal of Materials Chemistry C,2015,3(43):11290-11293. doi: 10.1039/C5TC02464A
    [9] Karasu F, Weder C. Blends of poly(ester urethane)s and polyesters as a general design approach for triple-shape memory polymers[J]. Journal of Applied Polymer Science,2020,138(9):49935.
    [10] Delaey J, Dubruel P, Van Vlierberghe S. Shape-Memory Polymers for Biomedical Applications[J]. Advanced Functional Materials,2020,30(44):1909047. doi: 10.1002/adfm.201909047
    [11] Chuanhui X, Zhongjie Z, Mengzhuan L, et al. Strengthened, Antibacterial, and Conductive Flexible Film for Humidity and Strain Sensors[J]. ACS Applied Materials & Interfaces,2020,12(31):35482-35492.
    [12] Arun D I, Kumar K S S, Kumar B S, et al. High glass-transition polyurethane-carbon black electro-active shape memory nanocomposite for aerospace systems[J]. Materials Science and Technology,2019,35(5):596-605. doi: 10.1080/02670836.2019.1575054
    [13] Alshebly Y S, Nafea M, Mohamed Ali M S, et al. Review on recent advances in 4 D printing of shape memory polymers[J]. European Polymer Journal,2021,159:110708. doi: 10.1016/j.eurpolymj.2021.110708
    [14] Ramaraju H, Akman R E, Safranski D L, et al. Designing Biodegradable Shape Memory Polymers for Tissue Repair[J]. Advanced Functional Materials,2020,30(44):2002014. doi: 10.1002/adfm.202002014
    [15] Zheng X Y, Zhou B, Xue S F. A Viscoelastic-Plastic Constitutive Model of Shape Memory Polymer[J]. Journal of Mechanics,2019,35(5):601-611. doi: 10.1017/jmech.2018.56
    [16] Huang Y N, Fan L F, Rong M Z, et al. External Stress-Free Reversible Multiple Shape Memory Polymers[J]. ACS Appl Mater Interfaces,2019,11(34):31346-31355. doi: 10.1021/acsami.9b10052
    [17] Jiada N, Jiarong H, Jianfeng F, et al. Strengthened, Self-Healing, and Conductive ENR-Based Composites Based on Multiple Hydrogen Bonding Interactions[J]. ACS Sustainable Chemistry & Engineering,2020,8(36):13724-13733.
    [18] Zheng Y, Ji X, Yin M, et al. Strategy for Fabricating Multiple-Shape-Memory Polymeric Materials via the Multilayer Assembly of Co-Continuous Blends[J]. ACS Appl Mater Interfaces,2017,9(37):32270-32279. doi: 10.1021/acsami.7b10345
    [19] 严瑞芳. 一种古老而又年轻的天然高分子—杜仲胶[J]. 高分子通报, 1989(2):39-44.
    [20] 张继川, 薛兆弘, 严瑞芳, et al. 天然高分子材料——杜仲胶的研究进展[J]. 高分子学报, 2011(10):1105-1117.
    [21] Wang Y, Pei X, Xia L, et al. Covalent crosslinks turn natural Eucommia ulmoides gum/polybutene-1 composites into multiple shape memory materials[J]. Polymer Composites,2021,43(3):1371-1382.
    [22] Kang H, Gong M, Xu M, et al. Fabricated Biobased Eucommia Ulmoides Gum/Polyolefin Elastomer Thermoplastic Vulcanizates into a Shape Memory Material[J]. Industrial & Engineering Chemistry Research,2019,58(16):6375-6384.
    [23] Qi X, Zhao X, Li Y, et al. A high toughness elastomer based on natural Eucommia ulmoides gum[J]. Journal of Applied Polymer Science,2020,138(11):50007.
    [24] Wang Y, Liu J, Xia L, et al. Fully Biobased Shape Memory Thermoplastic Vulcanizates from Poly(Lactic Acid) and Modified Natural Eucommia Ulmoides Gum with Co-Continuous Structure and Super Toughness[J]. Polymers (Basel),2019,11(12):2040. doi: 10.3390/polym11122040
    [25] Tian M, Gao W, Hu J, et al. Multidirectional Triple-Shape-Memory Polymer by Tunable Cross-linking and Crystallization[J]. ACS Applied Materials & Interfaces,2020,12(5):6426-6435.
    [26] Wang Y, Xia L, Xin Z. Triple shape memory effect of foamed natural Eucommia ulmoides gum/high density polyethylene composites[J]. Polymers for Advanced Technologies,2018,29(1):190-197. doi: 10.1002/pat.4102
    [27] Han J-L, Lai S-M, Chiu Y T. Two-way multi-shape memory properties of peroxide crosslinked ethylene vinyl-acetate copolymer (EVA)/polycaprolactone (PCL) blends[J]. Polymers for Advanced Technologies,2018,29(7):2010-2024. doi: 10.1002/pat.4309
    [28] Gu P, Zhang J. Vinyl acetate content influence on thermal, non-isothermal crystallization, and optical characteristics of ethylene–vinyl acetate copolymers[J]. Iranian Polymer Journal,2022,31:905-917. doi: 10.1007/s13726-022-01048-6
    [29] Hao C, Wang K, Wang Z, et al. Triple one-way and two-way shape memory poly(ethylene-co-vinyl acetate)/poly(ε-caprolactone) immiscible blends[J]. Journal of Applied Polymer Science,2021,139(1):51426.
    [30] Lai S-M, Li C-H, Kao H-C, et al. Shape Memory Properties of Melt-Blended Olefin Block Copolymer (OBC)/Ethylene-Vinyl Acetate Blends[J]. Journal of Macromolecular Science, Part B,2019,58(1):174-191. doi: 10.1080/00222348.2018.1558593
    [31] Qi X M, Dong Y B, Islam M Z, et al. Excellent triple-shape memory effect and superior recovery stress of ethylene-vinyl acetate copolymer fiber[J]. Composites Science and Technology,2021,203:108609. doi: 10.1016/j.compscitech.2020.108609
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  214
  • HTML全文浏览量:  84
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-21
  • 修回日期:  2022-09-24
  • 录用日期:  2022-10-16
  • 网络出版日期:  2022-10-25
  • 刊出日期:  2023-07-15

目录

    /

    返回文章
    返回