Preparation and properties of triple shape memory composites based on trans-polyisopren / poly (ethylene-co-vinyl acetate)
-
摘要:
三重形状记忆材料以其可调节性、多种刺激和多功能性,广泛应用于传感器、航空航天、4D打印及生物医学等领域。但由于材料内部存在相分离,导致其断裂伸长率较差,严重阻碍了它的实际应用。本文采用TPI和EVA复合,设计过氧化二异丙苯交联反应增强其相容性,制备出具有三重形状记忆功能的复合材料。探究了TPI与EVA比例对TPI-EVA复合材料的力学性能、相结构、结晶性能以及三重形状记忆性能的影响。结果表明,随着EVA质量比增加,TPI的结晶温度(Tc)从14.7℃降低至8.2℃,EVA的Tc略有上升。SEM结果表明,随EVA质量比增加,复合材料的相界面由光滑变为粗糙;DMA测试结果表明,EVA比例的增加使样品的第一临时形状固定率从57.6%提升至88.5%。此外,TPI-EVA复合材料表现出优异的力学强度,其中拉伸强度高达30.3MPa,断裂伸长率达490%。所制备的TPI-EVA复合材料可用于机器人、致动器以及生物医学应用领域。这项工作有助于设计具有良好相容性的三重形状记忆聚合物,为传统商业聚合物的实际应用奠定了基础。 (a) TPI-EVA三重形状记忆复合材料的DMA图,(b) 复合材料力学性能图以及(c)三重形状记忆宏观恢复图 -
关键词:
- 三重形状记忆效应 /
- 反式聚异戊二烯 /
- 乙烯醋酸乙烯酯共聚物 /
- 结晶性能 /
- 力学性能
Abstract: The TPI-EVA triple shape memory composites were prepared by compounding trans-polyisoprene and poly (ethylene-co-vinyl acetate) (TPI-EVA), and designed cross-linking reaction of dicumyl peroxide to connect the two phases. The TPI-EVA composites were characterized by rheometer, universal testing machine, XRD, DSC and dynamic thermomechanical analyzer (DMA). The effects of the mass ratio of EVA on the mechanical properties, phase structure, crystalline properties and triple shape memory properties of TPI-EVA composites were studied. The results showed that with the increase of the mass ratio of EVA, the crystallization temperature (Tc) of TPI decreased from 14.7℃ to 8.2℃, and the Tc of EVA increased slightly. SEM test showed that with the increase of EVA mass ratio, the phase interface of the composites changed from smooth to rough; DMA test showed that the increase of EVA mass ratio increased the first temporary shape memory fixation rate of the samples from 57.6% to 88.5%. Moreover, the TPI-EVA composites exhibit excellent mechanical properties, the tensile strength was as high as 30.3MPa and the elongation at break reached 490%. -
表 1 TPI-EVA的复合材料配方
Table 1. The formulation of TPI-EVA composites
Sample Code TPI/g EVA/g T10 100 0 T9 E1 90 10 T8 E2 80 20 T7 E3 70 30 T6 E4 60 40 T5 E5 50 50 Notes: 2 g of stearic acid, 8 g of zinc oxide and 1 g of dicumyl peroxide were added. 表 2 不同TPI-EVA比例复合材料在175℃下硫化特性参数
Table 2. Vulcanization characteristic parameters of TPI-EVA composites with different ratios at 175℃
Properties T10 T9 E1 T8 E2 T7 E3 T6 E4 T5 E5 MH/(dN·m) 3.77 3.15 2.69 2.53 1.58 1.30 ML/(dN·m) 0.37 0.27 0.14 0.47 0.00 0.00 MH-ML/(dN·m) 3.40 2.88 2.55 2.06 1.58 1.30 T90/min 4.03 4.17 4.39 5:04 5.12 5.39 Cure rate index/min−1 28.4 26.4 24.4 22.6 21.2 21.0 表 3 不同TPI-EVA比例的复合材料的三重形状记忆性能
Table 3. Tripe shape memory properties of the TPI-EVA composites with different ratios
Sample Code Rf (0→1)/% Rf (1→2) /% Rr (2→1) /% Rr (1→0) (%) T8 E2 57.6 99.0 79.6 99.8 T7 E3 66.9 98.1 79.2 100 T6 E4 77.9 97.6 78.9 99.9 T5 E5 88.5 97.1 77.2 75.1 Notes: Rf—Shape fixity ratio; Rr—Shape recovery ratio. -
[1] Fei W, Cheng Z, Anzhong T, et al. Photothermal and magnetocaloric-stimulated shape memory and self-healing via magnetic polymeric composite with dynamic crosslinking[J]. Polymer,2021,223:123677. doi: 10.1016/j.polymer.2021.123677 [2] Liu Y J, Lv H B, Lan X, et al. Review of electro-active shape-memory polymer composite[J]. Composites Science and Technology,2009,69(13):2064-2068. doi: 10.1016/j.compscitech.2008.08.016 [3] Song Q, Chen H, Zhou S, et al. Thermo- and pH-sensitive shape memory polyurethane containing carboxyl groups[J]. Polymer Chemistry,2016,7(9):1739-1746. doi: 10.1039/C5PY02010G [4] Xiao X L, Kong D Y, Qiu X Y, et al. Shape-Memory Polymers with Adjustable High Glass Transition Temperatures[J]. Macromolecules,2015,48(11):3582-3589. doi: 10.1021/acs.macromol.5b00654 [5] Yande C, Dong L, Chen G, et al. Bioinspired Shape Memory Hydrogel Artificial Muscles Driven by Solvents[J]. ACS Nano,2021,15(8):13712-13720. doi: 10.1021/acsnano.1c05019 [6] Zhang H J, Xia H S, Zhao Y. Light-Controlled Complex Deformation and Motion of Shape-Memory Polymers Using a Temperature Gradient[J]. Acs Macro Letters,2014,3(9):940-943. doi: 10.1021/mz500520b [7] Zhen L, Xiaoyong Z, Shiqi W, et al. Polydopamine coated shape memory polymer: enabling light triggered shape recovery, light controlled shape reprogramming and surface functionalization†[J]. Chemical Science,2016,7:4741-4747. doi: 10.1039/C6SC00584E [8] Zhang F H, Zhang Z C, Luo C J, et al. Remote, fast actuation of programmable multiple shape memory composites by magnetic fields[J]. Journal of Materials Chemistry C,2015,3(43):11290-11293. doi: 10.1039/C5TC02464A [9] Karasu F, Weder C. Blends of poly(ester urethane)s and polyesters as a general design approach for triple-shape memory polymers[J]. Journal of Applied Polymer Science,2020,138(9):49935. [10] Delaey J, Dubruel P, Van Vlierberghe S. Shape-Memory Polymers for Biomedical Applications[J]. Advanced Functional Materials,2020,30(44):1909047. doi: 10.1002/adfm.201909047 [11] Chuanhui X, Zhongjie Z, Mengzhuan L, et al. Strengthened, Antibacterial, and Conductive Flexible Film for Humidity and Strain Sensors[J]. ACS Applied Materials & Interfaces,2020,12(31):35482-35492. [12] Arun D I, Kumar K S S, Kumar B S, et al. High glass-transition polyurethane-carbon black electro-active shape memory nanocomposite for aerospace systems[J]. Materials Science and Technology,2019,35(5):596-605. doi: 10.1080/02670836.2019.1575054 [13] Alshebly Y S, Nafea M, Mohamed Ali M S, et al. Review on recent advances in 4 D printing of shape memory polymers[J]. European Polymer Journal,2021,159:110708. doi: 10.1016/j.eurpolymj.2021.110708 [14] Ramaraju H, Akman R E, Safranski D L, et al. Designing Biodegradable Shape Memory Polymers for Tissue Repair[J]. Advanced Functional Materials,2020,30(44):2002014. doi: 10.1002/adfm.202002014 [15] Zheng X Y, Zhou B, Xue S F. A Viscoelastic-Plastic Constitutive Model of Shape Memory Polymer[J]. Journal of Mechanics,2019,35(5):601-611. doi: 10.1017/jmech.2018.56 [16] Huang Y N, Fan L F, Rong M Z, et al. External Stress-Free Reversible Multiple Shape Memory Polymers[J]. ACS Appl Mater Interfaces,2019,11(34):31346-31355. doi: 10.1021/acsami.9b10052 [17] Jiada N, Jiarong H, Jianfeng F, et al. Strengthened, Self-Healing, and Conductive ENR-Based Composites Based on Multiple Hydrogen Bonding Interactions[J]. ACS Sustainable Chemistry & Engineering,2020,8(36):13724-13733. [18] Zheng Y, Ji X, Yin M, et al. Strategy for Fabricating Multiple-Shape-Memory Polymeric Materials via the Multilayer Assembly of Co-Continuous Blends[J]. ACS Appl Mater Interfaces,2017,9(37):32270-32279. doi: 10.1021/acsami.7b10345 [19] 严瑞芳. 一种古老而又年轻的天然高分子—杜仲胶[J]. 高分子通报, 1989(2):39-44. [20] 张继川, 薛兆弘, 严瑞芳, et al. 天然高分子材料——杜仲胶的研究进展[J]. 高分子学报, 2011(10):1105-1117. [21] Wang Y, Pei X, Xia L, et al. Covalent crosslinks turn natural Eucommia ulmoides gum/polybutene-1 composites into multiple shape memory materials[J]. Polymer Composites,2021,43(3):1371-1382. [22] Kang H, Gong M, Xu M, et al. Fabricated Biobased Eucommia Ulmoides Gum/Polyolefin Elastomer Thermoplastic Vulcanizates into a Shape Memory Material[J]. Industrial & Engineering Chemistry Research,2019,58(16):6375-6384. [23] Qi X, Zhao X, Li Y, et al. A high toughness elastomer based on natural Eucommia ulmoides gum[J]. Journal of Applied Polymer Science,2020,138(11):50007. [24] Wang Y, Liu J, Xia L, et al. Fully Biobased Shape Memory Thermoplastic Vulcanizates from Poly(Lactic Acid) and Modified Natural Eucommia Ulmoides Gum with Co-Continuous Structure and Super Toughness[J]. Polymers (Basel),2019,11(12):2040. doi: 10.3390/polym11122040 [25] Tian M, Gao W, Hu J, et al. Multidirectional Triple-Shape-Memory Polymer by Tunable Cross-linking and Crystallization[J]. ACS Applied Materials & Interfaces,2020,12(5):6426-6435. [26] Wang Y, Xia L, Xin Z. Triple shape memory effect of foamed natural Eucommia ulmoides gum/high density polyethylene composites[J]. Polymers for Advanced Technologies,2018,29(1):190-197. doi: 10.1002/pat.4102 [27] Han J-L, Lai S-M, Chiu Y T. Two-way multi-shape memory properties of peroxide crosslinked ethylene vinyl-acetate copolymer (EVA)/polycaprolactone (PCL) blends[J]. Polymers for Advanced Technologies,2018,29(7):2010-2024. doi: 10.1002/pat.4309 [28] Gu P, Zhang J. Vinyl acetate content influence on thermal, non-isothermal crystallization, and optical characteristics of ethylene–vinyl acetate copolymers[J]. Iranian Polymer Journal,2022,31:905-917. doi: 10.1007/s13726-022-01048-6 [29] Hao C, Wang K, Wang Z, et al. Triple one-way and two-way shape memory poly(ethylene-co-vinyl acetate)/poly(ε-caprolactone) immiscible blends[J]. Journal of Applied Polymer Science,2021,139(1):51426. [30] Lai S-M, Li C-H, Kao H-C, et al. Shape Memory Properties of Melt-Blended Olefin Block Copolymer (OBC)/Ethylene-Vinyl Acetate Blends[J]. Journal of Macromolecular Science, Part B,2019,58(1):174-191. doi: 10.1080/00222348.2018.1558593 [31] Qi X M, Dong Y B, Islam M Z, et al. Excellent triple-shape memory effect and superior recovery stress of ethylene-vinyl acetate copolymer fiber[J]. Composites Science and Technology,2021,203:108609. doi: 10.1016/j.compscitech.2020.108609 -