留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于三维结构光扫描的泡沫混凝土冻融损伤演化特性

周程涛 陈波

周程涛, 陈波. 基于三维结构光扫描的泡沫混凝土冻融损伤演化特性[J]. 复合材料学报, 2024, 42(0): 1-10.
引用本文: 周程涛, 陈波. 基于三维结构光扫描的泡沫混凝土冻融损伤演化特性[J]. 复合材料学报, 2024, 42(0): 1-10.
ZHOU Chengtao, CHEN Bo. Freeze-thaw damage evolution characteristics of foamed concrete based on three-dimensional laser scanning[J]. Acta Materiae Compositae Sinica.
Citation: ZHOU Chengtao, CHEN Bo. Freeze-thaw damage evolution characteristics of foamed concrete based on three-dimensional laser scanning[J]. Acta Materiae Compositae Sinica.

基于三维结构光扫描的泡沫混凝土冻融损伤演化特性

基金项目: 国家自然科学基金面上项目(52079049);国家重点实验室基本科研业务费(522012272;5230248A2)
详细信息
    通讯作者:

    陈波,博士,教授,博士生导师,研究方向为水工混凝土新材料 E-mail: chenbo@hhu.edu.cn

  • 中图分类号: TU528.2

Freeze-thaw damage evolution characteristics of foamed concrete based on three-dimensional laser scanning

Funds: The General Program of National Natural Science Foundation of China (52079049); Basic Scientific Research Business Expenses of National Key Laboratories (522012272; 5230248A2)
  • 摘要: 为了定量评价冻融环境下泡沫混凝土的表面损伤程度并探究其损伤演化特性,本文对冻融环境下密度为600 kg/cm3和800 kg/cm3的泡沫混凝土开展了三维结构光扫描试验、单轴压缩及相对动弹模量试验,借助Geomagic Studio及Cloud Compare等软件对三维点云数据进行处理,基于坡度均方根Z2、结构系数SF和粗糙轮廓系数RP和三维粗糙度系数R3p等参数定量分析了冻融环境下泡沫混凝土的表面形态和损伤特性。结果表明:泡沫混凝土表面损伤呈阶段性递次发展,破坏过程呈现出逐层剥落,由中部向两侧逐渐发育的特点;泡沫混凝土表面形貌参数与冻融循环次数正相关,低密度泡沫混凝土损伤速率更快,经历20次冻融循环后600 kg/m3试件Z2值增速较800 kg/m3试件大35.44%;800kg/cm3泡沫混凝土形貌参数与抗压强度间的灰关联度更高,均在0.62以上;Z2值与抗压强度保有率之间呈线性关系,相关系数达0.91以上。

     

  • 图  1  四目三维结构光扫描仪

    Figure  1.  Four-eye three-dimensional structured light scanner

    图  2  扫描数据处理

    Figure  2.  Scanned data processing

    图  3  不同冻融循环次数下泡沫混凝土质量损失率

    Figure  3.  Mass loss rate of foam concrete under different freeze-thaw cycles

    图  4  不同冻融循环次数下泡沫混凝土抗压强度

    Figure  4.  Compressive strength of foam concrete under different freeze-thaw cycles

    图  5  不同冻融循环次数下泡沫混凝土相对动弹模量

    Figure  5.  Relative dynamic elastic modulus of foam concrete under different freeze-thaw cycles

    图  6  不同冻融循环次数下SF600泡沫混凝土表面损伤及轮廓线

    Figure  6.  Surface damage and contour line of SF600 foam concrete under different freeze-thaw cycles

    图  7  不同冻融循环次数下泡沫混凝土表面形貌参数

    Figure  7.  Surface morphology parameters of foam concrete under different freeze-thaw cycles

    图  8  泡沫混凝土坡度平方根与抗压强度留存率回归分析

    Figure  8.  Regression analysis of slope square root and compressive strength retention rate of foam concrete

    表  1  泡沫混凝土配合比

    Table  1.   Mix proportion of foam concrete

    Densities Mix proportion/
    (kg·m−3)
    Wet density/
    (kg·m−3)
    Dry density/
    (kg·m−3)
    Cement Water Foam
    600 430.7 258.4 33.6 735 623
    800 564.1 338.5 26.4 921 816
    下载: 导出CSV

    表  2  泡沫混凝土冻融循环次数与抗压强度拟合参数

    Table  2.   Fitting parameters of freeze-thaw cycles and compressive strength of foamed concrete

    Densities a b c R2
    600 1.159 −0.0094 $ 3\times {10}^{-5} $ 0.99
    800 1.922 −0.0090 $ -6\times {10}^{-5} $ 0.97
    下载: 导出CSV

    表  3  冻融环境下泡沫混凝土表面形貌特征参数

    Table  3.   Characteristic parameters of surface morphology of foam concrete under freeze-thaw environment

    Sample No. Z2 SF RP RL/% R3 p/%
    SF600-FT 0-1 6.78 0.06 1.0034 0.34 -
    SF600-FT20-1 14.71 0.45 1.0111 1.11 0.49
    SF600-FT40-1 18.88 0.38 1.0191 1.91 1.21
    SF600-FT60-1 22.63 0.52 1.0280 2.80 2.24
    SF600-FT 0-2 6.38 0.11 1.0038 0.38 -
    SF600-FT20-2 12.23 0.14 1.0061 0.61 0.59
    SF600-FT40-2 14.79 0.47 1.0090 0.90 1.34
    SF600-FT60-2 19.49 0.35 1.0155 1.55 2.56
    SF600-FT 0-3 7.05 0.07 1.0055 0.55 -
    SF600-FT20-3 12.22 0.17 1.0080 0.80 0.56
    SF600-FT40-3 16.36 0.20 1.0130 1.30 1.08
    SF600-FT60-3 19.75 0.34 1.0156 1.56 2.05
    SF800-FT 0-1 5.69 0.04 1.0018 0.18 -
    SF800-FT20-1 7.49 0.07 1.0035 0.35 0.19
    SF800-FT40-1 8.96 0.08 1.0041 0.41 0.35
    SF800-FT60-1 15.84 0.26 1.0132 1.32 1.19
    SF800-FT 0-2 6.44 0.07 1.0046 0.46 -
    SF800-FT20-2 10.13 0.12 1.0061 0.61 0.27
    SF800-FT40-2 13.02 0.17 1.0069 0.69 0.43
    SF800-FT60-2 21.11 0.28 1.0124 1.24 1.26
    SF800-FT 0-3 6.35 0.05 1.0046 0.46 -
    SF800-FT20-3 11.64 0.15 1.0044 0.44 0.24
    SF800-FT40-3 14.31 0.45 1.0164 1.64 0.39
    SF800-FT60-3 19.39 0.58 1.0200 2.00 1.26
    Notes: The three-dimensional scanning prism specimens are numbered as SF600-FT20-1, where S represents the three-dimensional scanning test, F600 represents the density, FT20 represents the number of freeze-thaw cycles, and 1 represents the specimen number. The surface topography parameters, Z2 is slope root mean square, SF is structural coefficient, RP is roughness profile coefficient, RL is elongation, and R3 p is three-dimensional roughness coefficient.
    下载: 导出CSV

    表  4  泡沫混凝土特征参数与抗压强度关联度表

    Table  4.   Correlation table between characteristic parameters and compressive strength of foam concrete

    DensitiesZ2SFRLR3 p/%Relative dynamic elastic modulus
    F6000.6620.630.5940.5180.948
    F8000.7410.6350.6660.6220.983
    下载: 导出CSV
  • [1] 宋强, 张鹏, 鲍玖文, 等. 泡沫混凝土的研究进展与应用[J]. 硅酸盐学报, 2021, 49(2): 398-410.

    SONG Q, ZHANG P, BAO J W, et al. Research progress and application of foam concrete[J]. Journal of the Chinese Ceramic Society, 2021, 49(2): 398-410(in Chinese).
    [2] AMRAN Y H M, FARZADNIA N, ABANGALI A A. Properties and applications of foamed concrete; a review[J]. Construction and Building Materials, 2015, 101: 990-1005. doi: 10.1016/j.conbuildmat.2015.10.112
    [3] 李从波, 文梓芸, 殷素红. 大型承重保温夹芯复合墙体的材料选型及模拟[J]. 建筑材料学报, 2013, 16(6): 1012-1016.

    LI C B, WEN Z Y, YIN S H. Material selection and simulation research of large bearing insulation sandwich composite wall[J]. Journal of Building Materials, 2013, 16(6): 1012-1016(in Chinese).
    [4] GE Z, YUAN H, SUN R, et al. Use of green calcium sulphoaluminate cement to prepare foamed concrete for road embankment: a feasibility study[J]. Construction and Building Materials, 2020, 237: 117791. doi: 10.1016/j.conbuildmat.2019.117791
    [5] GUO Y Z, CHEN X D, CHEN B, et al. Analysis of foamed concrete pore structure of railway roadbed based on X-ray computed tomography[J]. Construction and Building materials, 2021, 273: 121773. doi: 10.1016/j.conbuildmat.2020.121773
    [6] 李升涛, 陈徐东, 张锦华, 等. 不同密度等级泡沫混凝土的单轴压缩破坏特征[J]. 建筑材料学报, 2021, 24(6): 1146-1153.

    LI S T, CHEN X D, ZHANG J H, et al. Failure characteristics of foam concrete with different density under uniaxial compression[J]. Journal of Building Materials, 2021, 24(6): 1146-1153(in Chinese).
    [7] Li T, HUANG F, ZHU J, et al. Effect of foaming gas and cement type on the thermal conductivity of foamed concrete[J]. Construction and Building materials, 2020, 231: 117197. doi: 10.1016/j.conbuildmat.2019.117197
    [8] NAMBIAR E K, RAMAMURTHY K. Air-void characterisation of foam concrete[J]. Cement and Concrete Research, 2007, 37(2): 221-30. doi: 10.1016/j.cemconres.2006.10.009
    [9] 段桂珍, 方从启. 混凝土冻融破坏研究进展与新思考[J]. 混凝土, 2013(05): 16-20.

    DUAN G Z, FANG C Q, Research progress and new thinking of destruction of concrete due to freeze-thaw cycles[J]. Concrete, 2013(05): 16-20(in Chinese).
    [10] 高志涵, 陈波, 陈家林, 等. 冻融环境下泡沫混凝土的孔结构与力学性能[J]. 复合材料学报, 2024, 41(2): 827-838.

    GAO Z H, CHEN B, CHEN J L, et al. Pore structure and mechanical properties of foam concrete under freeze-thaw environment[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 827-838(in Chinese).
    [11] 周程涛, 陈波, 高志涵. 冻融环境下泡沫混凝土的单轴压缩特性[J]. 硅酸盐通报, 2023, 42(4): 1233-1241.

    ZHOU C T, CHEN B, GAO Z H. Uniaxial Compression Characteristics of Foamed Concrete under Freeze-thaw Environment[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(4): 1233-1241(in Chinese).
    [12] 朱利平, 杜晓丽, 邹天民. 铁尾砂泡沫混凝土抗冻融性能及可靠性分析[J]. 硅酸盐通报, 2023, 42(11): 3988-3995.

    ZHU L P, DU X L, ZOU T M. Freeze- thaw resistance and reliability analysis of iron tailings sand foam concrete[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(11): 3988-3995(in Chinese).
    [13] TIKALSKY P J, POSPISIL J, MACDONALD W. A method for assessment of the freeze–thaw resistance of preformed foam cellular concrete[J]. Cement and Concrete Research, 2004, 34(5): 889-893. doi: 10.1016/j.cemconres.2003.11.005
    [14] RUSTAMOV S, WOO KIM S, KWON M, et al. Mechanical behavior of fiber-reinforced lightweight concrete subjected to repeated freezing and thawing[J]. Construction and Building Materials, 2021, 273.
    [15] LIAN H Z, SHUAI H Z, DONG L H, et al. Quantitative characterization of joint roughness based on semivariogram parameters[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 109: 1-8. doi: 10.1016/j.ijrmms.2018.06.008
    [16] INDRARATNA B, THIRUKUMARAN S, BROWN E T, et al. A technique for three-dimensional characterisation of asperity deformation on the surface of sheared rock joints[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 70: 483-495. doi: 10.1016/j.ijrmms.2014.04.022
    [17] 潘超, 王泽峰, 蒋宇涛, 等. 基于三维扫描的水射流冲击下再生混凝土断面形貌特征分析[J]. 振动与冲击, 2023, 42(22): 193-203.

    PAN C, WANG Z F, JIANG Y T, et al. Fracture surface morphology analysis of recycled concrete under water jet impact based on three-dimensional scanning[J]. Journal of Vibration and Shock, 2023, 42(22): 193-203(in Chinese).
    [18] 甘磊, 马洪影, 沈振中. 混凝土粗糙面形貌特征参数与节理粗糙度系数关系研究[J]. 土木工程学报, 2022, 55(7): 57-65.

    GAN L, MA H Y, SHEN Z Z. Relationship between characteristic parameters of concrete rough surface morphology and joint roughness coefficient[J]. China Civil Engineering Journal, 2022, 55(7): 57-65(in Chinese).
    [19] 张小波, 朱熙, 姚池, 等. 三维结构光扫描技术在岩石结构面粗糙度评价实验教学中的应用[J]. 实验室研究与探索, 2021, 40(9): 173-177.

    ZHANG X B, ZHU X, YAO C, et al. Application of structured-light scanning technique in experiment teaching of rock joint roughness evaluation[J]. Research and Exploration in Laboratory, 2021, 40(9): 173-177(in Chinese).
    [20] 中华人民共和国住房和城乡建设部. 泡沫混凝土: JG/T266−2011[S]. 北京: 中国标准出版社, 2011.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Foamed concrete: JG/T266−2011[S]. Beijing: Standards Press of China, 2011(in Chinese).
    [21] 泡沫混凝土应用技术规程: JGJ/T 341-2014[S]. 2014.

    Technical specification for application of foamed concrete: JGJ/T 341-2014[S]. 2014(in Chinese).
    [22] 吴禄祥. 岩石结构面粗糙度精细化表征与定量评价[D]. 浙江大学, 2020.

    WU L X. High-precision characterization and quantitative evaluation of rock joint roughness[D]. Zhejiang University, 2020(in Chinese).
    [23] 袁志颖, 陈波, 陈家林, 等. 泡沫混凝土孔结构表征及其对力学性能的影响[J]. 复合材料学报, 2023, 40(7): 4117-4127.

    YUAN Z Y, CHEN B, CHEN J L, et al. Characterization of pore structure of foamed concrete and its influence on performance[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4117-4127(in Chinese).
    [24] Azzeh M, Neagu D, Cowling P I. Fuzzy grey relational analysis for software effort estimation[M]. Kluwer Academic Publishers, 2010.
  • 加载中
计量
  • 文章访问数:  48
  • HTML全文浏览量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-15
  • 修回日期:  2024-06-06
  • 录用日期:  2024-06-24
  • 网络出版日期:  2024-07-09

目录

    /

    返回文章
    返回