留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

明胶-羧甲基壳聚糖-ZIF-8复合气凝胶的制备及对Pb(Ⅱ)的吸附

许优燕 付义乐 王自娜 李鑫 王梓懿 关丽

许优燕, 付义乐, 王自娜, 等. 明胶-羧甲基壳聚糖-ZIF-8复合气凝胶的制备及对Pb(Ⅱ)的吸附[J]. 复合材料学报, 2024, 42(0): 1-13.
引用本文: 许优燕, 付义乐, 王自娜, 等. 明胶-羧甲基壳聚糖-ZIF-8复合气凝胶的制备及对Pb(Ⅱ)的吸附[J]. 复合材料学报, 2024, 42(0): 1-13.
XU Youyan, FU Yile, WANG Zina, et al. Preparation of gelatin-carboxymethyl chitosan-ZIF-8 composite aerogel for adsorption of Pb(II)[J]. Acta Materiae Compositae Sinica.
Citation: XU Youyan, FU Yile, WANG Zina, et al. Preparation of gelatin-carboxymethyl chitosan-ZIF-8 composite aerogel for adsorption of Pb(II)[J]. Acta Materiae Compositae Sinica.

明胶-羧甲基壳聚糖-ZIF-8复合气凝胶的制备及对Pb(Ⅱ)的吸附

基金项目: 陕西省自然科学基础研究计划项目(2024JC-YBQN-0125,2022JM-096)
详细信息
    通讯作者:

    付义乐,博士,副教授,硕士生导师,研究方向为功能材料的制备及性能研究 E-mail: fuyile@xauat.edu.cn

    关丽,博士,副教授,硕士生导师,研究方向为有机复合材料的合成及应用研究 E-mail: guanli0317@163.com

  • 中图分类号: X703;TQ424;TB332

Preparation of gelatin-carboxymethyl chitosan-ZIF-8 composite aerogel for adsorption of Pb(II)

Funds: Natural Science Basic Research Program of Shaanxi (2024JC-YBQN-0125, 2022JM-096)
  • 摘要: 随着经济的不断发展,重金属污染对生态系统带来了严重的环境风险。因此,制备绿色环保且高效的重金属吸附新材料已成为当前研究领域中备受关注的热点。本研究以明胶(Gel)和羧甲基壳聚糖(CMCS)为载体,通过简单的掺杂法引入ZIF-8,制备一种具有三维多孔结构的明胶-羧甲基壳聚糖-ZIF-8复合气凝胶(GCZ-4),采用扫描电子显微镜(SEM)、X射线衍射(XRD)、傅里叶变换红外光谱(FT-IR)、X射线光电子能谱(XPS)对复合气凝胶的形貌和结构进行了表征,并将其用于水中Pb2+的吸附。结果表明:该复合气凝胶对Pb2+表现出优异的吸附能力,由Langmuir吸附等温模型计算得到的复合气凝胶对Pb2+的最大理论吸附量达367.42 mg·g−1,吸附过程为自发放热过程,并且遵从准二级动力学模型,属于化学吸附。此外,经过5次吸附-脱附试验,复合气凝胶仍对Pb2+保持较高的吸附性能。总的来说,GCZ-4复合气凝胶能够有效去除水中的Pb2+,是一种环保、经济、可回收的吸附剂。

     

  • 图  1  明胶-羧甲基壳聚糖-ZIF-8复合气凝胶(GCZ-4)复合气凝胶图

    Figure  1.  Picture of gelatin-carboxymethyl chitosan-ZIF-8 composite aerogel (GCZ-4) composite aerogel

    图  2  GCZ复合气凝胶制备流程

    Figure  2.  the preparation of GCZ composite aerogel

    图  3  (a)、(b) GC复合气凝胶平面和截面SEM图,(c) GC复合气凝胶截面局部放大SEM图;(d)、(e) GCZ-4复合气凝胶平面和截面SEM图,(f) GCZ-4复合气凝胶截面局部放大SEM图;(g)GCZ-4复合气凝胶EDS能谱图

    Figure  3.  (a), (b) SEM images of GC composite aerogel plane and section, (c) SEM images of GC composite aerogel section with local amplification; (d), (e) SEM images of GCZ-4 composite aerogel plane and section, (f) SEM images of GCZ-4 composite aerogel section with local amplification, (g) the EDS spectrum of GCZ-4 composite aerogel

    图  4  ZIF-8、CMCS、Gel、GCZ-4复合气凝胶的FT-IR图

    Figure  4.  FT-IR spectrum of ZIF-8, CMCS, Gel, and GCZ-4 composite aerogel

    图  5  GC复合气凝胶和GCZ-4复合气凝胶XRD图

    Figure  5.  The XRD of GC composite aerogel and GCZ-4 composite aerogel

    θ—Diffraction angle

    图  6  不同原料配比对GC复合气凝胶吸附Pb2+的影响

    Figure  6.  Effects of different raw material ratios on adsorption of Pb2+ by GC composite aerogel

    图  7  ZIF-8投加量对GCZ复合气凝胶吸附Pb2+的影响

    Figure  7.  Influence of different dosage of ZIF-8 on adsorption of Pb2+ by GCZ composite aerogel

    图  8  溶液pH与GCZ-4复合气凝胶吸附Pb2+去除率和吸附量的关系

    Figure  8.  Relationship between solution pH and the removal and adsorption capacity of Pb2+ by GCZ-4 composite aerogel

    qe—Equilibrium adsorption capacity

    图  9  温度与GCZ-4复合气凝胶吸附Pb2+吸附量的关系

    Figure  9.  Relationship between temperature and the adsorption capacity of Pb2+ adsorbed by GCZ-4 composite aerogel

    t—Adsorption time

    图  10  GCZ-4复合气凝胶吸附Pb2+的Langmuir模型(a)、Freundlich模型(b)

    Figure  10.  Langmuir model (a) and Freundlich model (b) of GCZ-4 composite aerogel adsorption of Pb2+

    ce—Equilibrium concentration of the Pb2+ solution

    图  11  吸附时间与CGZ-4复合气凝胶吸附Pb2+吸附量的关系

    Figure  11.  Relationship between adsorption time and the adsorption capacity of Pb2+ adsorbed by CGZ-4 composite aerogel

    $ {\text{q}}_{\text{t}} $—Adsorption capacity at time t

    图  12  GCZ-4复合气凝胶吸附Pb2+的准一级动力学拟合曲线(a)、准二级动力学拟合曲线(b)和粒子内扩散拟合曲线(c)

    Figure  12.  Pseudo -first-order kinetic fitting curve(a), pseudo-second-order kinetic fitting curve(b), and in-particle diffusion fitting curve(c)of GCZ-4 composite aerogel adsorption of Pb2+

    图  13  GCZ-4复合气凝胶对Pb2+、Ag+、Cd2+、Cu2+的选择性吸附性能

    Figure  13.  Selective adsorption properties of GCZ-4 composite aerogel for Pb2+、Ag+、Cd2+、Cu2+

    图  14  循环次数与GCZ-4复合气凝胶对Pb2+吸附量和去除率的关系

    Figure  14.  Relationship between cycle time and the removal and adsorption capacity of Pb2+ by GCZ-4 composite aerogel

    图  15  GCZ-4复合气凝胶吸附Pb2+前后的XPS图谱(a)XPS总谱图;(b~f)C、O、N、Zn、Pb元素吸附前后的精细谱图

    Figure  15.  XPS spectra before and after GCZ-4 composite aerogel adsorption Pb2+ (a) Total XPS spectra; (b~f) Fine spectra of C, O, N, Zn and Pb before and after adsorption.

    图  16  GCZ-4复合气凝胶吸附Pb2+机理图

    Figure  16.  Mechanism of adsorption of Pb2+ by GCZ-4 composite aerogel

    表  1  GCZ-4复合气凝胶吸附Pb2+在不同初始浓度的平衡浓度和吸附量

    Table  1.   The equilibrium concentrations and adsorption capacities for Pb2+adsorption by GCZ-4 composite aerogel at different initial concentrations

    c0 /(mg·L−1) ce /(mg·L−1) qe/(mg·g−1)
    50 7.8 112
    100 13.5 168
    150 26.61 210
    200 38.48 230
    250 52.8 246
    300 104.4 267
    Notes:$ \text{}\text{c}\text{0} $—initial concentration of the Pb2+ solution;ce—equilibrium concentration of the Pb2+ solution;qe—equilibrium adsorption capacity.
    下载: 导出CSV

    表  2  GCZ-4复合气凝胶吸附Pb2+的Langmuir模型和Freundlich模型拟合参数

    Table  2.   Fitting parameters of Langmuir model and Freundlich model for Pb2+adsorption by GCZ-4 composite aerogel

    Langmuir modelFreundlich model
    qm/(mg·g−1)KLR2RLKFnR2
    367.420.0860.9920.10479.683.6630.798
    Notes:qm—the maximum theoretical adsorption capacity; R2—linear correlation coefficient; $ {K}_{\mathrm{L}} $—Langmuir adsorption coefficient; $ {K}_{\mathrm{F}} $—Freundlich adsorption coefficient; n—the adsorption strength constant, RL—the separation factor.
    下载: 导出CSV

    表  3  不同吸附剂材料对Pb2+的最大吸附量比较

    Table  3.   Comparison of adsorption properties of different adsorbents for Pb2+

    Adsorbent T/K pH c0/(mg·L−1) qm/(mg·g−1) Reference
    KOH-Modified Banana Peel Hydrothermal Carbon 298 6 50 42.92 [29]
    sand leek (Allium scorodoprasum L.) 298 4.5 1000 107 [30]
    Weathered Coal-Immobilized Microbial Materials 308 5 300 338.90 [31]
    zinc chloride-impregnated activated carbon from brown alga 313 5 25 30.14 [32]
    CoFe2O4@SiO2–NH2 323 8 50 74.50 [33]
    GCZ-4 298 5 100 367.42 This study
    Notes:$ \text{T} $—temperature;$ \text{}\text{c}\text{0} $—initial concentration of the Pb2+ solution; qm—the maximum theoretical adsorption capacity
    下载: 导出CSV

    表  4  GCZ-4复合气凝胶对Pb2+的吸附动力学拟合参数

    Table  4.   Fitting parameters of Pb2+adsorption kinetics of GCZ-4 composite aerogel

    pseudo-first-order kinetic model pseudo-second-order kinetic model
    T/K qe/(mg·g−1) k1/min−1 R2 qe/(mg·g−1) k2/(g·mg−1·min−1) R2
    298 285.39 0.0316 0.893 285.71 0.000077 0.984
    303 275.46 0.0352 0.967 255.10 0.000095 0.988
    308 206.10 0.0376 0.981 221.72 0.000164 0.990
    313 154.63 0.0268 0.856 202.83 0.000215 0.997
    Notes:$ \text{T} $—temperature; R2—linear correlation coefficient; $ {{k}}_{\text{1}} $—pseudo-first-order kinetic constant; $ {{k}}_{\text{2}} $—pseudo-second-order kinetic constant; qe—equilibrium adsorption capacity.
    下载: 导出CSV

    表  5  GCZ-4复合气凝胶对Pb2+的粒子内扩散模型拟合参数

    Table  5.   Fitting parameters of GCZ-4 composite aerogel for Pb2+intra particle diffusion mode

    T/K k1/(mg·g−1·min0.5) R12 k2/(mg·g−1·min0.5) R22 k3/(mg·g−1·min0.5) R32
    298 32.94 0.99 11.31 0.95 0.41 0.51
    303 23.77 0.98 9.01 0.93 1.23 0.51
    308 27.20 0.99 6.42 0.94 1.18 0.86
    313 22.84 0.98 5.74 0.96 1.23 0.51
    Notes:$ \text{T} $—temperature; $ {k}_{\mathrm{i}} $— intra-particle diffusion rate constant; R2—linear correlation coefficient.
    下载: 导出CSV

    表  6  GCZ-4复合气凝胶对Pb2+的吸附热力学相关参数

    Table  6.   Thermodynamic parameters of Pb2+adsorption by GCZ-4 composite aerogel

    T/K ΔH/
    (kJ·mol−1)
    ΔS/
    (kJ·mol−1·K−1)
    ΔG/
    (kJ·mol−1)
    298 −37.16 −0.105 −5.87
    303 −5.34
    308 −4.82
    313 −4.29
    Notes:$ \text{T} $—temperature;$ {\Delta }\text{H} $—enthalpy change;$ {\Delta }\text{S} $—entropy change;$ {\Delta }\text{G} $—Gibbs free energy change.
    下载: 导出CSV
  • [1] 段翠清, 任珺, 陶玲. 纳米氧化石墨烯复合材料的制备及重金属废水处理研究[J]. 功能材料, 2023, 54(12): 12085-12090. doi: 10.3969/j.issn.1001-9731.2023.12.011

    DUAN Cuiqing, REN Jun, TAO Lin. Study on preparation of nanometer graphite oxide composites and treatment of heavy metal wastewater[J]. Journal of Functional Materials, 2023, 54(12): 12085-12090 (in Chinese). doi: 10.3969/j.issn.1001-9731.2023.12.011
    [2] ELSAYED I, SCHUENEMAN G T, EL-GIAR E M, et al. Amino-Functionalized Cellulose Nanofiber/ Lignosulfonate New Aerogel Adsorbent for the Removal of Dyes and Heavy Metals from Wastewater[J]. Gels, 2023, 9(2): 154. doi: 10.3390/gels9020154
    [3] CAO Y, XIAO W, SHEN G, et al. Carbonization and ball milling on the enhancement of Pb(II) adsorption by wheat straw: Competitive effects of ion exchange and precipitation[J]. Bioresource Technology, 2019, 273: 70-76. doi: 10.1016/j.biortech.2018.10.065
    [4] 张诗洋, 朋小康, 廖松义, 等. 用于分离重金属离子的聚苯胺改性氧化石墨烯复合膜[J]. 材料导报, 2021, 35(18): 18030-18034. doi: 10.11896/cldb.20070178

    ZHANG Shiyang, PENG Xiaokang, LIAO Songyi, et al. Polyaniline modified graphene oxide composite membranes for separation of heavy metal ion[J]. Material Reports, 2021, 35(18): 18030-18034 (in Chinese). doi: 10.11896/cldb.20070178
    [5] GONG L, WU H, SHAN X, et al. Facile fabrication of phosphorylated alkali lignin microparticles for efficient adsorption of antibiotics and heavy metal ions in water[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106574. doi: 10.1016/j.jece.2021.106574
    [6] SHAH B, CHUDASAMA U. Synthesis and characterization of a novel hybrid material as amphoteric ion exchanger for simultaneous removal of cations and anions[J]. Journal of Hazardous Materials, 2014, 276: 138-148. doi: 10.1016/j.jhazmat.2014.05.031
    [7] EHGARTNER C R, WERNER V, SELZ S, et al. Carboxylic acid-modified polysilsesquioxane aeogels for the selective and reversible complexation of heavy metals and organic molecules[J]. Microporous and Mesoporous Materials, 2021, 312: 110759. doi: 10.1016/j.micromeso.2020.110759
    [8] 柴敏, 方春姗, 于雪娜, 等. 虾蛄壳生物炭吸附Pb2+的特性及机理研究[J]. 环境化学, 2023, 42(11): 3834-3848. doi: 10.7524/j.issn.0254-6108.2022112902

    CAI Min, FANG Chunshan, YU Xuena, et al. Study on the adsorption properties and mechanism of Pb2+ by the biochar prepared from mantis shrimp shells[J]. Environmental Chemistry, 2023, 42(11): 3834-3848 (in Chinese). doi: 10.7524/j.issn.0254-6108.2022112902
    [9] DANG A, LIU X, WANG Y, et al. High-efficient adsorption for versatile adsorbates by elastic reduced graphene oxide/Fe3O4 magnetic aerogels mediated by carbon nanotubes[J]. Journal of Hazardous Materials, 2023, 457: 131846. doi: 10.1016/j.jhazmat.2023.131846
    [10] BORRÁS A, ROSADO A, FRAILE J, et al. Meso/microporous MOF@graphene oxide composite aerogels prepared by generic supercritical CO2 technology[J]. Microporous and Mesoporous Materials, 2022, 335: 111825. doi: 10.1016/j.micromeso.2022.111825
    [11] 逄其涵, 宋慧敏, 刘佳豪, 等. MOF/聚吡咯/石墨烯三元复合气凝胶的制备与电化学性能[J]. 复合材料学报, 2024, 41(2): 723-734.

    PANG Qihan, SONG Huimin, LIU Jiahao, et al. Preparation and electrochemical properties of MOF/polypyrrole/ graphene ternary composite aerogel[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 723-734(in Chinese).
    [12] CHEN G N, LIU G Z, PAN Y, et al. Zeolites and metal–organic frameworks for gas separation: the possibility of translating adsorbents into membranes[J]. Chemical Society Reviews, 2023, 52: 4586-4602 doi: 10.1039/D3CS00370A
    [13] DU X, DU H, TANG B, et al. Elaboration of a green and highly dispersible Co-MOFs induced Co-doped C3N5 photocatalyst: Applications and mechanistic insights into activated perxymonosulfate degradation of antibiotics[J]. Journal of Environmental Chemical Engineering, 2024, 12(2): 112186. doi: 10.1016/j.jece.2024.112186
    [14] CAI J, LIU C, TAO S, et al. MOFs-derived advanced heterostructure electrodes for energy storage[J]. Coordination Chemistry Reviews, 2023, 479: 214985. doi: 10.1016/j.ccr.2022.214985
    [15] CHEN J, ZHU Y, KASKEL S. Porphyrin-Based Metal–Organic Frameworks for Biomedical Applications[J]. Angewandte Chemie International Edition, 2021, 60(10): 5010-5035. doi: 10.1002/anie.201909880
    [16] 孙瑞华, 杨卓凡, 张芮博, 等. 多孔材料ZIF-8的制备及其对布洛芬的载药性能[J]. 复合材料学报, 2024, 42: 1-8.

    SUN Ruihua, YANG Zhuofan, ZHANG Ruibo, et al. Preparation of the porous ZIF-8 and the behaviors of loading ibuprofen[J]. Acta Materiae Compositae Sinica, 2024, 42: 1-8 (in Chinese).
    [17] LEI Y, LIU X, ZHANG J, et al. A novel composite (ZIF-8@PEI-CC) with enhanced adsorption capacity and kinetics of methyl orange[J]. Journal of Solid State Chemistry, 2023, 318: 123758. doi: 10.1016/j.jssc.2022.123758
    [18] HONG Y. Preparation and photocatalytic performance of Zn2SnO4/ZIF-8 nanocomposite[J]. Ceramics International, 2023, 497(7): 11027-11037.
    [19] WANG M, SHAO L, JIA M. Shape memory and underwater superelastic mof@cellulose aerogels for rapid and large-capacity adsorption of metal ions[J]. Cellulose, 2022, 29: 8243-8254. doi: 10.1007/s10570-022-04774-5
    [20] 任子铭, 黎亮丽, 蒋向向, 等. 双交联废弃瓦楞纸基气凝胶缓冲材料的制备与性能[J]. 复合材料学报, 2024, 41(3): 1458-1469.

    REN Ziming, LI Liangli, JIANG Xiangxiang, et al. Preparation and properties of double crosslinked waste corrugated paper-based aerogel buffer materials[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1458-1469 (in Chinese).
    [21] AGARWAL T, NARAYAN R, MAJI S, et al. Gelatin/Carboxymethyl chitosan based scaffolds for dermal tissue engineering applications[J]. International Journal of Biological Macromolecules, 2016, 93: 1499-1506. doi: 10.1016/j.ijbiomac.2016.04.028
    [22] QU Y, QIN L, LIU X. Carbonized ZIF-8/chitosan biomass imprinted hybrid carbon aerogel for phenol selective removal from wastewater[J]. Carbohydrate Polymers, 2023, 300: 120268. doi: 10.1016/j.carbpol.2022.120268
    [23] XU W, CHEN S, ZHU Y, et al. Preparation of hyperelastic graphene/carboxymethyl cellulose composite aerogels by ambient pressure drying and its adsorption applications[J]. Journal of Materials Science, 2020, 55(24): 10543-10557. doi: 10.1007/s10853-020-04720-5
    [24] ZHU G, ZHANG C L, LI K Q, et al. A multifunctional zeolitic imidazolate framework-8@wood aerogel composite intergrating superior performance of dye adsorption capacity and flame-retardant property[J]. Journal of porous materials, 2023, 30(4): 1171-1182. doi: 10.1007/s10934-022-01412-0
    [25] ZHANG H F, ZHAO M, LIN Y S. Stability of ZIF-8 in water under ambient conditions[J]. Microporous and Mesoporous Materials, 2019, 279: 201-210. doi: 10.1016/j.micromeso.2018.12.035
    [26] ZHOU Y, GAO Y, WANG H, et al. Versatile 3D reduced graphene oxide/poly(amino-phosphonic acid) aerogel derived from waste acrylic fibers as an efficient adsorbent for water purification[J]. Science of The Total Environment, 2021, 776: 145973. doi: 10.1016/j.scitotenv.2021.145973
    [27] AZIZIAN S, ERIS S, WILSON L D. Re-evaluation of the century-old Langmuir isotherm for modeling adsorption phenomena in solution[J]. Chemical Physics, 2018, 513: 99-104. doi: 10.1016/j.chemphys.2018.06.022
    [28] MOUSSAVI G, HOSSAINI Z, POURAKBAR M. High-rate adsorption of acetaminophen from the contaminated water onto double-oxidized graphene oxide[J]. Chemical Engineering Journal, 2016, 287: 665-673. doi: 10.1016/j.cej.2015.11.025
    [29] BAI T, ZHAO J, TIAN L, et al. The Adsorption of Pb(II) from Aqueous Solution Using KOH-Modified Banana Peel Hydrothermal Carbon: Adsorption Properties and Mechanistic Studies[J]. Materials, 2024, 17(2): 311. doi: 10.3390/ma17020311
    [30] ŞENOL Z M, ARSLANOGLU H. Influential biosorption of lead ions from aqueous solution using sand leek (Allium scorodoprasum L. ) biomass: kinetic and isotherm study[J]. Biomass Conversion and Biorefinery, 2024.
    [31] JIAO Z, GAO C, LI J, et al. Weathered Coal-Immobilized Microbial Materials as a Highly Efficient Adsorbent for the Removal of Lead[J]. Molecules, 2024, 29(3): 660. doi: 10.3390/molecules29030660
    [32] NUR S O, UMI F M A, SUBASH C B G, et al. Bio-removal of lead (II) ions under optimal condition by zinc chloride-impregnated activated carbon from brown alga[J]. Biomass Conversion and Biorefinery, 2024.
    [33] Zeng Y X, Xie J L, Xiao X, et al. Synthesis of CoFe2O4@SiO2-NH2 and its application in adsorption of trace lead[J]. Rsc advances, 2024, 14(1): 589-601. doi: 10.1039/D3RA06091H
    [34] WANG Z G, SONG L, WANG Y Q, et al. Lightweight UiO-66/cellulose aerogels con-structed through self-crosslinking strategy for adsorption applications[J]. Chemical Engineering Journal, 2019, 371: 138-144. doi: 10.1016/j.cej.2019.04.022
    [35] HOSSEINI H, ZIRAKJOU A, MCCLEMENTS, et al. Removal of meth-ylene blue from wastewater using ternary nanocomposite aerogel systems: Carbox-ymethyl cellulose grafted by polyacrylic acid and decorated with graphene oxide[J]. Journal of Hazardous Materials, 2022, 421: 126752. doi: 10.1016/j.jhazmat.2021.126752
    [36] 张宏伟, 谢鸿, 肖欣荣, 等. 不同氧化程度氧化石墨烯/聚乙烯醇气凝胶对亚甲基蓝的吸附[J]. 复合材料学报, 2021, 38(9): 2788-2795.

    ZHANG H W, XIE H, XIAO X R, et al. Ad-sorption of methylene blue by graphene ox-ide/polyvinyl alcoholaerogels with differ-ent oxidation degrees[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 2788-2795 (in Chinese).
  • 加载中
计量
  • 文章访问数:  25
  • HTML全文浏览量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-24
  • 修回日期:  2024-09-01
  • 录用日期:  2024-09-07
  • 网络出版日期:  2024-09-25

目录

    /

    返回文章
    返回