留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高延性磷酸镁水泥基快速修补材料的制备及性能优化设计

柴丽娟 岳中华 郭丽萍 陈波 王柳叶

柴丽娟, 岳中华, 郭丽萍, 等. 高延性磷酸镁水泥基快速修补材料的制备及性能优化设计[J]. 复合材料学报, 2024, 42(0): 1-15.
引用本文: 柴丽娟, 岳中华, 郭丽萍, 等. 高延性磷酸镁水泥基快速修补材料的制备及性能优化设计[J]. 复合材料学报, 2024, 42(0): 1-15.
CHAI Lijuan, YUE Zhonghua, GUO Liping, et al. Preparation and performance optimization design of high ductility magnesium phosphate cementitious rapid repair material[J]. Acta Materiae Compositae Sinica.
Citation: CHAI Lijuan, YUE Zhonghua, GUO Liping, et al. Preparation and performance optimization design of high ductility magnesium phosphate cementitious rapid repair material[J]. Acta Materiae Compositae Sinica.

高延性磷酸镁水泥基快速修补材料的制备及性能优化设计

基金项目: 山西省基础研究计划资助项目(20210302124011); 高性能土木工程材料国家重点实验室开放基金课题(2022CEM003); 国家自然科学基金(52208280)
详细信息
    通讯作者:

    郭丽萍, 博士, 博士生导师, 研究方向为高延性混凝土的微观设计理论及工程应用 E-mail: guoliping@691.com

  • 中图分类号: TU528

Preparation and performance optimization design of high ductility magnesium phosphate cementitious rapid repair material

Funds: Fundamental Research Program of Shanxi Province (20210302124011); Opening Project of State Key Laboratory of High Performance Civil Engineering Materials (2022CEM003); National Natural Science Foundation of China (52208280)
  • 摘要: 针对路桥面铺装层沥青混凝土抗拉变形能力差引发开裂等病害,考虑减少因混凝土修补导致的交通阻碍,研制一种满足立方体抗压强度≥40 MPa、快硬(6 h)、高延性(极限延伸率≥0.50%、平均裂缝宽度≤200 μm)的高延性磷酸镁水泥基快速修补材料(HD-MPCRRM)。从凝结时间、抗压和抗折强度、立方体抗压强度及拉伸性能四个方面调控优化HD-MPCRRM性能,优选HD-MPCRRM配合比;采用XRD分析磷酸镁水泥(MPC)水化产物,采用SEM分析MPC微观形貌,揭示宏观性能机制。优化氧化镁(M)与磷酸二氢铵(P)质量比和硼砂掺量,可使MPC凝结时间不低于10 min。通过优化参数粉煤灰掺量、龄期、水胶比、早强剂种类和掺量以及砂胶比,养护6 h 后HD-MPCRRM立方体抗压强度为41.9 MPa,极限抗拉强度为6.1 MPa,极限延伸率为1.10%,平均裂缝宽度为117 μm。M/P主要会改变MPC体系水化产物类型,当M/P较小时,MPC水化产物有中间水化产物schertelite和最终水化产物鸟粪石,当M/P增加时,MPC中间产物schertelite会转变为鸟粪石。掺加粉煤灰和碳酸锂的MPC体系水化产物是鸟粪石。HD-MPCRRM的研制,不仅可为路桥面快速修补提供有效方法,采用MPC水泥替代硅酸盐水泥,减少碳排放。

     

  • 图  1  试件制备流程

    Figure  1.  Preparation process of specimen

    M is MgO, P is ammonium dihydrogen phosphate, BO is borax, FA is fly ash, RS is river sand, PS is polycarboxylate superplasticizer, Li is lithium carbonate, W is water

    图  2  拉伸性能试验装置图

    Figure  2.  Test device of tensile property

    图  3  M/P对MPC凝结时间的影响

    Figure  3.  Effect of M/P on the setting time of MPC

    图  4  硼砂掺量对MPC凝结时间的影响

    Figure  4.  Effect of borax content on the setting time of MPC

    图  5  粉煤灰掺量对MPC凝结时间的影响

    Figure  5.  Effect of fly ash content on the setting time of MPC

    图  6  粉煤灰掺量对MPC水泥基复合材料抗压和抗折强度的影响

    Figure  6.  Effect of fly ash content on the compressive and flexural strength of MPC cementitious composite material

    图  7  养护龄期对MPC水泥基复合材料抗压和抗折强度的影响

    Figure  7.  Effect of curing age on the compressive and flexural strength of MPC cementitious composite material

    图  8  水胶比对MPC水泥基复合材料抗压和抗折强度的影响

    Figure  8.  Effect of water-binder ratio on the compressive and flexural strength of MPC cementitious composite material

    图  9  早强剂对MPC水泥基复合材料抗压和抗折强度的影响

    Figure  9.  Effect of ESA content on the compressive and flexural strength of MPC cementitious composite material

    图  10  养护龄期对掺加早强剂MPC水泥基复合材料抗压和抗折强度的影响

    Figure  10.  Effect of curing age on the compressive and flexural strength of MPC cementitious composite material with early strength agent

    图  11  砂胶比对MPC水泥基复合材料立方体抗压强度的影响

    Figure  11.  Effect of sand-binder ratio on the cubic compressive strength of MPC cementitious composite material

    图  12  水胶比对MPC水泥基复合材料立方体抗压强度的影响

    Figure  12.  Effect of water-binder ratio on the cubic compressive strength of MPC cementitious composite material

    图  13  HD-MPCRRM的拉伸应力-应变关系

    Figure  13.  Tensile stress-strain relationship of HD-MPCRRM

    图  14  MPC不同配合比的XRD分析

    Figure  14.  XRD analysis of different mixture of MPC

    图  15  不同M/P的MPC微观形貌

    Figure  15.  Microtopography of MPC with different M/P

    图  16  不同粉煤灰掺量的MPC微观形貌

    Figure  16.  Microtopography of MPC with different fly ash content

    表  1  氧化镁的化学成分组成

    Table  1.   Chemical composition of magnesium oxide

    CompositionMgOSiO2Al2O3Fe2O3CaOTiO2SO3
    Content/%91.793.10.861.271.510.010.22
    下载: 导出CSV

    表  2  以凝结时间≥10 min为目标的MPC水泥基复合材料配合比设计(质量比)

    Table  2.   Mixture design of MPC cementitious composite material with purpose of setting time more than 10 min (by mass ratio)

    Design factor W/B M/P BO/M /% FA/B /%
    M/P 0.3 2/3/4/5/6 25 0
    0.3 2/3/4/5/6 30 0
    Content of BO 0.3 2 15/20/25/30/35 0
    0.3 3 15/20/25/30/35 0
    0.3 4 10/15/20/25/30/35/40 0
    0.3 5 15/20/25/30/35/40 0
    0.3 6 15/20/25/30/35/40 0
    Content of FA 0.3 2 25 0/20/30/40/50/60
    0.3 2 30 0/20/30/40/50/60
    0.3 2 35 0/20/30/40/50/60
    0.3 3 30 0/20/30/40/50/60
    0.3 3 35 0/20/30/40/50/60
    0.3 4 40 0/20/30/40/50/60
    Notes: W/B is water-binder ratio, M/P is the mass ratio of magnesium oxide (M) to ammonium dihydrogen phosphate (P), BO/M is the mass ratio of borax to magnesium oxide, FA/B is the mass ratio of fly ash to binder.
    下载: 导出CSV

    表  3  MPC水泥基复合材料初步配合比设计(质量比)

    Table  3.   Preliminary mixture design of MPC cementitious composite material (by mass ratio)

    Design factor W/B M/P BO/M/% FA/B/% RS/B ESA/B/% PVA fiber/%
    Content of FA 0.3 2 25 0/30/40/50/60 0.3 2
    0.3 3 30 0/30/40/50/60 0.3 2
    0.3 4 40 0/30/40/50/60 0.3 2
    Curing age 0.3 2 25 20 0.3 2
    W/B 0.27/0.28/0.29/0.3/0.31 2 25 20 0.3 2
    ESA 0.29 2 25 20 0.3 Li 0/0.5/1/1.5/2/3 2
    0.29 2 25 20 0.3 CF 0/0.5/1/1.5/2/3 2
    0.29 2 25 20 0.3 ASS 0/0.5/1/1.5/2/3 2
    Notes: PVA fiber is added by volume fraction, RS/B is the mass ratio of river sand to binder, ESA/B is the mass ratio of early strength agent to binder.
    下载: 导出CSV

    表  4  MPC水泥基复合材料配合比优化设计(质量比)

    Table  4.   Optimization mixture design of MPC cementitious composite material (by mass ratio)

    Design factor W/B M/P BO/M/% FA/B/% RS/B Li/B/% PS/B/% PVA fiber/%
    RS/B 0.2 2 25 20 0.8/0.9/1.0/1.1/1.2 3 1.1 2
    W/B 0.16/0.18/0.2/0.22/0.24 2 25 20 1.0 3 1.1 2
    0.17/0.18/0.2/0.22/0.24 3 30 20 0.3 3 1.1 2
    Notes: PVA fiber is added by volume fraction, Li/B is the mass ratio of lithium carbonate to binder, PS/B is the mass ratio of polycarboxylate superplasticizer to binder.
    下载: 导出CSV

    表  5  MPC净浆配合比 (kg/m3)

    Table  5.   Mixture of MPC pure paste (kg/m3)

    Specimen ID M P BO FA Li
    M2F0L0 633.3 316.7 158.3 0 0
    M4F0L0 760 190 304 0 0
    M3F0L0 712.5 237.5 213.75 0 0
    M3F2L0 570 190 171 190 0
    M3F3L0 498.75 166.25 149.6 285 0
    M3F2L3 570 190 171 190 28.5
    Notes: The specimen ID contains three parts, the first part is the mass ratio of magnesium oxide (M) to ammonium dihydrogen phosphate (P), the second part is the mass ratio of fly ash to binder, and the third part is the mass ratio of lithium carbonate to binder. Such as, M3F2L3means the mass ratio of magnesium oxide (M) to ammonium dihydrogen phosphate (P) is 3, the mass ratio of fly ash to binder is 20%, and the mass ratio of lithium carbonate to binder is 3%. M is MgO, P is ammonium dihydrogen phosphate, BO is borax, FA is fly ash, Li is lithium carbonate.
    下载: 导出CSV
  • [1] 杨正宏, 刘思佳, 吴凯, 等. 纤维增强磷酸镁水泥基复合材料研究进展[J]. 材料导报, 2023, 37(1): 118-124. doi: 10.11896/cldb.20110150

    YANG Zhenghong, LIU Sijia, WU Kai, et al. Research progress on fiber reinforced magnesium phosphate cement composites[J]. Materials Reports, 2023, 37(1): 118-124 (in Chinese). doi: 10.11896/cldb.20110150
    [2] 尤超. 磷酸镁水泥水化硬化及水化产物稳定性 [D]. 重庆: 重庆大学, 2017.

    YOU Chao. Hydration and hardening of magnesium phosphate cement and stability of hydration products [D]. Chongqing: Chongqing University, 2017 (in Chinese).
    [3] ZHANG Yijie, WANG Shugang, ZHANG Bo, et al. A preliminary investigation of the properties of potassium magnesium phosphate cement-based grouts mixed with fly ash, water glass and bentonite[J]. Construction and Building Materials, 2020, 237: 117501. doi: 10.1016/j.conbuildmat.2019.117501
    [4] HAQUE M. Aminul, CHEN Bing, LIU Yuantao. The role of bauxite and fly-ash on the water stability and microstructural densification of magnesium phosphate cement composites[J]. Construction and Building Materials, 2020, 260: 119953. doi: 10.1016/j.conbuildmat.2020.119953
    [5] DONG Dong, HUANG Yongbo, PEI Yan, et al. Effect of spherical silica fume and fly ash on the rheological property, fluidity, setting time, compressive strength, water resistance and drying shrinkage of magnesium ammonium phosphate cement[J]. Journal of Building Engineering, 2023, 63: 105484. doi: 10.1016/j.jobe.2022.105484
    [6] 李磊, 杨毅, 谢顺. 钢纤维对磷酸镁水泥基修补材料韧性的影响[J]. 新型建筑材料, 2022, 49(4): 44-47+130. doi: 10.3969/j.issn.1001-702X.2022.04.011

    LI Lei, YANG Yi, XIE Shun. Effect of steel fiber on toughness of magnesium phosphate cement-based repair material[J]. New Building Materials, 2022, 49(4): 44-47+130 (in Chinese). doi: 10.3969/j.issn.1001-702X.2022.04.011
    [7] YUAN Fang, CHEN Bing, ODERJI Saj jadYousefi. Experimental research on magnesium phosphate cement mortar reinforced by glass fiber[J]. Construction and Building Materials, 2018, 188: 729-736.
    [8] 方圆, 陈兵. 玻璃纤维对磷酸镁水泥砂浆力学性能的增强作用及机理[J]. 材料导报, 2017, 31(24): 6-9+39. doi: 10.11896/j.issn.1005-023X.2017.024.002

    FANG Yuan, CHEN Bing. The enhancement and mechanism of glass fiber on mechanical properties of magnesium phosphate cement mortar[J]. Materials Reports, 2017, 31(24): 6-9+39 (in Chinese). doi: 10.11896/j.issn.1005-023X.2017.024.002
    [9] 中国建筑材料联合会. 高延性纤维增强水泥基复合材料力学性能试验方法JC/T 2461-2018 [S]. 北京: 中国建材工业出版社, 2018.

    China Building Materials Federation. Standard Test Method for the Mechanical Properties of Ductile Fiber Reinforced Cementitious Composites JC/T 2461-2018 [S]. Beijing: China Building Materials Press, 2018 (in Chinese).
    [10] 刘泽军, 赵柳, 李艳, 等. 不同长径比聚乙烯(PVA)/ 高延性纤维增强水泥基复合材料(ECC)动态压缩性 能[J]. 复合材料学报, 2023, 40(12): 6859-6870.

    LIU Zejun, ZHAO Liu, LI Yan, et al. Dynamic com pression property of polyvinyl alcohol (PVA)/engineered fiber reinforced cementitious compo site (ECC) with different length-diameter ratios[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6859-6870 (in Chinese).
    [11] CUROSU Lurie, LIEBSCHER Marco, ALSOUS Ghaith, et al. Tailoring the crack-bridging behavior of strain-hardening cement-based composites (SHCC) by chemical surface modification of poly(vinyl alcohol) (PVA) fibers[J]. Cement and Concrete Composites, 2020, 114: 103722. doi: 10.1016/j.cemconcomp.2020.103722
    [12] XU Shilang, WU Ping, ZHOU Fei, et al. A dynamic constitutive model of ultra high toughness cementitious composites[J]. Journal of Zhe Jiang University-Science, 2020, 21(12): 939-960.
    [13] ZHENG Yu, ZHANG Lifei, XIA Lipeng. Investigation of the behaviour of flexible and ductile ECC link slab reinforced with FRP[J]. Construction and Building Materials, 2018, 166: 694-711. doi: 10.1016/j.conbuildmat.2018.01.188
    [14] FIGUEIREDO Tathiana Caram S. P. , CUROSU Iurie, GONZALES Giancarlo L. G. , et al. Mechanical behavior of strain-hardening cement-based composites (SHCC) subjected to torsional loading and to combined torsional and axial loading[J]. Materials & Design, 2021, 198: 109371.
    [15] 李晓琴, 周旭, 李世华. 粉煤灰掺量对PVA-ECC性能的影响[J]. 硅酸盐通报, 2020, 39(12): 3783-3790.

    LI Xiaoqin, ZHOU Xu, LI Shihua. Effect of fly ash content on properties of PVA-ECC[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(12): 3783-3790 (in Chinese).
    [16] DENG Mingke, ZHANG Min, MA Fudong, et al. Flexural strengthening of over-reinforced concrete beams with highly ductile fiber-reinforced concrete layer[J]. Engineering Structures, 2021, 231: 111725. doi: 10.1016/j.engstruct.2020.111725
    [17] GUO Liping, WANG Miao, DING Cong, et al. Effect of incorporating reclaimed asphalt pavement on macroscopic and microstructural properties of high ductility cementitious composites[J]. Construction and Building Materials, 2020, 260: 119956. doi: 10.1016/j.conbuildmat.2020.119956
    [18] CHAI Lijuan, GUO Liping, CHEN Bo, et al. Effects of curing age on compressive and tensile stress-strain behaviors of ecological high ductility cementitious composites[J]. Journal of Southeast University (English Edition), 2020, 36(1): 73-80.
    [19] CHAI Lijuan, GUO Liping, CHEN Bo, et al. Interactive effects of freeze-thaw cycle and carbonation on tensile property of ecological high ductility cementitious composites for bridge deck link slab[J]. Construction and Building Materials, 2018, 186: 773-781. doi: 10.1016/j.conbuildmat.2018.07.248
    [20] FENG Hu, LIANG Junhao, GUO Aofei, et al. Development and design of ultra-high ductile magnesium phosphate cement-based composite using fly ash and silica fume[J]. Cement and Concrete Composites, 2023, 137: 104923. doi: 10.1016/j.cemconcomp.2022.104923
    [21] FENG Hu, NIE Shuang, GUO Aofei, et al. Evaluation on the performance of magnesium phosphate cement-based engineered cementitious composites (MPC-ECC) with blended fly ash/ silica fume[J]. Construction and Building Materials, 2022, 341: 127861. doi: 10.1016/j.conbuildmat.2022.127861
    [22] 李茂, 岳燕飞, 钱觉时, 等. 钢纤维增强磷酸镁水泥混凝土力学性能研究[J]. 武汉大学学报(工学版), 2022, 55(7): 691-698.

    LI Mao, YUE Yanfei, QIAN Jueshi, et al. Investigation on the mechanical properties of steel fiber reinforced magnesium phosphate cement concrete[J]. Engineering Journal of Wuhan University, 2022, 55(7): 691-698 (in Chinese).
    [23] LIU Runqing, PANG Bo, ZHAO Xingke, et al. Effect of rice husk ash on early hydration behavior of magnesium phosphate cement[J]. Construction and Building Materials, 2020, 263: 120180. doi: 10.1016/j.conbuildmat.2020.120180
    [24] LIU Yuantao, CHEN Bing, QIN Zhaohui, et al. Experimental research on properties and microstructures of magnesium-iron phosphate cement[J]. Construction and Building Materials, 2020, 257: 119570. doi: 10.1016/j.conbuildmat.2020.119570
    [25] 中国建筑材料联合会. 水泥标准稠度用水量、凝结时间、安定性检验方法GB/T 1346-2011 [S]. 北京: 中国标准出版社, 2011.

    China Building Materials Federation. Test Methods for Water Requirement of Normal Consistency, Setting Time and Soundness of the Portland Cement GB/T 1346-2011 [S]. Beijing: Standards Press of China, 2011 (in Chinese).
    [26] 中国建筑材料联合会. 水泥胶砂强度检验方法(IOS法) GB/T 17671-2021 [S]. 北京: 中国标准出版社, 2021.

    China Building Materials Federation. Test Method of Cement Mortar Strength (ISO Method) GB/T 17671-2021 [S]. Beijing: Standards Press of China, 2021 (in Chinese).
    [27] 刘进, 呙润华, 张增起. 磷酸镁水泥性能的研究进展[J]. 材料导报, 2021, 35(23): 1-16. doi: 10.11896/cldb.20070106

    LIU Jin, GUO Runhua, ZHANG Zengqi. Research progress of properties of magnesium phosphate cement[J]. Materials Reports, 2021, 35(23): 1-16 (in Chinese). doi: 10.11896/cldb.20070106
    [28] 房琦, 肖炳斐, 陈玥, 等. 矿物掺合料在磷酸镁水泥中的研究进展综述[J]. 混凝土, 2021, (6): 67-72. doi: 10.3969/j.issn.1002-3550.2021.06.015

    FANG Qi, XIAO Bingfei, CHEN Yue, et al. Review on research progress of mineral admixtures in magnesium phosphate cement[J]. Concrete, 2021, (6): 67-72 (in Chinese). doi: 10.3969/j.issn.1002-3550.2021.06.015
    [29] LI Victor C. , LEUNG Christopher K. Y. Steady-state and multiple cracking of short random fiber composites[J]. Journal of Engineering Mechanics, 1992, 118(11): 2246-2264. doi: 10.1061/(ASCE)0733-9399(1992)118:11(2246)
    [30] 杨亚男. 变温条件下生态型高延性水泥基复合材料多尺度本构关系与设计理论 [D]. 南京: 东南大学, 2017.

    YANG Yanan. Multi-scale constitutive relation and design theory of ecological high ductility cementitious composites under variable temperature conditions [D]. Nanjing: Southeast University, 2017 (in Chinese).
    [31] 谌正凯. 国产化绿色高延性水泥基复合材料优化设计与关键性能 [D]. 南京: 东南大学, 2015.

    CHEN Zhengkai. Optimized design and key perfor mance of domestic green high ductility cementitious composites [D]. Nanjing: Southeast University, 2015 (in Chinese).
    [32] 谭永山, 余红发, 姚祥, 等. 无缓凝剂磷酸镁修补砂 浆的力学性能实验研究[J]. 南京航空航天大学学报, 2018, 50(1): 138-144.

    TAN Yongshan, YU Hongfa, YAO Xiang, et al. Experimental study on mechanics properties of magnesium phosphate repair mortar without retarder[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2018, 50(1): 138-144 (in Chinese).
    [33] 胡华洁. 用于高铁无砟轨道损伤快速修复磷酸镁水泥 研究 [D]. 上海: 上海交通大学, 2015.

    HU Huajie. Experimental research on magnesium phosphate cement for rapid repair of ballastless track in high-speed railway [D]. Shanghai: Shanghai Jiaotong University, 2015 (in Chinese).
    [34] 仝万亮. 矿物掺合料与硅酸盐水泥改性磷酸镁水泥的 性能研究[D]. 西安: 西安建筑科技大学, 2016

    TONG Wanliang. Study on the properties of mineral admixture and Portland cement modified magnesium phosphate cement [D]. Xi’an: Xi’an University of Ar chitecture and Technology, 2016 (in Chinese).
  • 加载中
计量
  • 文章访问数:  93
  • HTML全文浏览量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-26
  • 修回日期:  2024-03-27
  • 录用日期:  2024-04-10
  • 网络出版日期:  2024-05-09

目录

    /

    返回文章
    返回