留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅聚物-氧化石墨烯增强玻璃纤维/环氧树脂复合材料的制备与性能

许欢 叶蓓 陆晶晶 管纪鹏 党蕊琼 沈小军

许欢, 叶蓓, 陆晶晶, 等. 硅聚物-氧化石墨烯增强玻璃纤维/环氧树脂复合材料的制备与性能[J]. 复合材料学报, 2024, 42(0): 1-9.
引用本文: 许欢, 叶蓓, 陆晶晶, 等. 硅聚物-氧化石墨烯增强玻璃纤维/环氧树脂复合材料的制备与性能[J]. 复合材料学报, 2024, 42(0): 1-9.
XU Huan, YE Bei, LU Jing Jing, et al. Preparation and properties of Silicone polymer-Graphene oxide reinforced glass fiber/epoxy resin composites[J]. Acta Materiae Compositae Sinica.
Citation: XU Huan, YE Bei, LU Jing Jing, et al. Preparation and properties of Silicone polymer-Graphene oxide reinforced glass fiber/epoxy resin composites[J]. Acta Materiae Compositae Sinica.

硅聚物-氧化石墨烯增强玻璃纤维/环氧树脂复合材料的制备与性能

基金项目: 浙江省自然科学基金 (LY22E030013)
详细信息
    通讯作者:

    沈小军,博士,教授,硕士生导师,研究方向为聚合物基复合材料 E-mail: sxj908@163.com

  • 中图分类号: TB332

Preparation and properties of Silicone polymer-Graphene oxide reinforced glass fiber/epoxy resin composites

Funds: Natural Science Foundation of Zhejiang Province (No. LY22E030013)
  • 摘要: 本研究将不同比例的硅聚物-氧化石墨烯(Silicon polymer-Graphene oxide,PSOL-GO)作为纳米填料来改性玻璃纤维/环氧树脂(Glass fiber/epoxy resin,GF/EP)复合材料,制备得到不同PSOL-GO含量的复合材料,利用观察形貌、测量接触角、红外分析、力学性能、动态力学分析(DMA)等测试方法分析了环氧复合材料的微观结构和增强机制。实验结果表明:PSOL-GO比例为1∶0.1时PSOL-GO@GF/EP复合材料力学性能最佳:改性后的GF/EP复合材料与纯GF/EP复合材料相比其层间剪切强度提升高了13.19%;其弯曲强度提升了33.12%;其拉伸强度提升了35.32%;其冲击强度提升了16.95%。添加比例为1∶0.1的PSOL-GO可使GF/EP复合材料的玻璃化转变温度(Tg)提高了7.1℃,使其耐热性有所提高。引入PSOL-GO纳米填料后的环氧树脂对玻璃纤维的润湿性更佳,同时可以填补纯的GF/EP复合材料自身空隙,增强复合材料的性能。

     

  • 图  1  硅聚物(PSOL)的制备机制

    Figure  1.  Preparation mechanism of Silicon polymer (PSOL)

    图  2  PSOL-氧化石墨烯(GO)@玻璃纤维/环氧树脂(GF/EP)复合材料的制备流程图

    Figure  2.  Flowchart of preparation of PSOL- Graphene oxide (GO)@ Glass fiber/epoxy resin,GF/EP (GF/EP) composites

    图  3  FE-SEM:(a) PSOL;(b)氧化石墨烯(GO);(c)硅聚物-氧化石墨烯(PSOL-GO)

    Figure  3.  FE-SEM: (a) PSOL; (b) Graphene oxide (GO); (c) Silicon polymer-Graphene oxide(PSOL-GO)

    图  4  GO、PSOL及PSOL-GO的红外谱图

    Figure  4.  Infrared spectra of GO, PSOL and PSOL-GO

    图  5  不同比例的PSOL与GO对PSOL-GO@GF/EP复合材料层间剪切性能的影响

    Figure  5.  Effects of different ratios PSOL and GO on the interlaminar shear properties of PSOL-GO@GF/EP composites

    图  6  PSOL-GO@GF/EP复合材料增强机制

    Figure  6.  Strengthening mechanism of PSOL-GO@GF/EP composites

    图  7  PSOL-GO@GF/EP复合材料剥离表面的SEM图像:(a)纯的玻璃纤维/环氧树脂(GF/EP)复合材料;(b) Psol:GO=1∶0.1;(c) Psol:GO=1:0.3;(d) Psol:GO=4:0.1

    Figure  7.  SEM images of the peeling surface of PSOL-GO@GF/EP composites: (a) pure Glass fiber/epoxy resin(GF/EP)composites;(b) Psol:GO=1∶0.1; (c) Psol:GO=1:0.3; (d) Psol:GO=4:0.1

    图  8  PSOL-GO@EP对玻璃纤维润湿性的影:(a)纯环氧;(b) PSOL:GO=1∶0.1

    Figure  8.  Influence of PSOL-GO@EP on wettability of glass fiber: (a) pure epoxy; (b) PSOL:GO=1∶0.1

    图  9  不同比例的PSOL与GO对PSOL-GO@GF/EP复合材料弯曲性能的影响

    Figure  9.  Influence of different ratios of PSOL and GO on the bending properties of PSOL-GO@GF/EP composites

    图  10  不同比例的PSOL与GO对PSOL-GO@GF/EP复合材料拉伸性能的影响

    Figure  10.  Influence of different ratios PSOL to GO on the tensile properties of PSOL-GO@GF/EP composites

    图  11  不同比例的PSOL与GO比例对PSOL/GO/GF/EP复合材料冲击性能的影响

    Figure  11.  Influence of different ratios PSOL and GO on impact performance of PSOL/GO/GF/EP composites

    图  12  PSOL-GO@GF/EP复合材料动态力学性能的影响:(a)和(c)储能模量;(b)和(d)损耗因子

    Figure  12.  Influence of dynamic mechanical properties of PSOL-GO@GF/EP composites: (a) and (c) energy storage modulus; (b) and(d) loss factors

  • [1] SHARMA A K, BHANDARI R, SHARMA C, et al. Polymer matrix composites: A state of art review[J]. Materials Today:Proceedings, 2022, 57: 2330-2333. doi: 10.1016/j.matpr.2021.12.592
    [2] HU L H, TSAI Y T. CARBON fiber surface-modified by polymer derived ceramic incorporated with graphene to strengthen the mechanical and electrochemical properties of ceramic-carbon fiber composite[J]. Composites Science and Technology, 2022, 221: 109294. doi: 10.1016/j.compscitech.2022.109294
    [3] MALALLI C S, RAMJI B R. MECHANICAL. Characterization of natural fiber reinforced polymer composites and their application in Prosthesis: A review[J]. Materials Today:Proceedings, 2022, 62: 3435-3443. doi: 10.1016/j.matpr.2022.04.276
    [4] RANE A V, THOMAS S. Fibers and Polymers in Fiber Reinforced Polymer Composites: A Review[J]. Fiber Reinforced Polymeric Materials and Sustainable Structures, 2023: 91-101.
    [5] ASYRAF M R M, IIYAS R A, SAPUAN S M, et al. Advanced Composite in Aerospace Applications: Opportunities, Challenges, and Future Perspective[J]. Advanced Composites in Aerospace Engineering Applications, 2022: 471-498.
    [6] YANG Y, Li J, SHAN L, et al. All-natural bioinspired nanolignocellulose-derived bulk engineering materials with excellent mechanical properties and environmental stability[J]. Cellulose, 2023, 30(2): 871-884. doi: 10.1007/s10570-022-04922-x
    [7] APPADURAI M, RAJ E F I. Epoxy/silicon carbide (sic) nanocomposites based small scale wind turbines for urban applications[J]. International Journal of Energy and Environmental Engineering, 2022, 13(1): 191-206. doi: 10.1007/s40095-021-00417-w
    [8] 王刚, 金智康, 宋俊杰, 等. 复合涂层对玻璃纤维增强尼龙 6 复合材料界面性能的影响[J]. 复合材料学报, 2023, 41: 1-13.

    WANG Gang, JIN Zhikang, SONG Junjie, et al. Effect of Composite coating on interfacial properties of glass fiber reinforced nylon 6 composites[J]. Journal of Composite Materials, 2023, 41: 1-13 (in Chinese).
    [9] DEHROOYEH S, VASEGHI M, SOHRABIAN M, et al. Glass fiber/Carbon nanotube/Epoxy hybrid composites: Achieving superior mechanical properties[J]. Mechanics of Materials, 2021, 161: 104025. doi: 10.1016/j.mechmat.2021.104025
    [10] TIAN X, TODOROKI A, LIU T, et al. 3d printing of continuous fiber reinforced polymer composites: Development, application, and prospective[J]. Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers, 2022: 100016.
    [11] KHURSHID M F. Innovative unidirectional recycled carbon fiber tape structure for high performance thermoplastic composites: technological developments, technology-structure-property relationship and modeling of composite tensile properties[J]. 2023.
    [12] SHUKLA N, DEVNANI G L. A review on mechanical properties of hybrid natural fiber polymer composites[J]. Materials Today:Proceedings, 2021, 45: 4702-4705. doi: 10.1016/j.matpr.2021.01.122
    [13] SIENGCHIN S. A review on lightweight materials for defence applications: A present and future developments[J]. Defence Technology, 2023, 24: 1-17. doi: 10.1016/j.dt.2023.02.025
    [14] PARVEEZ B, KITTUR M I, BADRUDDIN I A, et al. Scientific Advancements in Composite Materials for Aircraft Applications: A Review[J]. Polymers, 2022, 14(22): 5007. doi: 10.3390/polym14225007
    [15] KAUSAR A. Aeronautical composites and materials[J]. Polymeric Nanocomposites with Carbonaceous Nanofillers for Aerospace Applications, 2022, 14(22): 5007.
    [16] Al-FURJAN M S H, SHAN L, SHEN X, et al. A review on fabrication techniques and tensile properties of glass, carbon, and Kevlar Fiber Reinforced Polymer composites[J]. Journal of Materials Research and Technology, 2022, 19: .2930-2959 doi: 10.1016/j.jmrt.2022.06.008
    [17] LUO Y. Optimization of Surface Mechanical Process Parameters of Composite Materials Based on Industrial Engineering Technology[J]. 2023.
    [18] AMANTAYEVA A, SHEHAB E, MEIIRBEKOV A, et al. Challenges and Opportunities of Implementing Industry 4.0 in Recycling Carbon Fiber Reinforced Composites[J]. Advances in Science and Technology, 2022, 116: 67-73.
    [19] ISLAM M H, AFROJ S, UDDIN M A, et al. Graphene and CNT-Based Smart Fiber-Reinforced Composites: A Review[J]. Advanced Functional Materials, 2022, 32(40): 2205723. doi: 10.1002/adfm.202205723
    [20] GONCALVES R M, MARTINHO A, OLIVEIRA J P. Recycling of reinforced glass fibers waste: Current status[J]. Materials, 2022, 15(4): 1596. doi: 10.3390/ma15041596
    [21] PARVEEZ B, KITTUR M I, BADRUDDIN I A, et al. Scientific Advancements in Composite Materials for Aircraft Applications: A Review[J]. Polymers, 2022, 14(22): 5007. doi: 10.3390/polym14225007
    [22] MAJEWSKI P, FLORIN N, JIT J, et al. End-of-life policy considerations for wind turbine blades[J]. Renewable and Sustainable Energy Reviews, 2022, 164: 112538. doi: 10.1016/j.rser.2022.112538
    [23] DOSHI S M, SHARMA S, MORRIS K, et al. Peel Strength of Glass Fiber-Epoxy Composites with Thermoplastic Interlayers under Different Environmental Conditions[C]//SAMPE Conference Proceedings. Charlotte, NA. 2022.
    [24] DASARI S, LOHANI S, PRUSTY R K. An assessment of mechanical behavior of glass fiber/epoxy composites with secondary short carbon fiber reinforcements[J]. Journal of Applied Polymer Science, 2022, 139(12): 51841. doi: 10.1002/app.51841
    [25] RODRIGUEZ-GONZALEZ J A, RUBIO-GONZALEZ C. Influence of graphene nanoplatelet concentration on the electrical, mechanical, and piezoresistive properties of glass fiber/epoxy composites[J]. Polymer Composites, 2022, 43(5): 3276-3289. doi: 10.1002/pc.26616
    [26] AZHARY T, WILDAN M W. Mechanical, morphological, and thermal characteristics of epoxy/glass fiber/cellulose nanofiber hybrid composites[J]. Polymer Testing, 2022, 110: 107560. doi: 10.1016/j.polymertesting.2022.107560
    [27] OU Y, WU L, MAO D. Hierarchical mode I interlaminar toughening of unidirectional CFRP laminates by the synergistic effects of CNT powders and veils[J]. Composites Part A:Applied Science and Manufacturing, 2023, 168: 107464. doi: 10.1016/j.compositesa.2023.107464
    [28] HAN W, ZHOU J, SHI Q. Research progress on enhancement mechanism and mechanical properties of FRP composites reinforced with graphene and carbon nanotubes[J]. Alexandria Engineering Journal, 2022, 64: 541-579.
    [29] YANG W J, WEI C X, YUEN A C Y, et al. Fire-retarded nanocomposite aerogels for multifunctional applications: A review[J]. Composites Part B: Engineering, 2022: 109866.
    [30] KARNA N, JOSHI G M, MHASKE S T. Structure-property relationship of silane-modified polyurethane: A review[J]. Progress in Organic Coatings, 2023, 176: 107377. doi: 10.1016/j.porgcoat.2022.107377
    [31] DANG C Y, TANG B L, ZENG X L, et al. Improved interlaminar shear strength of glass fiber/epoxy composites by graphene oxide modified short glass fiber[J]. Materials Research Express, 2019, 6(8): 085324. doi: 10.1088/2053-1591/ab2254
    [32] American Society for Testing and Materials. Standard test method for short-beam strength of polymer matrix composite materials and their laminates[M]. ASTM International, 2006.
    [33] 中国国家标准化管理委员会(标准制定单位). 树脂浇铸体性能试验方法: GB/T 2567-2021 [S]. 北京: 中国标准出版社, 2021.

    Standardization Administration of China (Standard-setting unit). Test Method for resin casting Performance: GB/T 2567-2021 [S]. Beijing: Standards Press of China, 2021(in Chinese).
    [34] 中国国家标准化管理委员会(标准制定单位). 纤维增强塑料弯曲性能试验方法: GB/T 1449-2005 [S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of China (standard setting unit). Test method for flexure properties of fiber reinforced plastics: GB/T 1449-2005 [S]. Beijing: Standards Press of China, 2005(in Chinese).
    [35] LU J J, SHI Y C, GUAN J P, et al. Enhanced mechanical properties of ramie fabric/epoxy composite laminates by silicon polymer[J]. Industrial Crops and Products, 2023, 199: 116778. doi: 10.1016/j.indcrop.2023.116778
  • 加载中
计量
  • 文章访问数:  83
  • HTML全文浏览量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-14
  • 修回日期:  2024-01-21
  • 录用日期:  2024-01-22
  • 网络出版日期:  2024-03-02

目录

    /

    返回文章
    返回