留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑孔隙缺陷的CFRP微观切削仿真与实验研究

李树健 周永超 陈蓉 李常平 邱新义 李鹏南

李树健, 周永超, 陈蓉, 等. 考虑孔隙缺陷的CFRP微观切削仿真与实验研究[J]. 复合材料学报, 2022, 39(0): 1-12
引用本文: 李树健, 周永超, 陈蓉, 等. 考虑孔隙缺陷的CFRP微观切削仿真与实验研究[J]. 复合材料学报, 2022, 39(0): 1-12
Shujian LI, Yongchao ZHOU, Rong CHEN, Changping LI, Xinyi QIU, Pengnan LI. Simulation and experimental study of CFRP micro cutting considering voids defects[J]. Acta Materiae Compositae Sinica.
Citation: Shujian LI, Yongchao ZHOU, Rong CHEN, Changping LI, Xinyi QIU, Pengnan LI. Simulation and experimental study of CFRP micro cutting considering voids defects[J]. Acta Materiae Compositae Sinica.

考虑孔隙缺陷的CFRP微观切削仿真与实验研究

基金项目: 国家自然科学基金 (51975208;51775184;51805163)
详细信息
    通讯作者:

    李树健,博士,副教授,硕士生导师,研究方向为树脂基复合材料成型与切削加工技术 E-mail: smart0110@126.com

  • 中图分类号: TQ327.3

Simulation and experimental study of CFRP micro cutting considering voids defects

  • 摘要: 碳纤维增强树脂基复合材料(CFRP)在航空航天等领域应用广泛。在CFRP制造过程中难以避免会产生孔隙等缺陷,对后续的切削加工造成一定影响。在考虑了CFRP成型过程形成的孔隙缺陷基础上,运用有限元仿真模拟方法,从纤维-树脂-界面尺度建立了含孔隙缺陷的CFRP微观切削仿真模型,研究了不同孔隙率条件下不同纤维排布方向的CFRP微观切削行为,并通过实验验证了仿真模型的正确性。研究结果表明:孔隙的存在会增加刀具的“虚切”现象,从而对CFRP切削过程的切削力、材料破坏及亚表面损伤、材料能量等产生影响。随孔隙率的增加,切削力呈下降趋势,孔隙边缘的纤维产生整体断裂的倾向增加;孔隙对0°、45°和135°纤维排布方向的CFRP切削加工的面下损伤影响不大,在纤维排布方向为90°条件下,孔隙率高于3%时对加工表面的面下损伤具有较大影响;在材料内部的能量耗散方面,“顺切”(纤维方向角小于90°)时的总耗散能低于“逆切”,随孔隙率增加,总耗散能降低。

     

  • 图  1  树脂本构模型[16]

    Figure  1.  Constitutive model of resin[16]

    Em—Elastic modulus; dm—Stiffness degradation factor; σm—stress of matrix; εm—strain of matrix; $ {\sigma }_{\mathrm{m}}^{0} $—Starting point of plastic stage; $ {\sigma }_{\mathrm{m}}^{{y}_{0}} $—Yield stress at damage initiation point; $ {{\bar\varepsilon }}_{0}^{\mathrm{p}\mathrm{l}} $—Failure initiation strain; $ {{\bar\varepsilon }}_{\mathrm{m}}^{\mathrm{p}\mathrm{l}} $—Complete failure strain

    图  2  含孔隙CFRP的微观切削建模

    Figure  2.  Micro cutting modeling of CFRP with voids

    θ—Fiber orientation angle; α—Rake angle; γ—Clearance angle; Vp—Volumetric voids; U—Translational degrees of freedom; UR—Rotational degrees of freedom

    图  3  不同纤维角度θ和孔隙率下CFRP的切削力:(a) θ=0° (b) θ=45° (c) θ=90° (d) θ=135°

    Figure  3.  Cutting force of CFRP under different fiber angles θ and void contents: (a) θ=0° (b) θ=45° (c) θ=90° (d) θ=135°

    图  4  CFRP孔隙边缘的最大应力

    Figure  4.  Maximum stress at voids edges of CFRP

    图  5  含不同孔隙率CFRP切削的材料断裂与损伤:(a) θ=0° (b) θ=45° (c) θ=90° (d) θ=135°

    Figure  5.  Materials fracture and damage of CFRP cutting with different void contents: (a) θ=0° (b) θ=45° (c) θ=90° (d) θ=135°

    图  6  不同孔隙含量的CFRP微观切削加工表面:(a) θ=0° (b) θ=45° (c) θ=90° (d) θ=135°

    Figure  6.  Micro machined surface of CFRP with different void contents: (a) θ=0° (b) θ=45° (c) θ=90° (d) θ=135°

    图  7  不同孔隙含量的CFRP面下最大损伤深度

    Figure  7.  Maximum fracture depth under the surface of CFRP with different void contents

    图  8  不同孔隙含量的CFRP能量耗散:(a) θ=0° (b) θ=45° (c) θ=90° (d) θ=135°

    Figure  8.  Energy dissipation of CFRP with different void contents: (a) θ=0° (b) θ=45° (c) θ=90° (d) θ=135°

    图  9  含不同孔隙率的CFRP微观结构

    Figure  9.  Microstructures of CFRP with different void contents

    图  10  CFRP仿真与实验的最大切削力对比 (θ=90°)

    Figure  10.  Comparison of maximum cutting force of CFRP between simulation and experiment (θ=90°)

    图  11  仿真与实验的CFRP切削加工表面形貌对比(无孔隙)

    Figure  11.  Comparison of cutting surface morphology of CFRP between simulation and experiment (0% void content)

    图  12  CFRP切削加工表面的仿真与实验结果对比(孔隙率5%)

    Figure  12.  Comparison of simulation and experimental results of cutting surface of CFRP (5% voids content)

    表  1  CFRP材料各相的力学性能[23, 24]

    Table  1.   Mechanical properties of each phase of CFRP[23, 24]

    MaterialParameterValue
    Carbon fiberElastic modulus/GPaE1=231, E2=E3=15
    Poisson’s ratiov12=v13=0.2, v23=0.25
    Shear modulus/GPaG12=G13=15, G23=7
    Tensile strength/GPaXt=4.62, Yt=1.5
    Compressive strength/GPaXc=3.96, Yc=3.34
    ResinElastic modulus/GPaE=3.35
    Poisson’s ratiov=0.35
    Yield strength/MPaσy=120
    Fracture energy/(N·mm−1)Gf=0.01
    InterfaceNormal strength/MPaσmax=50
    Shear strength/MPaτmax=75
    Elastic stiffness/(N·mm−3)K=100000
    Fracture energy/(N·mm−1)GI=0.002
    下载: 导出CSV

    表  2  有限元模型切削工艺参数

    Table  2.   Cutting process parameters used in the FE model

    ParameterValue
    Rake angle of tool/(°)15
    Clearance angle of tool/(°)10
    Edge radius of tool/μm5
    Depth of cutting/μm35
    Cutting speed/(mm·s−1)300
    下载: 导出CSV
  • [1] 邢丽英, 包建文, 礼嵩明, 等. 先进树脂基复合材料发展现状和面临的挑战[J]. 复合材料学报, 2016, 33(7):1327-1338.

    XING L Y, BAO J W, LI S M, et al. Development status and facing challenge of advanced polymer matrix composites[J]. Acta Materiae Compositae Sinica,2016,33(7):1327-1338(in Chinese).
    [2] HEGDE S, SATISH SHENOY B, CHETHAN K N. Review on carbon fiber reinforced polymer (CFRP) and their mechanical performance[J]. Materials Today:Proceedings,2019,19:658-662. doi: 10.1016/j.matpr.2019.07.749
    [3] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 1(24):1-12.

    DU S Y. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica,2007,1(24):1-12(in Chinese).
    [4] GEIER N, DAVIM J P, SZALAY T. Advanced cutting tools and technologies for drilling carbon fibre reinforced polymer (CFRP) composites: A review[J]. Composites Part A:Applied Science and Manufacturing,2019,125:105552. doi: 10.1016/j.compositesa.2019.105552
    [5] LI S J, ZHAN L H, CHEN R, et al. The influence of cure pressure on microstructure, temperature field and mechanical properties of advanced polymer-matrix composite laminates[J]. Fibers and Polymers,2014,15(11):2404-2409. doi: 10.1007/s12221-014-2404-0
    [6] FARHANG L, FERNLUND G. Void and porosity characterization of uncured and partially cured prepregs[J]. Journal of Composite Materials,2016,50(7):937-948. doi: 10.1177/0021998315583924
    [7] GU Y Z, LI M, ZHANG Z G, et al. Void formation model and measuring method of void formation condition during hot pressing process[J]. Polymer Composites,2010,31(9):1562-1571. doi: 10.1002/pc.20944
    [8] CARRERA E, PETROLO M, NAGARAJ M H, et al. Evaluation of the influence of voids on 3D representative volume elements of fiber-reinforced polymer composites using CUF micromechanics[J]. Composite Structures,2020,254:112833. doi: 10.1016/j.compstruct.2020.112833
    [9] 李树健, 湛利华, 周源琦, 等. 基于图像处理的碳纤维增强树脂基复合材料固化压力-缺陷-力学性能建模与评估[J]. 复合材料学报, 2018, 35(12):3368-3376.

    LI S J, ZHAN L H, ZHOU Y Q, et al. Modeling and evaluation of curing pressurer-defects-mechanical properties of carbon fiber composites based on image processing[J]. Acta Materiae Compositae Sinica,2018,35(12):3368-3376(in Chinese).
    [10] ZHANG D, HEIDER D, GILLESPIE J W. Determination of void statistics and statistical representative volume elements in carbon fiber-reinforced thermoplastic prepregs[J]. Journal of Thermoplastic Composite Materials,2017,30(8):1103-1119. doi: 10.1177/0892705715618002
    [11] 任明法, 常鑫. 基于两尺度代表体元的含孔隙复合材料单层板弹性常数预测[J]. 复合材料学报, 2016, 33(5):1111-1118.

    REN M F, CHANG X. Prediction for elastic coefficients of composite single layer laminate containing voids based on two-scale representative volume elements[J]. Acta Materiae Compositae Sinica,2016,33(5):1111-1118(in Chinese).
    [12] WANG D Y, HE X D, XU Z H, et al. Study on damage evaluation and machinability of UD-CFRP for the orthogonal cutting operation using scanning acoustic microscopy and the finite element method[J]. Materials,2017,10(2):204. doi: 10.3390/ma10020204
    [13] LI H N, WANG J P, WU C Q, et al. Damage behaviors of unidirectional CFRP in orthogonal cutting: a comparison between single- and multiple-pass strategies[J]. Composites Part B:Engineering,2020,185:107774. doi: 10.1016/j.compositesb.2020.107774
    [14] 高汉卿, 贾振元, 王福吉, 等. 基于细观仿真建模的CFRP细观破坏[J]. 复合材料学报, 2016, 33(4):758-767.

    GAO H Q, JIA Z Y, WANG F J, et al. Mesoscopic failure of CFRP based on mesoscopic simulation modeling[J]. Acta Materiae Compositae Sinica,2016,33(4):758-767(in Chinese).
    [15] 王福吉, 胡海波, 张博宇, 等. 复合材料成型分层缺陷在钻削横刃挤压阶段的扩展行为[J]. 机械工程学报, 2019, 55(11):197-204. doi: 10.3901/JME.2019.11.197

    WANG F J, HU H B, ZHANG B Y, et al. The Expansion behavior of composite delamination defect during the chisel edge extrusion stage[J]. Journal of Mechanical Engineering,2019,55(11):197-204(in Chinese). doi: 10.3901/JME.2019.11.197
    [16] ZHANG S, LI Y, LUO M, et al. Modelling of nonlinear and dual-modulus characteristics and macro-orthogonal cutting simulation of unidirectional Carbon/Carbon composites[J]. Composite Structures,2022:280.
    [17] 郭芳芳, 肖建章. 基于三相微观结构的纤维复合材料切削仿真研究[J]. 工具技术, 2017, 51(06):26-30. doi: 10.3969/j.issn.1000-7008.2017.06.005

    GUO F F, XIAO J Z. Study on cutting simulation of fiber reinforced composite materials based on three phase microstructure[J]. Tool Engineering,2017,51(06):26-30(in Chinese). doi: 10.3969/j.issn.1000-7008.2017.06.005
    [18] ZENIA S, BEN AYED L, NOUARI M, et al. Numerical analysis of the interaction between the cutting forces, induced cutting damage, and machining parameters of CFRP composites[J]. The International Journal of Advanced Manufacturing Technology,2015,78(1-4):465-480. doi: 10.1007/s00170-014-6600-2
    [19] LI C P, ZHAO Y F, QIU X Y, et al. Interface mechanical damage mechanism in machining carbon fiber-reinforced plastic/Ti stacks based on a three-dimensional microscopic oblique cutting model[J]. Composite Structures,2022,279:114737. doi: 10.1016/j.compstruct.2021.114737
    [20] CHEN R, LI S J, LI P N, et al. Effect of fiber orientation angles on the material removal behavior of CFRP during cutting process by multi-scale characterization[J]. The International Journal of Advanced Manufacturing Technology,2020,106(11-12):5017-5031. doi: 10.1007/s00170-020-04968-w
    [21] ISBILIR O, GHASSEMIEH E. Finite element analysis of drilling of carbon fibre reinforced composites[J]. Applied Composite Materials,2012,19(3-4):637-656. doi: 10.1007/s10443-011-9224-9
    [22] 华志恒, 周晓军, 刘继忠. 碳纤维复合材料(CFRP)孔隙的形态特征[J]. 复合材料学报, 2005, 22(6):103-107. doi: 10.3321/j.issn:1000-3851.2005.06.018

    HUA Z H, ZHOU X J, LIU J Z. Morphology of pores in carbon fiber reinforced plastics[J]. Acta Materiae Compositae Sinica,2005,22(6):103-107(in Chinese). doi: 10.3321/j.issn:1000-3851.2005.06.018
    [23] CAMANHO P P, ARTEIRO A. Analysis models for polymer composites across different length cales[J]. Cham:Springer International Publishing,2016:199-279.
    [24] YAN X Y, REINER J, BACCA M, et al. A study of energy dissipating mechanisms in orthogonal cutting of UD-CFRP composites[J]. Composite Structures,2019,220:460-472. doi: 10.1016/j.compstruct.2019.03.090
    [25] 秦旭达, 朱圣富, 李士鹏, 等. 不同纤维方向角时碳纤维增强树脂基复合材料切削力建模[J]. 宇航材料工艺, 2020, 50(06):31-40.

    QIN X D, ZHU S F, LI S P, et al. Modeling of cutting force for carbon fiber reinforced plastic with different fiber orientation angle[J]. Aerospace Materials & Technology,2020,50(06):31-40(in Chinese).
    [26] MCGREGOR C, VAZIRI R, XIAO X. Finite element modelling of the progressive crushing of braided composite tubes under axial impact[J]. International Journal of Impact Engineering,2010,37(6):662-672. doi: 10.1016/j.ijimpeng.2009.09.005
    [27] WILLIAMS J G, PATEL Y. Fundamentals of cutting [J]. The Royal Society, 2016, 6(3).
  • 加载中
计量
  • 文章访问数:  130
  • HTML全文浏览量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-22
  • 录用日期:  2022-01-05
  • 修回日期:  2021-12-25
  • 网络出版日期:  2022-02-16

目录

    /

    返回文章
    返回