Bond durability between GFRP rebars and fiber reinforced self-compacting concrete under coupled chloride salt and freeze-thaw cycles
-
摘要: 为了研究不同纤维对玻璃纤维增强聚合物(Glass Fiber Reinforced Polymer, GFRP)筋与混凝土在氯盐-冻融耦合作用下粘结性能的影响,对90个中心拉拔试件进行测试,主要变化参数为冻融循环次数、纤维种类和纤维掺量。试验结果表明:在氯盐-冻融循环作用下,聚丙烯短纤维(PPFA)的掺入可以改善混凝土的抗冻性能,降低钢纤维混凝土与GFRP筋之间粘结强度的损失率。单掺聚丙烯长纤维(PPFB)和钢纤维(SF)均对氯盐-冻融循环作用后GFRP筋与混凝土之间的粘结强度有较大提升。混掺40 kg/m3的SF和2 kg/m3的PPFB后对混凝土力学性能的提升效果最为显著。与未掺纤维的混凝土试件相比,混掺纤维使氯盐-冻融循环作用后混凝土与GFRP筋之间的粘结强度提高了39.4%。基于本文试验结果,考虑氯盐-冻融循环作用的影响,拟合得出粘结-滑移曲线上升段的模型参数,预测结果与试验结果吻合较好。Abstract: To investigate the influence of various fibers on the bond performance between Glass Fiber Reinforced Polymer (GFRP) bars and concrete under the combined effects of chloride salt and freeze-thaw cycles, pull-out tests were conducted on 90 specimens. The main variables were the number of freeze-thaw cycles, fiber types, and fiber content. The results demonstrate that the addition of polypropylene short fibers (PPFA) enhances the frost resistance of concrete and mitigated bond strength degradation between steel fiber-reinforced concrete and GFRP bars under chloride salt-freeze-thaw conditions. When added individually, both polypropylene long fibers (PPFB) and steel fibers (SF) significantly improve the bond strength between GFRP bars and concrete after exposure to chloride salt-freeze-thaw cycles. The combination of 40 kg/m3 SF and 2 kg/m3 PPFB results in the most notable improvements in the mechanical properties of concrete. Compared to specimens without fibers, the inclusion of fibers increases the bond strength between concrete and GFRP bars by 39.4% after exposure to chloride salt and freeze-thaw cycles. Based on the experimental results in the present study, the ascending branch is established accounting for the effects of chloride salt and freeze-thaw cycles, and the predicted model corresponds well with the testing curve.
-
Key words:
- Chlorine salts /
- freeze-thaw cycle /
- GFRP rebars /
- hybrid fiber /
- bond strength /
- bond-slip curve
-
表 1 纤维物理性能参数
Table 1. Properties of fibers
Fiber type Length/
mmDiameter/
mmAspect
ratioDensity/
(g·cm−3)Tensile
strength/MPaSF 35 0.55 65 7.85 > 1150 PPFA 6 0.03 200 0.91 ≥450 PPFB 30 0.375 80 0.93 ≥490 表 2 混凝土配合比(kg/m3)
Table 2. Mix proportion of concrete (kg/m3)
Specimen ID Cement Fly ash Water Fine aggregate Coarse aggregate Superplasticizer SF PPFA PPFB NC 399 171 195 742 724 5.7 0 0 0 PPFA1 399 171 195 742 724 9.35 0 1 0 PPFB2 399 171 195 742 724 5.0 0 0 2 PPFB4 399 171 195 742 724 5.7 0 0 4 SF20 399 171 195 742 724 5.9 20 0 0 SF40 399 171 195 742 724 6.5 40 0 0 SF50 399 171 195 742 724 7.4 50 0 0 SF20 PPFA1 399 171 195 742 724 13.0 20 1 0 SF20 PPFB2 399 171 195 742 724 5.68 20 0 2 SF40 PPFA1 399 171 195 742 724 14.25 40 1 0 SF40 PPFB2 399 171 195 742 724 6.2 40 0 2 Notes: NC denotes control group; PPF denotes polypropylene fiber; PPFA1 denotes polypropylene staple fiber blended with 1 kg/m3; PPFB2 denotes polypropylene long fiber blended with 2 kg/m3; SF denotes steel fiber; SF40 denotes steel fiber blended with 40 kg/m3; SF40 PPFA1 denotes a blend of 40 kg/m3 steel fiber and 1 kg/m3 polypropylene staple fiber. SF40 PPFA1 means mixed with 40 kg/m3 of steel fiber and 1 kg/m3 of polypropylene staple fiber, and other symbols are similar. 表 3 拉拔试件列表
Table 3. Details of pull-out specimens
Matrix type Reinforcement type Diameter/mm Embedment length/mm Freeze-thaw cycles Specimen ID NC Rebar 12 5 d 0 NC-S-D12-0 NC Rebar 12 5 d 50 NC-S-D12-50 NC Rebar 12 5 d 100 NC-S-D12-100 NC GFRP 12 5 d 0 NC-F-D12-0 NC GFRP 12 5 d 50 NC-F-D12-50 NC GFRP 12 5 d 100 NC-F-D12-100 PPFA1 GFRP 12 5 d 50 PPFA1-F-D12-50 PPFA1 GFRP 12 5 d 100 PPFA1-F-D12-100 PPFB2 GFRP 12 5 d 0 PPFB2-F-D12-0 PPFB2 GFRP 12 5 d 50 PPFB2-F-D12-50 PPFB2 GFRP 12 5 d 100 PPFB2-F-D12-100 PPFB4 GFRP 12 5 d 50 PPFB4-F-D12-50 PPFB4 GFRP 12 5 d 100 PPFB4-F-D12-100 SF20 GFRP 12 5 d 50 SF20-F-D12-50 SF20 GFRP 12 5 d 100 SF20-F-D12-100 SF40 GFRP 12 5 d 0 SF40-F-D12-0 SF40 GFRP 12 5 d 50 SF40-F-D12-50 SF40 GFRP 12 5 d 100 SF40-F-D12-100 SF50 GFRP 12 5 d 50 SF50-F-D12-50 SF50 GFRP 12 5 d 100 SF50-F-D12-100 SF20 PPFA1 GFRP 12 5 d 0 SF20 PPFA1-F-D12-0 SF20 PPFA1 GFRP 12 5 d 50 SF20 PPFA1-F-D12-50 SF20 PPFA1 GFRP 12 5 d 100 SF20 PPFA1-F-D12-100 SF40 PPFA1 GFRP 12 5 d 50 SF40 PPFA1-F-D12-50 SF40 PPFA1 GFRP 12 5 d 100 SF40 PPFA1-F-D12-100 SF20 PPFB2 GFRP 12 5 d 50 SF20 PPFB2-F-D12-50 SF20 PPFB2 GFRP 12 5 d 100 SF20 PPFB2-F-D12-100 SF40 PPFB2 GFRP 12 5 d 0 SF40 PPFB2-F-D12-0 SF40 PPFB2 GFRP 12 5 d 50 SF40 PPFB2-F-D12-50 SF40 PPFB2 GFRP 12 5 d 100 SF40 PPFB2-F-D12-100 Notes: In the symbol “NC-F-D12-100” presented in the table, “NC” indicates the type of matrix, which is plain concrete; “F” denotes the type of reinforcement, specifically GFRP; and “D12” signifies that the diameter of the reinforcement bar is 12 mm. The designation “100” indicates that the specimen has undergone 100 freeze-thaw cycles. The meanings of the other symbols in the specimen number follow a similar convention. 表 4 冻融循环作用前后GFRP筋与不同纤维自密实混凝土基体的粘结强度和峰值滑移
Table 4. Bond strength and corresponding slip between GFRP bars and different fiber self-compacting concrete matrix before and after freeze-thaw cycles
Specimen τu / MPa su / mm 0 50 100 0 50 100 NC-S 23.94 22.57 20.97 3.38 3.94 3.89 NC-F 16.95 15.58 13.15 2.44 3.08 2.78 PPFA1 - 14.48 13.84 - 2.22 2.25 PPFB2 18.69 16.70 15.72 2.48 2.67 3.09 PPFB4 - 18.30 17.26 - 2.94 2.79 SF20 - 19.60 19.22 - 2.19 3.07 SF40 24.23 22.26 20.16 2.91 2.89 3.06 SF50 - 23.14 20.88 - 2.67 2.53 SF20 PPFA1 19.75 17.87 17.61 2.50 2.89 3.28 SF20 PPFB2 - 19.49 17.74 - 2.13 2.90 SF40 PPFA1 - 20.69 19.83 - 2.54 3.57 SF40 PPFB2 22.51 19.59 18.33 2.82 2.97 3.23 Notes: “τu” is the bond stress; “su” represents the peak slip. 表 5 CMR模型的拟合参数
Table 5. Fitting parameters of CMR model
Specimen α β 0 50 100 0 50 100 NC-F 0.6068 0.9246 0.7396 1.0282 0.8234 0.8606 PPFA1 - 0.4122 0.4499 - 1.4230 1.8244 PPFB2 0.4325 0.6654 0.6803 1.5828 1.0552 1.1173 PPFB4 - 0.6222 0.6434 - 1.4929 1.5324 SF20 - 0.6013 0.7667 - 1.3145 1.4884 SF40 0.5882 0.7516 0.5864 1.9646 1.0744 1.2618 SF50 - 0.6069 0.6662 - 1.9214 1.2980 SF20 PPFA1 0.5084 0.5313 0.5974 1.8135 1.4816 1.6152 SF20 PPFB2 - 0.4143 0.6566 - 2.0333 1.6152 SF40 PPFA1 - 0.6136 0.8768 - 2.4351 1.5928 SF40 PPFB2 0.7105 0.7299 0.6649 1.8630 1.3906 1.4599 -
[1] Yan F, Lin Z, Zhang D, et al. Experimental study on bond durability of glass fiber reinforced polymer bars in concrete exposed to harsh environmental agents: Freeze-thaw cycles and alkaline-saline solution[J]. Composites Part B: Engineering, 2017, 116: 406-421. doi: 10.1016/j.compositesb.2016.10.083 [2] Hu X, Xiao J, Zhang K, et al. The state-of-the-art study on durability of FRP reinforced concrete with seawater and sea sand[J]. Journal of Building Engineering, 2022, 51: 104294. doi: 10.1016/j.jobe.2022.104294 [3] Nam H P, Hai N M, Hai D V, et al. Investigation of the application scope of bond strength empirical formulas for various FRP bars in concrete: A case study utilizing the safety probability value with a large test dataset. Case Studies in Construction Materials, 2024: e03168. [4] 闫清峰, 张纪刚. 纤维增强复合材料在土木工程中的应用与发展[J]. 科学技术与工程, 2021, 21(36): 15314-15322.YAN Qingfeng, ZHANG Jigang. Application and development of fiber-reinforced composite materials in civil engineering[J]. Science Technology and Engineering, 2021, 21(36): 15314-15322(in Chinese). [5] 黄华, 郝润奇, 黄敏. FRP筋混凝土结构的研究现状分析[J]. 玻璃钢/复合材料, 2018, (7): 108-116.HUANG Hua, HAO Runqi, HUANG Min. Analysis of research status of FRP reinforced concrete structures[J]. Composites Science and Engineering, 2018, (7): 108-116(in Chinese). [6] Fursa T V, Utsyn G E, Korzenok I N, et al. Using electric response to mechanical impact for evaluating the durability of the GFRP-concrete bond during the freeze-thaw process[J]. Composites Part B: Engineering, 2016, 90: 392-398. doi: 10.1016/j.compositesb.2015.11.026 [7] Shakiba M, Bazli M, Karamloo M, et al. Bond-slip performance of GFRP and steel reinforced beams under wet-dry and freeze-thaw cycles: The effect of concrete type[J]. Construction and Building Materials, 2022, 342: 127916. doi: 10.1016/j.conbuildmat.2022.127916 [8] 吴丽丽, 琚祥凯, 丛琪明, 等. 冻融循环后GFRP筋与ECC粘结性能试验研究[J]. 华南理工大学学报(自然科学版), 2019, 47(12): 53-61.WU Lili, JU Xiangkai, CONG Qiming, et al. Experimental study on the bonding properties of GFRP bars and ECC after freeze-thaw cycles[J]. Journal of South China University of Technology(Natural Science Edition), 2019, 47(12): 53-61(in Chinese). [9] 王磊, 李威, 陈爽, 等. 海水浸泡对FRP筋-珊瑚混凝土粘结性能的影响[J]. 复合材料学报, 2018, 35(12): 3458-3465.Wang Lei, LI Wei, Chen Shuang, et al. Effect of seawater immersion on FRP reinforcement-coral concrete bond properties[J]. Acta Materiae Compositae Sinica, 2018, 35(12): 3458-3465(in Chinese). [10] 高傲, 杨树桐, 高广希, 等. 海洋环境下BFRP筋与珊瑚混凝土粘结性能的试验研究[J]. 复合材料科学与工程, 2020, (12): 43-53.Gao Ao, Yang Shutong, Gao Guangxi, et al. Experimental study on the bonding performance of BFRP reinforcement with coral concrete in marine environment[J]. Composites Science and Engineering, 2020, (12): 43-53(in Chinese). [11] DONG Z, WU G, ZHAO X, et al. Long-Term Bond Durability of Fiber-Reinforced Polymer Bars Embedded in Seawater Sea-Sand Concrete under Ocean Environments[J]. Journal of Composites for Construction, 2018, 22(5): 1-12. [12] 王月, 安明喆, 余自若, 等. 氯盐侵蚀与冻融循环耦合作用下C50高性能混凝土的耐久性研究[J]. 中国铁道科学, 2014, 35(3): 41-46.Wang Yue, An Mingzhe, Yu Ziruo, et al. Durability of C50 high-performance concrete under the coupling of chloride salt erosion and freeze-thaw cycle[J]. China Railway Science, 2014, 35(3): 41-46(in Chinese). [13] Zhou J, Wang G, Liu P, et al. Concrete Durability after Load Damage and Salt Freeze–Thaw Cycles[J]. Materials, 2022, 15(13): 4380. doi: 10.3390/ma15134380 [14] Long X, Tan Y, Wan X, et al. Effect of freeze-thaw cycles and chloride salt erosion coupling conditions on fatigue properties of PE-ECC[J]. Case Studies in Construction Materials, 2024, 20: e02726. doi: 10.1016/j.cscm.2023.e02726 [15] Zhou C, Cao J, Zhang Z, et al. Effect of fiber reinforcement on bond behavior between coral aggregate concrete and GFRP bar[J]. Construction and Building Materials, 2023, 403: 133201. doi: 10.1016/j.conbuildmat.2023.133201 [16] Liu X, Sun Y, Wu T, et al. Flexural cracks in steel fiber-reinforced lightweight aggregate concrete beams reinforced with FRP bars[J]. Composite Structures, 2020, 253: 112752. doi: 10.1016/j.compstruct.2020.112752 [17] Ding Y, Ning X, Zhang Y, et al. Fibres for enhancing of the bond capacity between GFRP rebar and concrete[J]. Construction and Building Materials, 2014, 51: 303-312. doi: 10.1016/j.conbuildmat.2013.10.089 [18] 丁一宁, 李娟, 王宝民, 等. 纤维对GFRP筋与自密实混凝土基体粘结性能影响分析[J]. 建筑结构学报, 2011, 32(1): 63-69.DING Yining, LI Juan, WANG Baomin et al. Analysis of the influence of fibers on the bonding properties of GFRP bars and self-compacting concrete matrix[J]. Journal of Building Structures, 2011, 32(1): 63-69(in Chinese). [19] 吴丽丽, 王慧, 杨畅涵, 等. GFRP筋与自密实混凝土黏结性能的试验研究[J]. 复合材料学报, 2021, 38(10): 3484-3494.WU Lili, WANG Hui, YANG Changhan, et al. Experimental study on the bonding performance of GFRP bars and self-compacting concrete[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3484-3494(in Chinese). [20] Henin E, Morcous G. Bond behavior of helically wrapped sand coated deformed Glass Fiber-Reinforced Polymer (GFRP) bars in concrete[J]. Construction and Building Materials, 2021, 288: 123120. doi: 10.1016/j.conbuildmat.2021.123120 [21] Liu H, Yang J, Wang X. Bond behavior between BFRP bar and recycled aggregate concrete reinforced with basalt fiber[J]. Construction and Building Materials, 2017, 135: 477-483. doi: 10.1016/j.conbuildmat.2016.12.161 [22] 中华人民共和国住房和城乡建设部. 自密实混凝土应用技术规程: JGJ/T 283-2012[S]. 北京: 中国建筑工业出版社, 2012.Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical specification for application of self-compacting concrete: JGJ/T 283-2012[S]. Beijing: China Construction Industry Press, 2021(in Chinese). [23] 中国国家标准化管理委员会. 纤维增强复合材料筋基本力学性能试验方法: GB/T 30022-2013[S]. 北京: 中国标准出版社, 2013.Standardization Administration of the People’s Republic of China. Test method for basic mechanical properties of fiber reinforced composite bars: GB/T 30022-2013 [S]. Beijing: China Standards Press, 2013(in Chinese). [24] 中国工程建设标准化协. 混凝土结构耐久性室内模拟环境试验方法标准: TCECS 762-2020[S]. 北京: 中国建筑工业出版社, 2021.China Association for Engineering Construction Standardization. Standard for Indoor Simulated Environmental Test Methods for Durability of Concrete Structures: TCECS 762-2020 [S]. Beijing: China Construction Industry Press, 2021(in Chinese). [25] 汪学清, 李永超, 张雪瑞, 等. 轴压下含裂隙聚丙烯纤维混凝土裂纹扩展及损伤演化研究[J]. 硅酸盐通报, 2024, 43(7): 2404-2414.WANG Xueqing, LI Yongchao, Zhang Xuerui, et al. Research on crack propagation and damage evolution of cracked polypropylene fiber concrete under axial compression[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(7): 2404-2414(in Chinese). [26] 罗洪林, 杨鼎宜, 周兴宇, 等. 不同长径比聚丙烯纤维增强混凝土的力学特性[J]. 复合材料学报, 2019, 36(8): 1935-1948LUO Honglin, YANG Dingyi, ZHOU Xingyu, et al. Mechanical properties of polypropylene fiber reinforced concrete with different aspect ratios[J]. Acta Materiae Compositae Sinica, 2019, 36(8): 1935-1948(in Chinese). [27] 叶艳霞, 王宗彬, 谢夫林, 等. 钢纤维增强高强轻骨料混凝土的力学性能[J]. 建筑材料学报, 2021, 24(1): 63-70.YE Yanxia, WANG Zongbin, XIE Fulin, et al. Mechanical properties of steel fiber reinforced high-strength lightweight aggregate concrete[J]. Journal of Building Materials, 2021, 24(1): 63-70(in Chinese). [28] 赵雅明, 张明飞, 张振, 等. 混杂纤维增强高强混凝土性能研究[J]. 硅酸盐通报, 2022, 41(7): 2299-2307.ZHAO Yaming, ZHANG Mingfei, ZHANG Zhen, et al. Research on the properties of hybrid fiber reinforced high-strength concrete[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(7): 2299-2307(in Chinese). [29] 赵小明, 李奥阳, 乔宏霞, 等. 纤维混凝土抗冻性能及损伤劣化模型研究[J]. 硅酸盐通报, 2020, 39(10): 3196-3202.ZHAO Xiaoming, LI Aoyang, QIAO Hongxia, et al. Research on frost resistance and damage deterioration model of fiber concrete[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(10): 3196-3202(in Chinese). [30] 张广泰, 田虎学, 李宝元, 等. 钢-聚丙烯混杂纤维混凝土的抗盐冻性能[J]. 材料导报, 2018, 32(14): 2396-2399+2406.ZHANG Guangtai, TIAN Huxue, LI Baoyuan, et al. Salt freezing resistance of steel-polypropylene hybrid fiber concrete[J]. Materials Reports, 2018, 32(14): 2396-2399+2406(in Chinese). [31] 夏冬桃, 李天云, 李欣怡, 等. 钢-聚丙烯混杂纤维混凝土冻融损伤试验研究[J]. 混凝土, 2024, (3): 136-139.XIA Dongtao, LI Tianyun, LI Xinyi, et al. Experimental study on freeze-thaw damage of steel-polypropylene hybrid fiber concrete.[J]. Concrete, 2024, (3): 136-139 (in Chinese). [32] Huang G, Su L, Xue C, 等. Study on the deterioration mechanism of hybrid basalt-polypropylene fiber-reinforced concrete under sulfate freeze-thaw cycles[J]. Construction and Building Materials, 2024, 449: 138560. [33] Sun J, Ding Z, Li X, et al. Bond behavior between BFRP bar and basalt fiber reinforced seawater sea-sand recycled aggregate concrete[J]. Construction and Building Materials, 2021, 285: 122951. doi: 10.1016/j.conbuildmat.2021.122951 [34] 崔凯, 徐礼华, 池寅. 钢-聚丙烯混杂纤维混凝土等幅受压疲劳变形[J]. 建筑材料学报, 2023, 26(7): 755-761.CUI Kai, XU Lihua, CHI Yin. Fatigue deformation of steel-polypropylene hybrid fiber concrete under equal compression[J]. Journal of Building Materials, 2023, 26(7): 755-761(in Chinese). [35] Nepomuceno E, Sena-Cruz J, Correia L, et al. Review on the bond behavior and durability of FRP bars to concrete[J]. Construction and Building Materials, 2021, 287: 123042. doi: 10.1016/j.conbuildmat.2021.123042 [36] 张望喜, 胡彬彬, 王冠杰, 等. FRP筋与混凝土粘结性能研究进展及本构模型改进[J]. 土木与环境工程学报(中英文), 2023, 45(2): 111-122.ZHANG Wangxi, HU Binbin, WANG Guanjie, et al. Progress of bonding performance between FRP bars and concrete and improvement of constitutive modeling[J]. Journal of Civil and Environmental Engineering, 2023, 45(2): 111-122(in Chinese). [37] 宋泽鹏, 陆春华, 宣广宇, 等. 螺纹GFRP筋与混凝土黏结性能试验与理论计算[J]. 建筑材料学报, 2021, 24(4): 887-894.SONG Zepeng, LU Cunhua, XUAN Guangyu, et al. Tests and theoretical calculations on bonding properties of threaded GFRP bars to concrete[J]. Journal of Construction Materials, 2021, 24(4): 887-894 (in Chinese). [38] 孙丽, 杨泽宇, 朱春阳, 等. GFRP筋纤维混凝土黏结滑移性能试验研究[J]. 土木工程学报, 2020, 53(S2): 259-264.SUN Li, YANG Zeyu, ZHU Chunyang, et al. Experimental study on bond-slip properties of GFRP reinforced fiber concrete[J]. China Civil Engineering Journal, 2020, 53(S2): 259-264(in Chinese). [39] Shan Z, Liang K, Chen L. Bond behavior of helically wound FRP bars with different surface characteristics in fiber-reinforced concrete[J]. Journal of Building Engineering, 2023, 65: 105504. doi: 10.1016/j.jobe.2022.105504 [40] 徐存东, 汪志航, 陈家豪, 等. 盐-冻侵蚀环境下聚丙烯纤维混凝土的寿命预测[J]. 硅酸盐通报, 2024, 43(6): 2111-2120+2129.XU Cundong, WANG Zhihang, CHEN Jiahao, et al. Life prediction of polypropylene fiber concrete under salt-frost erosion[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(6): 2111-2120+2129(in Chinese). [41] 徐晋, 樊广利, 张明明, 等. 混杂纤维对NC的力学性能影响研究[J]. 硅酸盐通报, 2018, 37(5): 1525-1530+1537.XU Jin, FAN Guangli, ZHANG Mingming, et al. Study on the effect of mixed fibers on the mechanical properties of NC[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(5): 1525-1530+1537(in Chinese). [42] Tang W C, Lo T Y, Balendran R V. Bond performance of polystyrene aggregate concrete (PAC) reinforced with glass-fibre-reinforced polymer (GFRP) bars[J]. Building and Environment, 2008, 43(1): 98-107. doi: 10.1016/j.buildenv.2006.11.030 [43] Xue W, Yang Y, Zheng Q, et al. Modeling of Bond of Sand-Coated Deformed Glass Fibre-Reinforced Polymer Rebars in Concrete[J]. Polymers and Polymer Composites, 2016, 24(1): 45-56. doi: 10.1177/096739111602400106 [44] Mai G, Li L, Lin J, et al. Bond durability between BFRP bars and recycled aggregate seawater sea-sand concrete in freezing-thawing environment[J]. Journal of Building Engineering, 2023, 70: 106422. doi: 10.1016/j.jobe.2023.106422 [45] Cosenza E, Manfredi G, Realfonzo R. Bond characteristics and anchorage length of FRP rebars: Advanced Composite Materials in Bridges and Structures[C], 1996, 2(1): 909-916. [46] Cosenza E, Manfredi G, Realfonzo R. Behavior and Modeling of Bond of FRP Rebars to Concrete[J]. J Compos Constr, 1997, 1(2): 40-51. doi: 10.1061/(ASCE)1090-0268(1997)1:2(40)
计量
- 文章访问数: 37
- HTML全文浏览量: 24
- 被引次数: 0