留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氯盐-冻融耦合作用下GFRP筋与纤维自密实混凝土粘结耐久性能

宁喜亮 刘朕钰 李媛媛 尤志国 张振宽 李剑峰

宁喜亮, 刘朕钰, 李媛媛, 等. 氯盐-冻融耦合作用下GFRP筋与纤维自密实混凝土粘结耐久性能[J]. 复合材料学报, 2024, 43(0): 1-14.
引用本文: 宁喜亮, 刘朕钰, 李媛媛, 等. 氯盐-冻融耦合作用下GFRP筋与纤维自密实混凝土粘结耐久性能[J]. 复合材料学报, 2024, 43(0): 1-14.
NING Xiliang, LIU Zhenyu, LI Yuanyuan, et al. Bond durability between GFRP rebars and fiber reinforced self-compacting concrete under coupled chloride salt and freeze-thaw cycles[J]. Acta Materiae Compositae Sinica.
Citation: NING Xiliang, LIU Zhenyu, LI Yuanyuan, et al. Bond durability between GFRP rebars and fiber reinforced self-compacting concrete under coupled chloride salt and freeze-thaw cycles[J]. Acta Materiae Compositae Sinica.

氯盐-冻融耦合作用下GFRP筋与纤维自密实混凝土粘结耐久性能

基金项目: 国家自然科学基金项目资助(51608100);吉林省科技厅自然科学基金面上项目资助(20230101331JC)
详细信息
    通讯作者:

    李媛媛,博士,讲师,研究方向为地质灾害演变与风险评估 E-mail: yuanyuanl2020@163.com

  • 中图分类号: TU377.9;TB332

Bond durability between GFRP rebars and fiber reinforced self-compacting concrete under coupled chloride salt and freeze-thaw cycles

Funds: National Natural Science Foundation of China (51608100); Natural Science Foundation of Jilin Provincial Department of Science and Technology (20230101331JC)
  • 摘要: 为了研究不同纤维对玻璃纤维增强聚合物(Glass Fiber Reinforced Polymer, GFRP)筋与混凝土在氯盐-冻融耦合作用下粘结性能的影响,对90个中心拉拔试件进行测试,主要变化参数为冻融循环次数、纤维种类和纤维掺量。试验结果表明:在氯盐-冻融循环作用下,聚丙烯短纤维(PPFA)的掺入可以改善混凝土的抗冻性能,降低钢纤维混凝土与GFRP筋之间粘结强度的损失率。单掺聚丙烯长纤维(PPFB)和钢纤维(SF)均对氯盐-冻融循环作用后GFRP筋与混凝土之间的粘结强度有较大提升。混掺40 kg/m3的SF和2 kg/m3的PPFB后对混凝土力学性能的提升效果最为显著。与未掺纤维的混凝土试件相比,混掺纤维使氯盐-冻融循环作用后混凝土与GFRP筋之间的粘结强度提高了39.4%。基于本文试验结果,考虑氯盐-冻融循环作用的影响,拟合得出粘结-滑移曲线上升段的模型参数,预测结果与试验结果吻合较好。

     

  • 图  1  纤维种类

    Figure  1.  Fiber types

    图  2  试验筋材

    Figure  2.  Test reinforcement

    图  3  拉拔试件示意图及模具

    Figure  3.  Schematic diagram of the pull-out specimen and mold

    图  4  环境模拟箱与箱内试件摆放

    Figure  4.  Environmental simulation chamber and placed specimens in the chamber

    图  5  拉拔试验加载装置及示意图

    Figure  5.  Testing setup and schematic diagram of pull-out test

    图  6  冻融循环作用前后纤维自密实混凝土的劈裂抗拉强度与抗压强度

    Figure  6.  Splitting tensile strength and compressive strength of fiber self-compacting concrete before and after the freeze-thaw cycles

    图  7  GFRP筋从纤维自密实混凝土拔出破坏形态

    Figure  7.  Pull-out failure pattern of GFRP bars from fiber self-compacting concrete

    图  8  GFRP筋从纤维自密实混凝土拔出破坏位置

    Figure  8.  Damage location of GFRP bars pulled-out from fiber self-compacting concrete

    图  9  钢筋和GFRP筋与纤维自密实混凝土的粘结-滑移曲线的对比

    Figure  9.  Comparison of bond stress-slip curves between steel bars, GFRP bars and fiber self-compacting concrete

    图  10  GFRP筋在不同纤维自密实凝土基体的粘结-滑移曲线

    Figure  10.  Bond stress-slip curve of GFRP reinforcement in different fiber self-compacting concrete matrix

    图  11  GFRP筋与混掺纤维自密实混凝土基体粘结-滑移曲线

    Figure  11.  Bond stress-slip curve of GFRP reinforcement and hybrid fiber self-compacting concrete matrix

    图  12  冻融循环作用前后GFRP筋与不同纤维自密实混凝土基体的粘结-滑移曲线

    Figure  12.  Bond stress-slip curves of GFRP bars and different fiber self-compacting concrete matrix before and after freeze-thaw cycles

    图  13  试验曲线与mBPE模型和CMR模型拟合

    Figure  13.  Experimental curve fitting with mBPE model and CMR model

    图  14  试验曲线与CMR模型的拟合

    Figure  14.  Fitting of experimental curve with CMR model

    表  1  纤维物理性能参数

    Table  1.   Properties of fibers

    Fiber type Length/
    mm
    Diameter/
    mm
    Aspect
    ratio
    Density/
    (g·cm−3)
    Tensile
    strength/MPa
    SF 35 0.55 65 7.85 >1150
    PPFA 6 0.03 200 0.91 ≥450
    PPFB 30 0.375 80 0.93 ≥490
    下载: 导出CSV

    表  2  混凝土配合比(kg/m3)

    Table  2.   Mix proportion of concrete (kg/m3)

    Specimen ID Cement Fly ash Water Fine aggregate Coarse aggregate Superplasticizer SF PPFA PPFB
    NC 399 171 195 742 724 5.7 0 0 0
    PPFA1 399 171 195 742 724 9.35 0 1 0
    PPFB2 399 171 195 742 724 5.0 0 0 2
    PPFB4 399 171 195 742 724 5.7 0 0 4
    SF20 399 171 195 742 724 5.9 20 0 0
    SF40 399 171 195 742 724 6.5 40 0 0
    SF50 399 171 195 742 724 7.4 50 0 0
    SF20 PPFA1 399 171 195 742 724 13.0 20 1 0
    SF20 PPFB2 399 171 195 742 724 5.68 20 0 2
    SF40 PPFA1 399 171 195 742 724 14.25 40 1 0
    SF40 PPFB2 399 171 195 742 724 6.2 40 0 2
    Notes: NC denotes control group; PPF denotes polypropylene fiber; PPFA1 denotes polypropylene staple fiber blended with 1 kg/m3; PPFB2 denotes polypropylene long fiber blended with 2 kg/m3; SF denotes steel fiber; SF40 denotes steel fiber blended with 40 kg/m3; SF40 PPFA1 denotes a blend of 40 kg/m3 steel fiber and 1 kg/m3 polypropylene staple fiber. SF40 PPFA1 means mixed with 40 kg/m3 of steel fiber and 1 kg/m3 of polypropylene staple fiber, and other symbols are similar.
    下载: 导出CSV

    表  3  拉拔试件列表

    Table  3.   Details of pull-out specimens

    Matrix type Reinforcement type Diameter/mm Embedment length/mm Freeze-thaw cycles Specimen ID
    NC Rebar 12 5 d 0 NC-S-D12-0
    NC Rebar 12 5 d 50 NC-S-D12-50
    NC Rebar 12 5 d 100 NC-S-D12-100
    NC GFRP 12 5 d 0 NC-F-D12-0
    NC GFRP 12 5 d 50 NC-F-D12-50
    NC GFRP 12 5 d 100 NC-F-D12-100
    PPFA1 GFRP 12 5 d 50 PPFA1-F-D12-50
    PPFA1 GFRP 12 5 d 100 PPFA1-F-D12-100
    PPFB2 GFRP 12 5 d 0 PPFB2-F-D12-0
    PPFB2 GFRP 12 5 d 50 PPFB2-F-D12-50
    PPFB2 GFRP 12 5 d 100 PPFB2-F-D12-100
    PPFB4 GFRP 12 5 d 50 PPFB4-F-D12-50
    PPFB4 GFRP 12 5 d 100 PPFB4-F-D12-100
    SF20 GFRP 12 5 d 50 SF20-F-D12-50
    SF20 GFRP 12 5 d 100 SF20-F-D12-100
    SF40 GFRP 12 5 d 0 SF40-F-D12-0
    SF40 GFRP 12 5 d 50 SF40-F-D12-50
    SF40 GFRP 12 5 d 100 SF40-F-D12-100
    SF50 GFRP 12 5 d 50 SF50-F-D12-50
    SF50 GFRP 12 5 d 100 SF50-F-D12-100
    SF20 PPFA1 GFRP 12 5 d 0 SF20 PPFA1-F-D12-0
    SF20 PPFA1 GFRP 12 5 d 50 SF20 PPFA1-F-D12-50
    SF20 PPFA1 GFRP 12 5 d 100 SF20 PPFA1-F-D12-100
    SF40 PPFA1 GFRP 12 5 d 50 SF40 PPFA1-F-D12-50
    SF40 PPFA1 GFRP 12 5 d 100 SF40 PPFA1-F-D12-100
    SF20 PPFB2 GFRP 12 5 d 50 SF20 PPFB2-F-D12-50
    SF20 PPFB2 GFRP 12 5 d 100 SF20 PPFB2-F-D12-100
    SF40 PPFB2 GFRP 12 5 d 0 SF40 PPFB2-F-D12-0
    SF40 PPFB2 GFRP 12 5 d 50 SF40 PPFB2-F-D12-50
    SF40 PPFB2 GFRP 12 5 d 100 SF40 PPFB2-F-D12-100
    Notes: In the symbol “NC-F-D12-100” presented in the table, “NC” indicates the type of matrix, which is plain concrete; “F” denotes the type of reinforcement, specifically GFRP; and “D12” signifies that the diameter of the reinforcement bar is 12 mm. The designation “100” indicates that the specimen has undergone 100 freeze-thaw cycles. The meanings of the other symbols in the specimen number follow a similar convention.
    下载: 导出CSV

    表  4  冻融循环作用前后GFRP筋与不同纤维自密实混凝土基体的粘结强度和峰值滑移

    Table  4.   Bond strength and corresponding slip between GFRP bars and different fiber self-compacting concrete matrix before and after freeze-thaw cycles

    Specimenτu / MPasu / mm
    050100050100
    NC-S23.9422.5720.973.383.943.89
    NC-F16.9515.5813.152.443.082.78
    PPFA1-14.4813.84-2.222.25
    PPFB218.6916.7015.722.482.673.09
    PPFB4-18.3017.26-2.942.79
    SF20-19.6019.22-2.193.07
    SF4024.2322.2620.162.912.893.06
    SF50-23.1420.88-2.672.53
    SF20 PPFA119.7517.8717.612.502.893.28
    SF20 PPFB2-19.4917.74-2.132.90
    SF40 PPFA1-20.6919.83-2.543.57
    SF40 PPFB222.5119.5918.332.822.973.23
    Notes: “τu” is the bond stress; “su” represents the peak slip.
    下载: 导出CSV

    表  5  CMR模型的拟合参数

    Table  5.   Fitting parameters of CMR model

    Specimenαβ
    050100050100
    NC-F0.60680.92460.73961.02820.82340.8606
    PPFA1-0.41220.4499-1.42301.8244
    PPFB20.43250.66540.68031.58281.05521.1173
    PPFB4-0.62220.6434-1.49291.5324
    SF20-0.60130.7667-1.31451.4884
    SF400.58820.75160.58641.96461.07441.2618
    SF50-0.60690.6662-1.92141.2980
    SF20 PPFA10.50840.53130.59741.81351.48161.6152
    SF20 PPFB2-0.41430.6566-2.03331.6152
    SF40 PPFA1-0.61360.8768-2.43511.5928
    SF40 PPFB20.71050.72990.66491.86301.39061.4599
    下载: 导出CSV
  • [1] Yan F, Lin Z, Zhang D, et al. Experimental study on bond durability of glass fiber reinforced polymer bars in concrete exposed to harsh environmental agents: Freeze-thaw cycles and alkaline-saline solution[J]. Composites Part B: Engineering, 2017, 116: 406-421. doi: 10.1016/j.compositesb.2016.10.083
    [2] Hu X, Xiao J, Zhang K, et al. The state-of-the-art study on durability of FRP reinforced concrete with seawater and sea sand[J]. Journal of Building Engineering, 2022, 51: 104294. doi: 10.1016/j.jobe.2022.104294
    [3] Nam H P, Hai N M, Hai D V, et al. Investigation of the application scope of bond strength empirical formulas for various FRP bars in concrete: A case study utilizing the safety probability value with a large test dataset. Case Studies in Construction Materials, 2024: e03168.
    [4] 闫清峰, 张纪刚. 纤维增强复合材料在土木工程中的应用与发展[J]. 科学技术与工程, 2021, 21(36): 15314-15322.

    YAN Qingfeng, ZHANG Jigang. Application and development of fiber-reinforced composite materials in civil engineering[J]. Science Technology and Engineering, 2021, 21(36): 15314-15322(in Chinese).
    [5] 黄华, 郝润奇, 黄敏. FRP筋混凝土结构的研究现状分析[J]. 玻璃钢/复合材料, 2018, (7): 108-116.

    HUANG Hua, HAO Runqi, HUANG Min. Analysis of research status of FRP reinforced concrete structures[J]. Composites Science and Engineering, 2018, (7): 108-116(in Chinese).
    [6] Fursa T V, Utsyn G E, Korzenok I N, et al. Using electric response to mechanical impact for evaluating the durability of the GFRP-concrete bond during the freeze-thaw process[J]. Composites Part B: Engineering, 2016, 90: 392-398. doi: 10.1016/j.compositesb.2015.11.026
    [7] Shakiba M, Bazli M, Karamloo M, et al. Bond-slip performance of GFRP and steel reinforced beams under wet-dry and freeze-thaw cycles: The effect of concrete type[J]. Construction and Building Materials, 2022, 342: 127916. doi: 10.1016/j.conbuildmat.2022.127916
    [8] 吴丽丽, 琚祥凯, 丛琪明, 等. 冻融循环后GFRP筋与ECC粘结性能试验研究[J]. 华南理工大学学报(自然科学版), 2019, 47(12): 53-61.

    WU Lili, JU Xiangkai, CONG Qiming, et al. Experimental study on the bonding properties of GFRP bars and ECC after freeze-thaw cycles[J]. Journal of South China University of Technology(Natural Science Edition), 2019, 47(12): 53-61(in Chinese).
    [9] 王磊, 李威, 陈爽, 等. 海水浸泡对FRP筋-珊瑚混凝土粘结性能的影响[J]. 复合材料学报, 2018, 35(12): 3458-3465.

    Wang Lei, LI Wei, Chen Shuang, et al. Effect of seawater immersion on FRP reinforcement-coral concrete bond properties[J]. Acta Materiae Compositae Sinica, 2018, 35(12): 3458-3465(in Chinese).
    [10] 高傲, 杨树桐, 高广希, 等. 海洋环境下BFRP筋与珊瑚混凝土粘结性能的试验研究[J]. 复合材料科学与工程, 2020, (12): 43-53.

    Gao Ao, Yang Shutong, Gao Guangxi, et al. Experimental study on the bonding performance of BFRP reinforcement with coral concrete in marine environment[J]. Composites Science and Engineering, 2020, (12): 43-53(in Chinese).
    [11] DONG Z, WU G, ZHAO X, et al. Long-Term Bond Durability of Fiber-Reinforced Polymer Bars Embedded in Seawater Sea-Sand Concrete under Ocean Environments[J]. Journal of Composites for Construction, 2018, 22(5): 1-12.
    [12] 王月, 安明喆, 余自若, 等. 氯盐侵蚀与冻融循环耦合作用下C50高性能混凝土的耐久性研究[J]. 中国铁道科学, 2014, 35(3): 41-46.

    Wang Yue, An Mingzhe, Yu Ziruo, et al. Durability of C50 high-performance concrete under the coupling of chloride salt erosion and freeze-thaw cycle[J]. China Railway Science, 2014, 35(3): 41-46(in Chinese).
    [13] Zhou J, Wang G, Liu P, et al. Concrete Durability after Load Damage and Salt Freeze–Thaw Cycles[J]. Materials, 2022, 15(13): 4380. doi: 10.3390/ma15134380
    [14] Long X, Tan Y, Wan X, et al. Effect of freeze-thaw cycles and chloride salt erosion coupling conditions on fatigue properties of PE-ECC[J]. Case Studies in Construction Materials, 2024, 20: e02726. doi: 10.1016/j.cscm.2023.e02726
    [15] Zhou C, Cao J, Zhang Z, et al. Effect of fiber reinforcement on bond behavior between coral aggregate concrete and GFRP bar[J]. Construction and Building Materials, 2023, 403: 133201. doi: 10.1016/j.conbuildmat.2023.133201
    [16] Liu X, Sun Y, Wu T, et al. Flexural cracks in steel fiber-reinforced lightweight aggregate concrete beams reinforced with FRP bars[J]. Composite Structures, 2020, 253: 112752. doi: 10.1016/j.compstruct.2020.112752
    [17] Ding Y, Ning X, Zhang Y, et al. Fibres for enhancing of the bond capacity between GFRP rebar and concrete[J]. Construction and Building Materials, 2014, 51: 303-312. doi: 10.1016/j.conbuildmat.2013.10.089
    [18] 丁一宁, 李娟, 王宝民, 等. 纤维对GFRP筋与自密实混凝土基体粘结性能影响分析[J]. 建筑结构学报, 2011, 32(1): 63-69.

    DING Yining, LI Juan, WANG Baomin et al. Analysis of the influence of fibers on the bonding properties of GFRP bars and self-compacting concrete matrix[J]. Journal of Building Structures, 2011, 32(1): 63-69(in Chinese).
    [19] 吴丽丽, 王慧, 杨畅涵, 等. GFRP筋与自密实混凝土黏结性能的试验研究[J]. 复合材料学报, 2021, 38(10): 3484-3494.

    WU Lili, WANG Hui, YANG Changhan, et al. Experimental study on the bonding performance of GFRP bars and self-compacting concrete[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3484-3494(in Chinese).
    [20] Henin E, Morcous G. Bond behavior of helically wrapped sand coated deformed Glass Fiber-Reinforced Polymer (GFRP) bars in concrete[J]. Construction and Building Materials, 2021, 288: 123120. doi: 10.1016/j.conbuildmat.2021.123120
    [21] Liu H, Yang J, Wang X. Bond behavior between BFRP bar and recycled aggregate concrete reinforced with basalt fiber[J]. Construction and Building Materials, 2017, 135: 477-483. doi: 10.1016/j.conbuildmat.2016.12.161
    [22] 中华人民共和国住房和城乡建设部. 自密实混凝土应用技术规程: JGJ/T 283-2012[S]. 北京: 中国建筑工业出版社, 2012.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical specification for application of self-compacting concrete: JGJ/T 283-2012[S]. Beijing: China Construction Industry Press, 2021(in Chinese).
    [23] 中国国家标准化管理委员会. 纤维增强复合材料筋基本力学性能试验方法: GB/T 30022-2013[S]. 北京: 中国标准出版社, 2013.

    Standardization Administration of the People’s Republic of China. Test method for basic mechanical properties of fiber reinforced composite bars: GB/T 30022-2013 [S]. Beijing: China Standards Press, 2013(in Chinese).
    [24] 中国工程建设标准化协. 混凝土结构耐久性室内模拟环境试验方法标准: TCECS 762-2020[S]. 北京: 中国建筑工业出版社, 2021.

    China Association for Engineering Construction Standardization. Standard for Indoor Simulated Environmental Test Methods for Durability of Concrete Structures: TCECS 762-2020 [S]. Beijing: China Construction Industry Press, 2021(in Chinese).
    [25] 汪学清, 李永超, 张雪瑞, 等. 轴压下含裂隙聚丙烯纤维混凝土裂纹扩展及损伤演化研究[J]. 硅酸盐通报, 2024, 43(7): 2404-2414.

    WANG Xueqing, LI Yongchao, Zhang Xuerui, et al. Research on crack propagation and damage evolution of cracked polypropylene fiber concrete under axial compression[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(7): 2404-2414(in Chinese).
    [26] 罗洪林, 杨鼎宜, 周兴宇, 等. 不同长径比聚丙烯纤维增强混凝土的力学特性[J]. 复合材料学报, 2019, 36(8): 1935-1948

    LUO Honglin, YANG Dingyi, ZHOU Xingyu, et al. Mechanical properties of polypropylene fiber reinforced concrete with different aspect ratios[J]. Acta Materiae Compositae Sinica, 2019, 36(8): 1935-1948(in Chinese).
    [27] 叶艳霞, 王宗彬, 谢夫林, 等. 钢纤维增强高强轻骨料混凝土的力学性能[J]. 建筑材料学报, 2021, 24(1): 63-70.

    YE Yanxia, WANG Zongbin, XIE Fulin, et al. Mechanical properties of steel fiber reinforced high-strength lightweight aggregate concrete[J]. Journal of Building Materials, 2021, 24(1): 63-70(in Chinese).
    [28] 赵雅明, 张明飞, 张振, 等. 混杂纤维增强高强混凝土性能研究[J]. 硅酸盐通报, 2022, 41(7): 2299-2307.

    ZHAO Yaming, ZHANG Mingfei, ZHANG Zhen, et al. Research on the properties of hybrid fiber reinforced high-strength concrete[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(7): 2299-2307(in Chinese).
    [29] 赵小明, 李奥阳, 乔宏霞, 等. 纤维混凝土抗冻性能及损伤劣化模型研究[J]. 硅酸盐通报, 2020, 39(10): 3196-3202.

    ZHAO Xiaoming, LI Aoyang, QIAO Hongxia, et al. Research on frost resistance and damage deterioration model of fiber concrete[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(10): 3196-3202(in Chinese).
    [30] 张广泰, 田虎学, 李宝元, 等. 钢-聚丙烯混杂纤维混凝土的抗盐冻性能[J]. 材料导报, 2018, 32(14): 2396-2399+2406.

    ZHANG Guangtai, TIAN Huxue, LI Baoyuan, et al. Salt freezing resistance of steel-polypropylene hybrid fiber concrete[J]. Materials Reports, 2018, 32(14): 2396-2399+2406(in Chinese).
    [31] 夏冬桃, 李天云, 李欣怡, 等. 钢-聚丙烯混杂纤维混凝土冻融损伤试验研究[J]. 混凝土, 2024, (3): 136-139.

    XIA Dongtao, LI Tianyun, LI Xinyi, et al. Experimental study on freeze-thaw damage of steel-polypropylene hybrid fiber concrete.[J]. Concrete, 2024, (3): 136-139 (in Chinese).
    [32] Huang G, Su L, Xue C, 等. Study on the deterioration mechanism of hybrid basalt-polypropylene fiber-reinforced concrete under sulfate freeze-thaw cycles[J]. Construction and Building Materials, 2024, 449: 138560.
    [33] Sun J, Ding Z, Li X, et al. Bond behavior between BFRP bar and basalt fiber reinforced seawater sea-sand recycled aggregate concrete[J]. Construction and Building Materials, 2021, 285: 122951. doi: 10.1016/j.conbuildmat.2021.122951
    [34] 崔凯, 徐礼华, 池寅. 钢-聚丙烯混杂纤维混凝土等幅受压疲劳变形[J]. 建筑材料学报, 2023, 26(7): 755-761.

    CUI Kai, XU Lihua, CHI Yin. Fatigue deformation of steel-polypropylene hybrid fiber concrete under equal compression[J]. Journal of Building Materials, 2023, 26(7): 755-761(in Chinese).
    [35] Nepomuceno E, Sena-Cruz J, Correia L, et al. Review on the bond behavior and durability of FRP bars to concrete[J]. Construction and Building Materials, 2021, 287: 123042. doi: 10.1016/j.conbuildmat.2021.123042
    [36] 张望喜, 胡彬彬, 王冠杰, 等. FRP筋与混凝土粘结性能研究进展及本构模型改进[J]. 土木与环境工程学报(中英文), 2023, 45(2): 111-122.

    ZHANG Wangxi, HU Binbin, WANG Guanjie, et al. Progress of bonding performance between FRP bars and concrete and improvement of constitutive modeling[J]. Journal of Civil and Environmental Engineering, 2023, 45(2): 111-122(in Chinese).
    [37] 宋泽鹏, 陆春华, 宣广宇, 等. 螺纹GFRP筋与混凝土黏结性能试验与理论计算[J]. 建筑材料学报, 2021, 24(4): 887-894.

    SONG Zepeng, LU Cunhua, XUAN Guangyu, et al. Tests and theoretical calculations on bonding properties of threaded GFRP bars to concrete[J]. Journal of Construction Materials, 2021, 24(4): 887-894 (in Chinese).
    [38] 孙丽, 杨泽宇, 朱春阳, 等. GFRP筋纤维混凝土黏结滑移性能试验研究[J]. 土木工程学报, 2020, 53(S2): 259-264.

    SUN Li, YANG Zeyu, ZHU Chunyang, et al. Experimental study on bond-slip properties of GFRP reinforced fiber concrete[J]. China Civil Engineering Journal, 2020, 53(S2): 259-264(in Chinese).
    [39] Shan Z, Liang K, Chen L. Bond behavior of helically wound FRP bars with different surface characteristics in fiber-reinforced concrete[J]. Journal of Building Engineering, 2023, 65: 105504. doi: 10.1016/j.jobe.2022.105504
    [40] 徐存东, 汪志航, 陈家豪, 等. 盐-冻侵蚀环境下聚丙烯纤维混凝土的寿命预测[J]. 硅酸盐通报, 2024, 43(6): 2111-2120+2129.

    XU Cundong, WANG Zhihang, CHEN Jiahao, et al. Life prediction of polypropylene fiber concrete under salt-frost erosion[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(6): 2111-2120+2129(in Chinese).
    [41] 徐晋, 樊广利, 张明明, 等. 混杂纤维对NC的力学性能影响研究[J]. 硅酸盐通报, 2018, 37(5): 1525-1530+1537.

    XU Jin, FAN Guangli, ZHANG Mingming, et al. Study on the effect of mixed fibers on the mechanical properties of NC[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(5): 1525-1530+1537(in Chinese).
    [42] Tang W C, Lo T Y, Balendran R V. Bond performance of polystyrene aggregate concrete (PAC) reinforced with glass-fibre-reinforced polymer (GFRP) bars[J]. Building and Environment, 2008, 43(1): 98-107. doi: 10.1016/j.buildenv.2006.11.030
    [43] Xue W, Yang Y, Zheng Q, et al. Modeling of Bond of Sand-Coated Deformed Glass Fibre-Reinforced Polymer Rebars in Concrete[J]. Polymers and Polymer Composites, 2016, 24(1): 45-56. doi: 10.1177/096739111602400106
    [44] Mai G, Li L, Lin J, et al. Bond durability between BFRP bars and recycled aggregate seawater sea-sand concrete in freezing-thawing environment[J]. Journal of Building Engineering, 2023, 70: 106422. doi: 10.1016/j.jobe.2023.106422
    [45] Cosenza E, Manfredi G, Realfonzo R. Bond characteristics and anchorage length of FRP rebars: Advanced Composite Materials in Bridges and Structures[C], 1996, 2(1): 909-916.
    [46] Cosenza E, Manfredi G, Realfonzo R. Behavior and Modeling of Bond of FRP Rebars to Concrete[J]. J Compos Constr, 1997, 1(2): 40-51. doi: 10.1061/(ASCE)1090-0268(1997)1:2(40)
  • 加载中
计量
  • 文章访问数:  37
  • HTML全文浏览量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-03
  • 修回日期:  2024-10-08
  • 录用日期:  2024-10-18
  • 网络出版日期:  2024-11-02

目录

    /

    返回文章
    返回