留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单部件燃料电池的研究进展

盛彬 曾权宇 李雨辰 孟则达 甘甜

盛彬, 曾权宇, 李雨辰, 等. 单部件燃料电池的研究进展[J]. 复合材料学报, 2024, 42(0): 1-12.
引用本文: 盛彬, 曾权宇, 李雨辰, 等. 单部件燃料电池的研究进展[J]. 复合材料学报, 2024, 42(0): 1-12.
SHENG Bin, ZENG Quanyu, LI Yuchen, et al. Research progress for single component fuel cell[J]. Acta Materiae Compositae Sinica.
Citation: SHENG Bin, ZENG Quanyu, LI Yuchen, et al. Research progress for single component fuel cell[J]. Acta Materiae Compositae Sinica.

单部件燃料电池的研究进展

基金项目: 江苏省自然科学基金青年基金项目 (BK20240997);江苏省高等学校自然科学基金面上项目(23KJB430033)
详细信息
    通讯作者:

    甘 甜,博士,讲师,研究方向为固体氧化物燃料电池、能量转换与储存 E-mail: gantiantg@usts.edu.cn

  • 中图分类号: TM911.4;TB332

Research progress for single component fuel cell

Funds: Natural Science Foundation of Jiangsu Province (No. BK20240997); Natural Science Foundation of the Jiangsu Higher Education Institu- tions of China (No. 23KJB430033)
  • 摘要: 传统固体氧化物燃料电池(SOFC)需要保持较高的工作温度,不利于其不同组分的兼容和长期稳定性,这阻碍了SOFC的商业化进展。若降低反应温度则会带来显著的界面阻力和反应动力学损失,使得输出功率降低。最近,单部件燃料电池(SLFC)作为一种新型能源转换装置被提出,与传统三组分SOFC不同,SLFC的特点是具有一个半导体–离子异质结构材料混合离子导电的均匀层,p-n异质结构和内建电场的存在可以实现电荷分离,提高了燃料电池的稳定性和耐久性,使其在低温下也具备良好的离子电导和电池性能,具有广阔的发展前景。本文对最近几年以来SLFC领域的研究进展做了一个简要的综述,回顾了SLFC中异质结与能带对准隔绝电子的工作原理,研究空间电荷区与晶格应变对界面离子传导的影响,总结了研究者在半导体-离子材料上做出的改进,并讨论了该燃料电池的优势和未来的发展方向。

     

  • 图  1  不同种类燃料电池的示意图:(a) SOFC;(b) DLFC[18];(c) SLFC的工作原理[17]

    Figure  1.  Schematic representation of different kinds of fuel cells: (a) SOFCs; (b) DLFC[18]; (c) Schematic of SLFC[17]

    图  2  (a) 纳米氧化还原结构;(b) SLFC的能带对准[21]

    Figure  2.  (a) nano-redox fuel cell; (b) band alignment for SLFC[21]

    图  3  考虑HOR时Pt/BZY界面的SCL示意图[26]

    Figure  3.  Schematic illustration of the SCL at the Pt/BZY interface, when the HOR is considered[26]

    图  4  (a) CeO2中导电率增强的对数与晶格应变的关系图[29];(b) SDC和Sr0.92Ti0.5Fe0.5O3–δ物质间的受力示意图和两者晶体结构[30];(c) 不同模型过度路径中掺杂–质子相互作用能、相应的最大氧位移和最大质子跃迁能;(d) 显示质子与O2–在纯BaZrO3和在一个Y掺杂环境中的结合能与晶格畸变;(e) 掺杂剂–质子相互作用能的最大氧位移的函数图[28]

    Figure  4.  (a) plot of the logarithm of ionic conductivity enhancement in CeO2 versus lattice strain[29]; (b) Schematic representation of the forces between SDC and Sr0.92Ti0.5Fe0.5O3–δ substances and their crystal structures[30]; (c) The dopant-proton interaction energy (representing protonated samples), the corresponding maximum oxygen displacement and maximum proton transition energy among the various transition pathways for different model systems; (d) A schematic showing the correlation between proton binding energy and O2– sublattice distortion for various local environments such as pure BaZrO3, in one yttrium dopant environment; (e) The dopant-proton interaction energy plotted as a function of maximum oxygen displacement[28]

    图  5  (a) CeO2–δ中氧空位形成时电子结构变化示意图;(b) CeO2–δ-CeO2颗粒界面处的电荷分离;(c) 质子被限制在粒子表面[36]

    Figure  5.  (a) Schematic representation of the change in the electronic structure during the formation of oxygen vacancies in CeO2–δ; (b) Charge separation at the interface of the CeO2–δ-CeO2 particles; (c) Proton confinement to the surface of the particle[36]

    图  6  CeO2-NiO异质结构复合材料的能带结构[38]

    Figure  6.  The band structure of CeO2-NiO heterostructure composites[38]

    图  7  STO-SDC体异质结SLFC工作原理[47]

    Figure  7.  STO-SDC body heterojunction SLFC working principle[47]

    图  8  (a-b) SDC包覆SFM的SEM图像;(c) 表面过程和 (d)整体过程示意图,黄球代表氧离子[49]

    Figure  8.  (a-b) SEM images of SDC-coated SFM; Schematic diagram of (c) the surface process and (d) the overall process, with the yellow balls representing the oxygen ions[49]

    图  9  (a) 空气和 (b) H2/空气气氛下550℃ Ni-NCAL/CZO-SDC的整流效果;(c) 异质结构中的电荷输运示意图[51];(d) 8 GDC-2 NCO复合材料H+/O2–和H+的输运机制;(e) 8 GDC-2 NCO复合电解质燃料电池在不同温度下的I-VI-P特性曲线[52]

    Figure  9.  rectification effect of Ni-NCAL/CZO-SDC at 550℃ in (a)air and (b) H2/air atmospheres; (c) Schematic of charge transport in the heterostructures[51]; (d) 8 GDC-2 NCO composite H+/O2– and H+ transport mechanisms; (e) I-V and I-P characteristic curves of 8 GDC-2 NCO composite electrolyte fuel cell at different temperatures[52]

    表  1  近五年SLFC研究进展

    Table  1.   Progress of SLFC research in the last five years

    ConfigurationT/oCOCV/VPmax /(W·cm–2)Ref.
    NCAL/ Pr0.4Sr0.6Co0.2Fe0.7Nb0.1O3−δ-LNSDC /NCAL5500.980.24[50]
    Ni-NCAL/CeO2/NCAL-Ni5201.080.70[36]
    Ni-NCAL/BaCo0.4Fe0.4Zr0.1Y0.1O3–δ-ZnO/NCAL-Ni100-5001.01-1.080.25-0.64[58]
    Ni-NCAL/Ce0.8Sm0.2O1.9 -La1.85Sr0.15CuO4/NCAL-Ni5501.00.90[56]
    NCAL-Ni/7 Ba0.5Sr0.5Co0.4Fe0.4Zr0.1Y0.1O3–δ-3 Ca0.04Ce0.80Sm0.16O2−δ/NCAL-Ni5201.070.90[59]
    Ni-NCAL/Co0.2Zn0.8O -SDC/NCAL-Ni5201.070.93[51]
    Ni-NCAL/BaCo0.2Fe0.1Ce0.2Tm0.1Zr0.3Y0.1O3–δ/NCAL-Ni5301.090.87[60]
    Ni-NCAL/SDC-SrTiO3/NCAL-Ni5501.10.89[47]
    Ni-NCAL/La0.5Ba0.5Co0.2Fe0.2Zr0.3Y0.3O3–δ/NCAL-Ni450-5501.09-1.10.29-0.66[61]
    Ni-NCAL/Li2TiO3-LaSrCoFeO3/NCAL-Ni5501.090.35[62]
    Ag/7 LNSDC-3 Pr0.4Sr0.5Fe0.9Mo0.1O3/Ag700~1.00.33[63]
    NCAL-Ni/SrFe0.3Ti0.8O3-WO3/NCAL-Ni5201.040.88[64]
    Ni-NCAL/8 GDC-2 NaCoO2/NCAL-Ni5501.061.10[52]
    NCAL/r-La0.2Sr0.7Ti0.9Ni0.1O3−δ-LNSDC/NCAL5501.130.65[46]
    Ni-NCAL/La0.8Sr0.2Co0.8Fe0.2O3-GDC/NCAL-Ni5501.11.06[65]
    Ni-NCAL/Fe0.1Gd1.9O3/NCAL-Ni5501.11.35[66]
    Ni-NCAL/Co dopedY2O3/Ni-NCAL5301.090.86[67]
    Ni-NCAL/La0.8Sr0.2Co0.8Fe0.2O3–δ-CeO2/NCAL-Ni520~1.00.50[68]
    Ni-NCAL/3 CuFeO2-7 ZnO/NCAL-Ni5501.060.56[69]
    Notes:NCAL is Ni0.8Co0.15Al0.05LiO2; LNSDC is Sm0.2Ce0.8O2-(Li/Na)2CO3; SDC is Ce0.8Sm0.2O1.9; GDC is Ce0.8Gd0.2O1.9; r is reduced; is test temperature; OCV is open circuit voltage; Pmax is peak power density.
    下载: 导出CSV
  • [1] ZHAI S, ZHAO R, LIAO H, et al. Enhancing layered perovskite ferrites with ultra-high-density nanoparticles via cobalt doping for ceramic fuel cell anode[J]. Journal of Energy Chemistry, 2024, 96: 39-48. doi: 10.1016/j.jechem.2024.04.011
    [2] ZHANG Z, CHEN S, ZHANG H, et al. In situ self-assembled NdBa0.5Sr0.5Co2O5+δ/Gd0.1Ce0.9O2–δ hetero-interfaces enable enhanced electrochemical activity and CO2 durability for solid oxide fuel cells[J]. Journal of Colloid and Interface Science, 2024, 655: 157-166. doi: 10.1016/j.jcis.2023.11.009
    [3] WANG H, ZHU W, XU L, et al. Self-assembled nanocomposite based on SrCo0.7Fe0.2Sc0.1O3−δ as an efficient intermediate-to-Low-temperature SOFC cathode[J]. ACS Applied Materials & Interfaces, 2024, 16(27): 34988-34996.
    [4] HAN X, LING Y, YANG Y, et al. Utilizing high entropy effects for developing chromium-tolerance cobalt-free cathode for solid oxide fuel cells[J]. Advanced Functional Materials, 2023, 33(43): 2304728. doi: 10.1002/adfm.202304728
    [5] ZHANG L, JIANG Y, ZHU K, et al. Fe-doped SDC solid solution as an electrolyte for low-to-intermediate-temperature solid oxide fuel cells[J]. ACS Applied Materials & Interfaces, 2024, 16(4): 4648-4660.
    [6] LIU D, ZHU H, YUAN S, et al. Understanding the oxygen-vacancy-related catalytic cycle for H2 oxidation on ceria-based SOFC anode and the promotion effect of lanthanide doping from theoretical perspectives[J]. Applied Surface Science, 2022, 576: 151803. doi: 10.1016/j.apsusc.2021.151803
    [7] KATTA V S, DAS A, DILEEP K R, et al. Vacancies induced enhancement in neodymium doped titania photoanodes based sensitized solar cells and photo-electrochemical cells[J]. Solar Energy Materials and Solar Cells, 2021, 220: 110843. doi: 10.1016/j.solmat.2020.110843
    [8] ZHU B, RAZA R, ABBAS G, et al. An electrolyte-free fuel cell constructed from one homogenous layer with mixed conductivity[J]. Advanced Functional Materials, 2011, 21(13): 2465-2469. doi: 10.1002/adfm.201002471
    [9] ZHU B, YUN S, LUND P D. Semiconductor-ionic materials could play an important role in advanced fuel-to-electricity conversion[J]. International Journal of Energy Research, 2018, 42(11): 3413-3415. doi: 10.1002/er.4105
    [10] SHAH M A K Y, TAYYAB Z, RAUF S, et al. Interface engineering of bi-layer semiconductor SrCoSnO3– δ-CeO2– δ heterojunction electrolyte for boosting the electrochemical performance of low-temperature ceramic fuel cell[J]. International Journal of Hydrogen Energy, 2021, 46(68): 33969-33977. doi: 10.1016/j.ijhydene.2021.07.204
    [11] SINGH K, NOWOTNY J, THANGADURAI V. Amphoteric oxide semiconductors for energy conversion devices: a tutorial review[J]. Chemical Society Reviews, 2013, 42(5): 1961-1972. doi: 10.1039/C2CS35393H
    [12] OIKAWA T, OHDAIRA K, HIGASHIMINE K, et al. Application of crystalline silicon surface oxidation to silicon heterojunction solar cells[J]. Current Applied Physics, 2015, 15(10): 1168-1172. doi: 10.1016/j.cap.2015.07.004
    [13] SHAH M A K Y, LU Y, MUSHTAQ N, et al. Semiconductor-membrane fuel cell (SMFC) for renewable energy technology[J]. Renewable and Sustainable Energy Reviews, 2023, 185: 113639. doi: 10.1016/j.rser.2023.113639
    [14] LI C, DONG S, TANG R, et al. Heteroatomic interface engineering in MOF-derived carbon heterostructures with built-in electric-field effects for high performance Al-ion batteries[J]. Energy & Environmental Science, 2018, 11(11): 3201-3211.
    [15] LALWANI S, ALNAHYAN M, AL ZAABI A, et al. Advances in interfacial engineering and their role in heterostructure formation for HER applications in wider pH[J]. ACS Applied Energy Materials, 2022, 5(12): 14571-14592. doi: 10.1021/acsaem.2c02102
    [16] LU Y, ZHU B, SHI J, et al. Advanced low-temperature solid oxide fuel cells based on a built-in electric field[J]. Energy Materials, 2021, 1(1): 100007.
    [17] HU E, JIANG Z, FAN L, et al. Junction and energy band on novel semiconductor-based fuel cells[J]. iScience, 2021, 24(3): 102191. doi: 10.1016/j.isci.2021.102191
    [18] ZHANG Y, LIU J, SINGH M, et al. Superionic conductivity in ceria-Based heterostructure composites for low-temperature solid oxide fuel cells[J]. Nano-Micro Letters, 2020, 12(1): 178. doi: 10.1007/s40820-020-00518-x
    [19] HU M, CHEN M, WANG Y, et al. A p-n heterostructure composite of NaCrO2 and CeO2 for intermediate temperature solid oxide fuel cells[J]. Journal of Alloys and Compounds, 2023, 962: 171169. doi: 10.1016/j.jallcom.2023.171169
    [20] LI Y, ZHENG N, YU L, et al. A simple phenyl group introduced at the tail of alkyl side chains of small molecular acceptors: new strategy to balance the crystallinity of acceptors and miscibility of bulk heterojunction enabling highly efficient organic solar cells[J]. Advanced Materials, 2019, 31(12): 1807832. doi: 10.1002/adma.201807832
    [21] ZHU B, MI Y, XIA C, et al. A nanoscale perspective on solid oxide and semiconductor membrane fuel cells: materials and technology[J]. Energy Materials, 2021, 1(1): 100002.
    [22] FABBRI E, PERGOLESI D, TRAVERSA E. Ionic conductivity in oxide heterostructures: the role of interfaces[J]. Science and Technology of Advanced Materials, 2010, 11(5): 054503. doi: 10.1088/1468-6996/11/5/054503
    [23] MAIER J. Ionic transport in nano-sized systems[J]. Solid State Ionics, 2004, 175(1): 7-12.
    [24] GUO X, WASER R. Electrical properties of the grain boundaries of oxygen ion conductors: Acceptor-doped zirconia and ceria[J]. Progress in Materials Science, 2006, 51(2): 151-210. doi: 10.1016/j.pmatsci.2005.07.001
    [25] WANG L, XIE R, CHEN B, et al. In-situ visualization of the space-charge-layer effect on interfacial lithium-ion transport in all-solid-state batteries[J]. Nature Communications, 2020, 11(1): 5889. doi: 10.1038/s41467-020-19726-5
    [26] SINGH M, SINGH A K. Space charge layer induced superionic conduction and charge transport behaviour of “alkali carbonates and tri-doped ceria nanocomposites” for LT-SOFCs applications[J]. Ceramics International, 2021, 47(1): 1218-1228. doi: 10.1016/j.ceramint.2020.08.241
    [27] UTHAYAKUMAR A, PANDIYAN A, MATHIYALAGAN S, et al. The effect of space charge on blocking grain boundary resistance in an yttrium-doped barium zirconate electrolyte for solid oxide fuel cells[J]. The Journal of Physical Chemistry C, 2020, 124(10): 5591-5599. doi: 10.1021/acs.jpcc.0c00166
    [28] DING J, BALACHANDRAN J, SANG X, et al. The influence of local distortions on proton mobility in acceptor doped perovskites[J]. Chemistry of Materials, 2018, 30(15): 4919-4925. doi: 10.1021/acs.chemmater.8b00502
    [29] WEN K, ZHANG K H L, WANG W, et al. Physical justification for ionic conductivity enhancement at strained coherent interfaces[J]. Journal of Power Sources, 2015, 285: 37-42. doi: 10.1016/j.jpowsour.2015.02.089
    [30] WANG J, JIANG Q, LIU D, et al. Effect of inner strain on the performance of dual-phase oxygen permeable membranes[J]. Journal of Membrane Science, 2022, 644: 120142. doi: 10.1016/j.memsci.2021.120142
    [31] TIAN A, MEI Z, WANG L, et al. Improved photocatalytic carbon dioxide reduction over Bi-doped CeO2 by strain engineering[J]. Sustainable Energy & Fuels, 2024, 8(7): 1405-1411.
    [32] YANG G, EL LOUBANI M, CHALAKI H R, et al. Tuning ionic conductivity in fluorite Gd-doped CeO2-bixbyite RE2O3 (RE = Y and Sm) multilayer thin films by controlling interfacial strain[J]. ACS Applied Electronic Materials, 2023, 5(8): 4556-4563. doi: 10.1021/acsaelm.3c00724
    [33] MOHAN KANT K, ESPOSITO V, PRYDS N. Strain induced ionic conductivity enhancement in epitaxial Ce0.9Gd0.1O2– δ thin films[J]. Applied Physics Letters, 2012, 100(3): 033105. doi: 10.1063/1.3676659
    [34] MAYESHIBA T, MORGAN D. Strain effects on oxygen migration in perovskites[J]. Physical Chemistry Chemical Physics, 2015, 17(4): 2715-2721. doi: 10.1039/C4CP05554C
    [35] CHEN G, LIU H, HE Y, et al. Electrochemical mechanisms of an advanced low-temperature fuel cell with a SrTiO3 electrolyte[J]. Journal of Materials Chemistry A, 2019, 7(16): 9638-9645. doi: 10.1039/C9TA00499H
    [36] XING Y, WU Y, LI L, et al. Proton shuttles in CeO2/CeO2– δ core-Shell structure[J]. ACS Energy Letters, 2019, 4(11): 2601-2607. doi: 10.1021/acsenergylett.9b01829
    [37] LIU Y, MUSHTAQ M N, ZHANG W, et al. Single-phase electronic-ionic conducting Sm3+/Pr3+/Nd3+ triple-doped ceria for new generation fuel cell technology[J]. International Journal of Hydrogen Energy, 2018, 43(28): 12817-12824. doi: 10.1016/j.ijhydene.2018.04.125
    [38] LI J, XIE J, LI D, et al. An Interface heterostructure of NiO and CeO2 for using electrolytes of low-temperature solid oxide fuel cells[J]. 2021, 11(8): 2004.
    [39] ZHU W, XIA C, DING D, et al. Electrical properties of ceria-carbonate composite electrolytes[J]. Materials Research Bulletin, 2006, 41(11): 2057-2064. doi: 10.1016/j.materresbull.2006.04.001
    [40] GöBEL M C, GREGORI G, MAIER J. Numerical calculations of space charge layer effects in nanocrystalline ceria. Part II: detailed analysis of the space charge layer properties[J]. Physical Chemistry Chemical Physics, 2014, 16(21): 10175-10186. doi: 10.1039/C3CP54616K
    [41] WANG B, WANG Y, FAN L, et al. Preparation and characterization of Sm and Ca co-doped ceria-La0.6Sr0.4Co0.2Fe0.8O3– δ semiconductor-ionic composites for electrolyte-layer-free fuel cells[J]. Journal of Materials Chemistry A, 2016, 4(40): 15426-15436. doi: 10.1039/C6TA05763B
    [42] RAZA R, KHAN A, RAFIQUE A, et al. Nanocomposite BaZr0.7Sm0.1Y0.2O3– δ-La0.8Sr0.2Co0.2Fe0.8O3– δ materials for single layer fuel cell[J]. International Journal of Hydrogen Energy, 2017, 42(34): 22280-22287. doi: 10.1016/j.ijhydene.2017.04.287
    [43] LI P, LIU F, YANG B, et al. Enhanced electrochemical redox kinetics of La0.6Sr0.4Co0.2Fe0.8O3 in reversible solid oxide cells[J]. Electrochimica Acta, 2023, 446: 142069. doi: 10.1016/j.electacta.2023.142069
    [44] MIRUSZEWSKI T, GDANIEC P, ROSIŃSKI W, et al. Structure and electrical properties of Y, Fe-based perovskite mixed conducting composites fabricated by a modified polymer precursor method[J]. Solid State Sciences, 2017, 70: 41-46. doi: 10.1016/j.solidstatesciences.2017.06.008
    [45] GAO J, XU S, AKBAR M, et al. Single layer low-temperature SOFC based on Ce0.8Sm0.2O2– δ-La0.25Sr0.75Ti1 - Ni0.8Co0.15Al0.05LiO2– δ composite material[J]. International Journal of Hydrogen Energy, 2021, 46(15): 9775-9781. doi: 10.1016/j.ijhydene.2020.07.043
    [46] WANG Z, MENG Y, SINGH M, et al. Ni/NiO exsolved perovskite La0.2Sr0.7Ti0.9Ni0.1O3– δ for semiconductor-Ionic fuel cells: Roles of Electrocatalytic Activity and Physical Junctions[J]. ACS Applied Materials & Interfaces, 2023, 15(1): 870-881.
    [47] CAI Y, CHEN Y, AKBAR M, et al. A bulk-heterostructure nanocomposite electrolyte of Ce0.8Sm0.2O2– δ-SrTiO3 for low-temperature solid oxide fuel cells[J]. Nano-Micro Letters, 2021, 13(1): 46. doi: 10.1007/s40820-020-00574-3
    [48] MENG Y, AKBAR M, GAO J, et al. Superionic conduction of self-assembled heterostructural LSCrF-CeO2 electrolyte for solid oxide fuel cell at 375-550℃[J]. Applied Surface Science, 2024, 645: 158832. doi: 10.1016/j.apsusc.2023.158832
    [49] LIU Y, TANG Y, Ma Z, et al. Flowerlike CeO2 microspheres coated with Sr2Fe1.5Mo0.5Ox nanoparticles for an advanced fuel cell[J]. Scientific Reports, 2015, 5(1): 11946. doi: 10.1038/srep11946
    [50] SHAO K, LI F, ZHANG G, et al. Approaching durable single-layer fuel cells: promotion of electroactivity and charge separation via nanoalloy redox exsolution[J]. ACS Applied Materials & Interfaces, 2019, 11(31): 27924-27933.
    [51] RAUF S, SHAH M A K Y, ZHU B, et al. Electrochemical properties of a dual-ion semiconductor-ionic Co0.2Zn0.8O-Sm0.20Ce0.80O2– δ composite for a high-performance low-temperature solid oxide fuel cell[J]. ACS Applied Energy Materials, 2021, 4(1): 194-207. doi: 10.1021/acsaem.0c02095
    [52] YU Y, CHENG X, KHALID M A, et al. Gadolinium-Doped Ceria-NaCoO2 heterogeneous semiconductor ionic materials for solid oxide fuel cell Application[J]. ACS Applied Energy Materials, 2023, 6(18): 9508-9515. doi: 10.1021/acsaem.3c01487
    [53] CAI Y, WANG B, WANG Y, et al. Validating the technological feasibility of yttria-stabilized zirconia-based semiconducting-ionic composite in intermediate-temperature solid oxide fuel cells[J]. Journal of Power Sources, 2018, 384: 318-327. doi: 10.1016/j.jpowsour.2018.03.012
    [54] WANG B, CAI Y, XIA C, et al. Semiconductor-ionic membrane of LaSrCoFe-oxide-doped ceria solid oxide fuel cells[J]. Electrochimica Acta, 2017, 248: 496-504. doi: 10.1016/j.electacta.2017.07.128
    [55] ZHU B, HUANG Y, FAN L, et al. Novel fuel cell with nanocomposite functional layer designed by perovskite solar cell principle[J]. Nano Energy, 2016, 19: 156-164. doi: 10.1016/j.nanoen.2015.11.015
    [56] YUAN M, DONG W, WEI L, et al. Stability study of SOFC using layered perovskite oxide La1.85Sr0.15CuO4 mixed with ionic conductor as membrane[J]. Electrochimica Acta, 2020, 332: 135487. doi: 10.1016/j.electacta.2019.135487
    [57] HU H, LIN Q, ZHU Z, et al. Time-dependent performance change of single layer fuel cell with Li0.4Mg0.3Zn0.3O/Ce0.8Sm0.2O2– δ composite[J]. International Journal of Hydrogen Energy, 2014, 39(20): 10718-10723. doi: 10.1016/j.ijhydene.2014.04.185
    [58] XIA C, MI Y, WANG B, et al. Shaping triple-conducting semiconductor BaCo0.4Fe0.4Zr0.1Y0.1O3– δ into an electrolyte for low-temperature solid oxide fuel cells[J]. Nature Communications, 2019, 10(1): 1707. doi: 10.1038/s41467-019-09532-z
    [59] RAUF S, ZHU B, YOUSAF SHAH M A K, et al. Application of a triple-conducting heterostructure electrolyte of Ba0.5Sr0.5Co0.1Fe0.7Zr0.1Y0.1O3– δ and Ca0.04Ce0.80Sm0.16O2– δ in a high-performance low-temperature solid oxide fuel cell[J]. ACS Applied Materials & Interfaces, 2020, 12(31): 35071-35080.
    [60] RAUF S, ZHU B, SHAH M A K Y, et al. Tailoring triple charge conduction in BaCo0.2Fe0.1Ce0.2Tm0.1Zr0.3Y0.1O3– δ semiconductor electrolyte for boosting solid oxide fuel cell performance[J]. Renewable Energy, 2021, 172: 336-349. doi: 10.1016/j.renene.2021.03.031
    [61] SHAH M A K Y, RAUF S, MUSHTAQ N, et al. Novel perovskite semiconductor based on Co/Fe-Codoped LBZY (La0.5Ba0.5 Co0.2Fe0.2Zr0.3Y0.3O3– δ) as an electrolyte in ceramic fuel cells[J]. ACS Applied Energy Materials, 2021, 4(6): 5798-5808. doi: 10.1021/acsaem.1c00599
    [62] WANG F, XING Y, HU E, et al. Li2TiO3-LaSrCoFeO3 semiconductor heterostructure for low temperature ceramic fuel cell electrolyte[J]. International Journal of Hydrogen Energy, 2021, 46(24): 13265-13272. doi: 10.1016/j.ijhydene.2021.01.174
    [63] LI P, YANG P, SHAO T, et al. Evaluating the effect of B-site cation doping on the properties of Pr0.4Sr0.5Fe0.9Mo0.1O3 for reversible single-component cells[J]. Industrial & Engineering Chemistry Research, 2022, 61(15): 5030-5041.
    [64] SHAH M A K Y, LU Y, MUSHTAQ N, et al. Interfacial active-sites p-n heterojunction SFT-WO3 for enhanced fuel cell performance at 400-500℃[J]. Materials Today Sustainability, 2022, 20: 100229. doi: 10.1016/j.mtsust.2022.100229
    [65] ZHAO D, YAN R, MUSHTAQ N, et al. Developing the fast ionic transport in the semiconductor ionic heterostructure composed of La08Sr0.2Co0.8Fe0.2-Gd0.1Ce0.9O2 for the electrolyte application in ceramic fuel cells[J]. Crystals, 2023, 13(4): 697. doi: 10.3390/cryst13040697
    [66] LU Y, SHAH M A K Y, MUSHTAQ N, et al. Semiconductor heterostructure (SFT-SnO2) electrolyte with enhanced ionic conduction for ceramic fuel cells[J]. ACS Applied Energy Materials, 2023, 6(12): 6518-6531. doi: 10.1021/acsaem.3c00442
    [67] LI J, YOUSAF M, AKBAR M, et al. Processing of high-performance Co doped Y2O3 as a single-phase electrolyte for low temperature solid oxide fuel cell (LT-SOFC)[J]. Ceramics International, 2023, 49(10): 14957-14963. doi: 10.1016/j.ceramint.2022.11.136
    [68] XING Y, RAUF S, CAI H, et al. Designing p-n heterostructure of LSC F-CeO2 material for ionic transportation as an electrolyte for semiconductor ion membrane fuel cell[J]. International Journal of Hydrogen Energy, 2024, 50: 428-440. doi: 10.1016/j.ijhydene.2023.08.204
    [69] SUI W, JI S, MA X, et al. A dual-layer electrolyte of CuFeO2-ZnO for low-temperature solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2024, 50: 1126-1136. doi: 10.1016/j.ijhydene.2023.10.067
  • 加载中
计量
  • 文章访问数:  53
  • HTML全文浏览量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-19
  • 修回日期:  2024-08-25
  • 录用日期:  2024-09-07
  • 网络出版日期:  2024-09-23

目录

    /

    返回文章
    返回