留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Micro-CT技术的3D机织预制件细观结构分析

邵梦洁 谢军波 杨志 焦伟 郭珍珍 陈利 杜雪菲

邵梦洁, 谢军波, 杨志, 等. 基于Micro-CT技术的3D机织预制件细观结构分析[J]. 复合材料学报, 2022, 39(8): 4129-4138. doi: 10.13801/j.cnki.fhclxb.20211102.001
引用本文: 邵梦洁, 谢军波, 杨志, 等. 基于Micro-CT技术的3D机织预制件细观结构分析[J]. 复合材料学报, 2022, 39(8): 4129-4138. doi: 10.13801/j.cnki.fhclxb.20211102.001
SHAO Mengjie, XIE Junbo, YANG Zhi, et al. Analysis of meso-structure of 3D woven preforms based on the micro-CT technology[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 4129-4138. doi: 10.13801/j.cnki.fhclxb.20211102.001
Citation: SHAO Mengjie, XIE Junbo, YANG Zhi, et al. Analysis of meso-structure of 3D woven preforms based on the micro-CT technology[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 4129-4138. doi: 10.13801/j.cnki.fhclxb.20211102.001

基于Micro-CT技术的3D机织预制件细观结构分析

doi: 10.13801/j.cnki.fhclxb.20211102.001
基金项目: 国家自然科学基金青年基金(11802204);天津市自然科学基金青年基金(18JCQNJC73000);天津市教委科研计划项目(2018KJ195);天津市高等学校创新团队项目(TD13-5043)
详细信息
    通讯作者:

    谢军波,博士,副研究员,硕士生导师,研究方向为复合材料力学、织物力学 E-mail: xiejunbo@tiangong.edu.cn

  • 中图分类号: TB333

Analysis of meso-structure of 3D woven preforms based on the micro-CT technology

  • 摘要: 基于微计算机断层扫描(Micro-CT)技术重构了纤维预制件的3D细观结构,提出了两个表征纤维预制件几何结构变形的量化指标,研究了纬纱密度和厚度对3D机织预制件细观结构的影响机制。结果表明:Micro-CT技术能够有效表征3D机织预制件内部纱线的截面形态和空间路径;当纬纱密度为2.0根/cm时,预制件试样均表现出明显的变形,不适合实际工程应用;随着纬纱密度的增加,纤维预制件的内部结构趋于稳定;10 mm试样的内部结构比5 mm试样更稳定,但表面纱线的横截面和路径仍然呈现较大的变形。

     

  • 图  1  3D机织预制件示意图 (a)、经纱路径 (b) 和法向纱路径 (c)

    Figure  1.  Schematic diagram of the 3D woven preform (a), warp yarn path (b) and binder yarn path (c)

    1, 2, 3—Warp yarn direction, weft yarn direction and thickness direction of the preform

    图  2  微计算机断层扫描(Micro-CT)测试

    Figure  2.  Micro-computed tomography (Micro-CT) test

    图  3  3D机织预制件试样Micro-CT图像:((a)~(c)) 纬纱密度2.0、2.5和3.0根/cm的5 mm试样;((d)~(f)) 纬纱密度2.0、2.5和3.0根/cm的10 mm试样

    Figure  3.  Micro-CT images of 3D woven preform samples: ((a)-(c)) 5 mm thickness samples with the weft yarn densities of 2.0, 2.5 and 3.0 picks/cm; ((d)-(f)) 10 mm thickness samples with the weft yarn densities of 2.0, 2.5 and 3.0 picks/cm

    图  4  3D机织预制件真实结构截面 ((a), (b)) 与理想结构截面 ((c), (d)) 的对比

    Figure  4.  Comparison of real ((a), (b)) and ideal ((c), (d)) structural sections of 3D woven preform samples

    图  5  3D机织预制件纱线几何变异系数:(a) 纬纱;(b) 经纱;(c) 法向纱

    Figure  5.  Geometric variation indicators of the 3D woven preform samples: (a) Weft yarn; (b) Warp yarn; (c) Binder yarn

    ${{l}}_{\text{Weft}}^{{i}}$—Distance between the i-th yarn and the middle line of the weft yarn column; $ {{z}}_{\text{CT}}^{{i}} $—Z-coordinate of the i-th point on the yarn path in the Micro-CT image; $ {{z}}_{\text{T}}^{{i}} $—Corresponding Z-coordinate of the i-th point on the TexGen yarn path

    图  6  5 mm 3D机织预制件纬纱试样Micro-CT图像:((a)~(c)) 2.0根/cm;((d)~(f)) 2.5根/cm;((g)~(i)) 3.0根/cm

    Figure  6.  Micro-CT images of the 3D woven preform weft yarn samples with 5 mm thickness: ((a)-(c)) 2.0 picks/cm; ((d)-(f)) 2.5 picks/cm; ((g)-(i)) 3.0 picks/cm

    图  7  纬纱密度对3D机织预制件几何变异系数的影响:((a)~(c)) 5 mm;((d)~(f)) 10 mm

    Figure  7.  Influence of weft yarn density on the geometric variation indicators of the 3D woven preform samples: ((a)-(c)) 5 mm; ((d)-(f)) 10 mm

    Ipath, Ilocation—Geometric variation indicators

    图  8  10 mm 3D机织预制件纬纱试样Micro-CT图像:((a)~(c)) 2.0根/cm;((d)~(f)) 2.5根/cm;((g)~(i)) 3.0根/cm

    Figure  8.  Micro-CT images of the 3D woven preform weft yarn samples with 10 mm thickness: ((a)-(c)) 2.0 picks/cm; ((d)-(f)) 2.5 picks/cm; ((g)-(i)) 3.0 picks/cm

    图  9  纬纱密度2.0根/cm 3D机织预制件试样Micro-CT图像:((a)~(c)) 5 mm;((d)~(f)) 10 mm

    Figure  9.  Micro-CT images of 3D woven preform samples with the weft density of 2.0 picks/cm: ((a)-(c)) 5 mm; ((d)-(f)) 10 mm

    图  10  厚度对3D机织预制件纬纱几何变异系数的影响:((a)~(c)) 2.0根/cm;((d)~(f)) 2.5根/cm;((g)~(i)) 3.0根/cm

    Figure  10.  Influence of thickness on the geometric variation indicators of the 3D woven preform weft yarn samples: ((a)-(c)) 2.0 picks/cm; ((d)-(f)) 2.5 picks/cm; ((g)-(i)) 3.0 picks/cm

    图  11  纬纱密度2.5根/cm的3D机织预制件试样Micro-CT图像: ((a)~(c)) 5 mm; ((d)~(f)) 10 mm

    Figure  11.  Micro-CT images of 3D woven preform samples with the weft density of 2.5 picks/cm: ((a)-(c)) 5 mm; ((d)-(f)) 10 mm

    图  12  纬纱密度3.0根/cm 3D机织预制件试样Micro-CT图像:((a)~(c)) 5 mm;((d)~(f)) 10 mm

    Figure  12.  Micro-CT images of 3D woven preform samples with the weft density of 3.0 picks/cm: ((a)-(c)) 5 mm; ((d)-(f)) 10 mm

    表  1  3D机织预制件结构参数

    Table  1.   Structure parameters of the 3D woven preforms

    SampleThickness/
    mm
    Weft yarn density/
    (picks·cm−1)
    Fiber volume fraction/vol%
    S-5-2.05.51.943.6
    S-5-2.55.62.447.3
    S-5-3.05.43.150.8
    S-10-2.010.82.042.2
    S-10-2.510.92.646.9
    S-10-3.010.93.051.2
    下载: 导出CSV
  • [1] 陈利, 焦伟, 王心淼, 等. 三维机织复合材料力学性能研究进展[J]. 材料工程, 2020, 48(8):62-72.

    CHEN Li, JIAO Wei, WANG Xinmiao, et al. Research progress on mechanical properties of 3D woven composites[J]. Journal of Materials Engineering,2020,48(8):62-72(in Chinese).
    [2] SALEH M N, YUDHANTO A, POTLURI P, et al. Characte-rising the loading direction sensitivity of 3D woven composites: Effect of Z-binder architecture[J]. Composites Part A: Applied Science and Manufacturing, 2016, 90: 577-588.
    [3] YANG Z, JIAO Y N, XIE J B, et al. Modeling of 3D woven fibre structures by numerical simulation of the weaving process[J]. Composites Science and Technology, 2021, 206: 108679.
    [4] XU F, SUN L, ZHU L, et al. X-ray 3D microscopy analysis of fracture mechanisms for 3D orthogonal woven E-glass/epoxy composites with drilled and moulded-in holes[J]. Composites Part B: Engineering, 2018, 133: 193-202.
    [5] GOMMER F, ENDRUWEIT A, LONG A C. Analysis of filament arrangements and generation of statistically equiva-lent composite micro-structures[J]. Composites Science and Technology, 2014, 99: 45-51.
    [6] GOMMER F, ENDRUWEIT A, LONG A C. Quantification of micro-scale variability in fibre bundles[J]. Composites Part A: Applied Science and Manufacturing, 2016, 87: 131-137.
    [7] DAI S, CUNNINGHAM P R, MARSHALL S, et al. Influence of fibre architecture on the tensile, compressive and flexu-ral behaviour of 3D woven composites[J]. Composites Part A: Applied Science and Manufacturing, 2015, 69: 195-207.
    [8] EMERSON M J, DAHL V A, CONRADSEN K, et al. Statisti-cal validation of individual fiber segmentation from tomograms and microscopy[J]. Composites Science and Technology, 2018, 160: 208-215.
    [9] ISART N, SAID B E, IVANOV D S, et al. Internal geometric modelling of 3D woven composites: A comparison between different approaches[J]. Composite Structures, 2015, 132: 1219-1230.
    [10] ISART N, MAYUGO J A, BLANCO N, et al. Geometric model for 3D through-thickness orthogonal interlock composites[J]. Composite Structures, 2015, 119: 787-798.
    [11] BARBURSKI M, STRAUMIT I, ZHANG X, et al. Micro-CT analysis of internal structure of sheared textile composite reinforcement[J]. Composites Part A: Applied Science and Manufacturing, 2015, 73: 45-54.
    [12] SISODIA S M, GARCEA S C, GEORGE A R, et al. High-resolution computed tomography in resin infused woven carbon fibre composites with voids[J]. Composites Science and Technology, 2016, 131: 12-21.
    [13] GARCEA S C, WANG Y, WITHERS P J. X-ray computed tomography of polymer composites[J]. Composites Science and Technology, 2018, 156: 305-319.
    [14] LI Z, GUO L, ZHANG L, et al. In situ experimental investigation on the out-plane damage evolution of 3D woven carbon-fiber reinforced composites[J]. Composites Science and Technology, 2018, 162: 101-109.
    [15] NAOUAR N, VASIUKOV D, PARK C H, et al. Meso-FE modelling of textile composites and X-ray tomography[J]. Journal of Materials Science, 2020, 55(36): 16969 -16989.
    [16] WIJAYA W, KELLY P A, BICKERTON S. A novel methodology to construct periodic multi-layer 2D woven unit cells with random nesting configurations directly from μCT-scans[J]. Composites Science and Technology, 2020, 193: 108125.
    [17] WINTIBA B, VASIUKOV D, PANIER S, et al. Automated reconstruction and conformal discretization of 3D woven composite CT scans with local fiber volume fraction control[J]. Composite Structures, 2020, 248: 112438.
    [18] FANG G D, CHEN C H, YUAN S G, et al. Micro-tomography based geometry modeling of three-dimensional braided composites[J]. Applied Composite Materials, 2018, 25(3): 469-483.
    [19] FANG G D, CHEN C H, MENG S H, et al. Mechanical analysis of three-dimensional braided composites by using realistic voxel-based model with local mesh refinement[J]. Journal of Composite Materials,2019,53(4):475-487. doi: 10.1177/0021998318786541
    [20] VANAERSCHOT A, COX B N, LOMOV S V, et al. Stochastic framework for quantifying the geometrical variability of laminated textile composites using micro-computed tomography[J]. Composites Part A: Applied Science and Manufacturing, 2014, 44: 122-131.
    [21] VANAERSCHOT A, PANERAI F, CASSELL A, et al. Stochas-tic characterisation methodology for 3D textiles based on microtomography[J]. Composite Structures, 2017, 173: 44-52.
    [22] VANAERSCHOT A, COX B N, LOMOV S V, et al. Experimentally validated stochastic geometry description for textile composite reinforcements[J]. Composites Science and Technology, 2016, 122: 122-129.
    [23] QUAN Z, LARIMORE Z, QIN X, et al. Microstructural characterization of additively manufactured multi-directional preforms and composites via X-ray microcomputed tomography[J]. Composites Science and Technology, 2016, 131: 48-60.
    [24] HEMMER J, BURTIN C, COMAS-CARDONA S, et al. Unloading during the infusion process: Direct measurement of the dual-scale fibrous microstructure evolution with X-ray computed tomography[J]. Composites Part A: Applied Science and Manufacturing, 2018, 115: 147-156.
    [25] ALI M A, UMER R, KHAN K A, et al. In-plane virtual permeability characterization of 3D woven fabrics using a hybrid experimental and numerical approach[J]. Composites Science and Technology, 2019, 173: 99-109.
    [26] TORRES J J, SIMMONS M, SKET F, et al. An analysis of void formation mechanisms in out-of-autoclave prepregs by means of X-ray computed tomography[J]. Composites Part A: Applied Science and Manufacturing, 2019, 117: 230-242.
    [27] LI Y, SUN B, GU B. Impact shear damage characterizations of 3D braided composite with X-ray microcomputed tomography and numerical methodologies[J]. Composite Structures, 2017, 176: 43-54.
    [28] GIGLIOTTI M, PANNIER Y, GONZALEZ R A, et al. X-ray micro-computed-tomography characterization of cracks induced by thermal cycling in non-crimp 3D orthogonal woven composite materials with porosity[J]. Composites Part A: Applied Science and Manufacturing, 2018, 112: 100-110.
    [29] WARREN K C, LOPEZ-ANIDO R A, GOERING J. Experimental investigation of three-dimensional woven compo-sites[J]. Composites Part A: Applied Science and Manufacturing, 2015, 73: 242-259.
    [30] JIAO W, CHEN L, XIE J, et al. Effect of weaving structures on the geometry variations and mechanical properties of 3D LTL woven composites[J]. Composite Structures, 2020, 252: 112756
    [31] PAZMINO J, CARVELLI V, LOMOV S V. Micro-CT analysis of the internal deformed geometry of a non-crimp 3D orthogonal weave E-glass composite reinforcement[J]. Composites Part B: Engineering, 2014, 65: 147-157.
    [32] BROWN L P, ENDRUWEIT A, LONG A, et al. Characterisation and modelling of complex textile geometries using TexGen[J]. IOP Conference Series: Materials Science and Engineering,2018,406(1):012024.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  1121
  • HTML全文浏览量:  462
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-31
  • 修回日期:  2021-10-11
  • 录用日期:  2021-10-22
  • 网络出版日期:  2021-11-03
  • 刊出日期:  2022-08-31

目录

    /

    返回文章
    返回