留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纤维增韧陶瓷基复合材料高温氧化性能研究进展:氧化机制、氧化损伤实验与模型

方国东 王章文 李赛 王兵 孟松鹤

方国东, 王章文, 李赛, 等. 碳纤维增韧陶瓷基复合材料高温氧化性能研究进展:氧化机制、氧化损伤实验与模型[J]. 复合材料学报, 2024, 41(9): 4518-4534. doi: 10.13801/j.cnki.fhclxb.20240418.004
引用本文: 方国东, 王章文, 李赛, 等. 碳纤维增韧陶瓷基复合材料高温氧化性能研究进展:氧化机制、氧化损伤实验与模型[J]. 复合材料学报, 2024, 41(9): 4518-4534. doi: 10.13801/j.cnki.fhclxb.20240418.004
FANG Guodong, WANG Zhangwen, LI Sai, et al. Review of high-temperature oxidation properties for carbon fiber toughened ceramic matrix composites: Oxidation mechanisms, oxidation damage experiments and models[J]. Acta Materiae Compositae Sinica, 2024, 41(9): 4518-4534. doi: 10.13801/j.cnki.fhclxb.20240418.004
Citation: FANG Guodong, WANG Zhangwen, LI Sai, et al. Review of high-temperature oxidation properties for carbon fiber toughened ceramic matrix composites: Oxidation mechanisms, oxidation damage experiments and models[J]. Acta Materiae Compositae Sinica, 2024, 41(9): 4518-4534. doi: 10.13801/j.cnki.fhclxb.20240418.004

碳纤维增韧陶瓷基复合材料高温氧化性能研究进展:氧化机制、氧化损伤实验与模型

doi: 10.13801/j.cnki.fhclxb.20240418.004
基金项目: 国家自然科学基金(12090034);黑龙江省自然科学基金(YQ2021A004)
详细信息
    通讯作者:

    方国东,博士,教授,博士生导师,研究方向为编织复合材料力学和多场耦合数值计算 E-mail: fanggd@hit.edu.cn

  • 中图分类号: TB332

Review of high-temperature oxidation properties for carbon fiber toughened ceramic matrix composites: Oxidation mechanisms, oxidation damage experiments and models

Funds: National Natural Science Foundation of China (12090034); Natural Science Foundation of Heilongjiang Province (YQ2021A004)
  • 摘要: 碳纤维增韧陶瓷基复合材料兼具陶瓷材料优良的抗氧化腐蚀性能和碳纤维材料增强增韧的力学性能,已成为最有潜力的高超声速飞行器热防护候选材料。碳纤维增韧陶瓷基复合材料在多物理场耦合服役环境下的高温氧化损伤失效机制对热防护材料设计及性能表征与评价至关重要,也一直是国内外学者研究的热点。本文从高温氧化机制、耦合失效实验、高温氧化模型3个方面对C/SiC和C/ZrB2-SiC复合材料进行详细论述和总结,对相应的研究方法的局限性和适用范围进行分析和评价,并展望了碳纤维增韧陶瓷基复合材料氧化损伤研究的发展趋势,进而为碳纤维增韧陶瓷基复合材料在热力氧耦合条件下的热/力响应及性能评价研究起到指导作用。

     

  • 图  1  热防护系统与热防护材料[1]

    Figure  1.  Thermal protection systems and materials[1]

    图  2  ZrB2-SiC高温氧化行为:(a)采用DNE-TGA分析ZrB2-SiC在1600℃空气氧化不同时间后的材料微结构演化[8];(b)基于SEM与XEDS的ZrB2-SiC在1627℃空气中氧化后扫描分析结果[11];(c)基于实验结果建立氧化产物演化模型示意图[16]

    Figure  2.  High temperature oxidation behavior of ZrB2-SiC: (a) DNE-TGA was used to analyze the microstructure evolution of ZrB2-SiC after oxidation in air at 1600℃ for different times[8]; (b) Scanning analysis results of ZrB2-SiC after oxidation in air at 1627℃ based on SEM and XEDS[11];(c) Schematic diagram of oxidation product evolution model based on experimental results[16]

    xThickness of oxide layer; t—Time; fs—Volume fraction of SiC; I12—Region 1-2; I23—Region 2-3; I3a—Region 3-a

    图  3  数据驱动的方法在陶瓷氧化损伤研究中的应用[29-30]:(a)使用从文献中提取的实验数据库训练机器学习(ML)以预测氧化损伤; (b)模型预测氧化层厚度随温度变化和实际值的比较

    UHTC—Ultra high temperature ceramics; T—Temperature; c—Composition; RD—Relative densification; GS—Grain size; d—Thickness of oxide layer

    Figure  3.  Application of data-driven methods in the study of ceramic oxidation damage[29-30]: (a) Machine learning (ML) trained by the experimental database extracted from the literature to predict oxidative damage; (b) Comparison of model prediction and actual oxide scale thickness values vs. temperature

    图  4  碳纤维与C/SiC复合材料的高温氧化行为:(a) T300碳纤维的恒温氧化失重曲线[31];(b)平纹C/SiC复合材料的恒温氧化失重曲线[31];(c)基体裂纹提供氧气通道诱导局部纤维的氧化[31];(d)在裂纹尖端形成的碳纤维消耗区[33]

    Figure  4.  High temperature oxidation behavior of carbon fiber and C/SiC composite: (a) Isothermal oxidation mass loss curves of T300 carbon fiber[31];(b) Isothermal oxidation mass loss curves of plain C/SiC composite[31]; (c) Matrix crack provides oxygen channel to induce local fiber oxidation[31]; (d) Carbon fiber consumption zone formed at the crack tip[33]

    图  5  C/ZrB2-SiC复合材料的氧化失重[36]:(a)试样的比例随温度的变化曲线;(b) 碳氧化失重和基体氧化增重的竞争

    ΔwS—Specific weight/Mass change per unit area

    Figure  5.  Oxidation mass loss of C/ZrB2-SiC composites[36]: (a) Curve of specific gravity of samples with temperature; (b) Competition between carbon oxidation mass loss and matrix oxidation mass gain

    图  6  C/ZrB2-SiC复合材料的高温氧化行为:(a)不同深度的氧化层微结构成分与形貌[36];(b)轴向纤维和横向纤维在空气中的氧化行为示意图[34]

    Figure  6.  High temperature oxidation behavior of C/ZrB2-SiC composites: (a) Microstructure composition and morphology of oxide layers at different depths[36]; (c) Oxidation behavior of axial fibers and transverse fibers in air[34]

    图  7  C/SiC复合材料的裂纹闭合行为[32]:((a), (b))高温氧化后基体裂纹弥合;(c)裂纹闭合导致性能提升

    Figure  7.  Crack closure behavior of C/SiC composites[32]: ((a), (b)) Crack closure in SiC matrix after high temperature oxidation; (c) Crack closure leads to improved performance

    图  8  C/SiC复合材料的应力氧化行为[45]:(a)均匀与非均匀氧化共存形貌(归一化应力NS=0.32);(b)非均匀氧化形貌(归一化应力NS=0.64);(c) 在不同应力氧化机制下C/SiC复合材料的长度变化

    Figure  8.  Stress oxidation behavior of C/SiC composites[45]: (a) Uniform/non-uniform fiber oxidation coexistence (Normalized stress NS=0.32); (b) Non-uniform fiber oxidation (NS=0.64); (c) Length changes of C/SiC composites under different stress oxidation mechanisms

    图  9  C/SiC复合材料的耦合失效行为:(a)拉伸载荷作用下裂纹的演化与局部纤维结构相关[47];((b), (c))基于原位Micro-CT表征SiC/SiC的应力氧化力学行为和结构特征[53]

    Figure  9.  Coupling failure behavior of ceramic matrix composites: (a) Evolution of cracks under tensile load is related to local fiber structure[47]; ((b), (c)) Characterization of stress oxidation mechanical behavior and structural characteristics of SiC/SiC based on in-situ Micro-CT[53]

    图  10  陶瓷基复合材料冲击损伤实验以及剩余性能研究:(a)氧乙炔对冲击后C/C复合材料和SiC-C/C复合材料氧化测试与损伤表征[57];(b)氧化质量损失与涂层冲击损伤面积的关系以及C/SiC复合材料剩余弯曲性能[58]

    v—Velocity

    Figure  10.  Impact damage experiment and residual performance study of ceramic matrix composites: (a) Oxidation test and damage characterization of oxyacetylene on C/C composites and SiC-C/C composites after impact[57]; (b) Relationship between oxidation mass loss and impact damage area of coating and C/SiC residual bending properties of composites[58]

    图  11  陶瓷基复合材料的宏细观氧化模型:(a)基于不同控制因素的宏观氧化模型[60];(b)建立考虑预制裂纹的纤维横向氧化细观有限元模型[62];(c)基于剪滞理论的细观氧化损伤模型[65]

    σ—Stress; Vf—Fiber volume fraction; τi—Interface shear force in slip region; τf—Interface shear force in the oxidized region

    Figure  11.  Macro and meso scale oxidation models of ceramic matrix composites: (a) Macro oxidation model based on different control factors[60]; (b) Meso finite element model of fiber transverse oxidation considering prefabricated cracks[62]; (c) Meso oxidation damage model based on shear lag theory[65]

    图  12  陶瓷基复合材料的耦合失效模型:(a)非线性宏-微观耦合二维有限元模型[68];(b)氧气浓度计算结果[68];(c)基于Micro-CT建立的细观单胞模型[26];(d)基于用户子程序的氧化损伤模拟云图[26];(e)结合氧化动力学和渐近损伤模型的失效分析方法[71]

    Figure  12.  Coupling failure model of ceramic matrix composites: (a) Nonlinear macro micro coupled two-dimensional finite element model[68]; (b) Oxygen concentration calculation[68]; (c) Meso model based on Micro-CT[26]; (d) Oxidation damage cloud figure simulated by user subroutine[26]; (e) Failure analysis method combining oxidation kinetics and asymptotic damage models[71]

    ${{P}_{{{\text{O}}_{\text{2}}}}} $—Oxygen partial pressure; $\nabla $X—Displacement gradient; $\nabla $ρ—Density gradient; $\nabla $T—Temperature gradient; Cijkl—Stiffness coefficient; Kij—Thermal conductivity; Dij—Diffusion coefficient; q—Net flux; n—External normal direction; S, SI —Outer and inner boundaries; V—Volume occupied by fibers; V+—Volume occupied by materials other than fibers; p—Length ratio; η—Number ratio

  • [1] UYANNA O, NAJAFI H. Thermal protection systems for space vehicles: A review on technology development, current challenges and future prospects[J]. Acta Astronautica, 2020, 176: 341-356. doi: 10.1016/j.actaastro.2020.06.047
    [2] SAIROCZAK D, SMITH H. A review of design issues specific to hypersonic flight vehicles[J]. Progress in Aerospace Sciences, 2016, 84: 1-28. doi: 10.1016/j.paerosci.2016.04.001
    [3] 关春龙, 李垚, 赫晓东. 可重复使用热防护系统防热结构及材料的研究现状[J]. 宇航材料工艺, 2003, 33(6): 7-11.

    GUAN Chunlong, LI Yao, HE Xiaodong. Research status of structures and materials for reusable TPS[J]. Aerospace Materials & Technology, 2003, 33(6): 7-11(in Chinese).
    [4] 包为民. 可重复使用运载火箭技术发展综述[J]. 航空学报, 2023, 44(23): 629555.

    BAO Weimin. A review of reusable launch vehicle technology development[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 629555(in Chinese).
    [5] 国义军, 石卫波, 曾磊, 等. 高超声速飞行器烧蚀防热理论与应用[M]. 北京: 科学出版社, 2019: 12.

    GUO Yijun, SHI Weibo, ZENG Lei, et al. Mechanism of ablative thermal protection applied to hypersonic vehicles[M]. Beijing: China Science Publishing & Media Ltd., 2019: 12(in Chinese).
    [6] SHVYDYUK K O, NUNES-PEREIRA J, RODRIGUES F F, et al. Review of ceramic composites in aeronautics and aerospace: A multifunctional approach for TPS, TBC and DBD applications[J]. Ceramics, 2023, 6(1): 195-230. doi: 10.3390/ceramics6010012
    [7] WEI F, ZHANG Y, LEI L, et al. High-frequent pulsing ablation of C/C-SiC-ZrB2-ZrC composite for different cycles to 2000 times in plasma[J]. Transactions of Nonferrous Metals Society of China, 2023, 33(2): 553-562. doi: 10.1016/S1003-6326(22)66127-2
    [8] MILLER-OANA M, CORRAL E L. High-temperature isothermal oxidation of ultra-high temperature ceramics using thermal gravimetric analysis[J]. Journal of the American Ceramic Society, 2016, 99(2): 619-626. doi: 10.1111/jace.14001
    [9] GRIGORIEV O N, STEPANENKO A V, VINOKUROV V B, et al. ZrB2-SiC ceramics: Residual stresses and mechanical properties[J]. Journal of the European Ceramic Society, 2021, 41(9): 4720-4727. doi: 10.1016/j.jeurceramsoc.2021.02.053
    [10] TIWARI M, SINGH V K. Influence of SiC content to control morphology of in-situ synthesized ZrB2-SiC composite through single-step reduction process[J]. Vacuum, 2022, 203: 111251. doi: 10.1016/j.vacuum.2022.111251
    [11] LEVINE S R, OPILA E J, HALBIG M C, et al. Evaluation of ultra-high temperature ceramics for aeropropulsion use[J]. Journal of the European Ceramic Society, 2002, 22(14-15): 2757-2767. doi: 10.1016/S0955-2219(02)00140-1
    [12] CHO Y J, LU K. High temperature oxidation behaviors of bulk SiC with low partial pressures of air and water vapor in argon[J]. Corrosion Science, 2020, 174: 108795. doi: 10.1016/j.corsci.2020.108795
    [13] DEAL B E, GROVE A S. General relationship for the thermal oxidation of silicon[J]. Journal of Applied Physics, 1965, 36(12): 3770-3778. doi: 10.1063/1.1713945
    [14] RAJ R. Chemical potential-based analysis for the oxidation kinetics of Si and SiC single crystals[J]. Journal of the American Ceramic Society, 2013, 96(9): 2926-2934. doi: 10.1111/jace.12464
    [15] FAHRENHOLTZ W G. Thermodynamic analysis of ZrB2-SiC oxidation: Formation of a SiC-depleted region[J]. Journal of the American Ceramic Society, 2007, 90(1): 143-148. doi: 10.1111/j.1551-2916.2006.01329.x
    [16] PARTHASARATHY T A, RAPP R A, OPEKA M, et al. Modeling oxidation kinetics of SiC-containing refractory diborides[J]. Journal of the American Ceramic Society, 2012, 95(1): 338-349. doi: 10.1111/j.1551-2916.2011.04927.x
    [17] PARTHASARATHY T A, RAPP R A, OPEKA M, et al. A model for the oxidation of ZrB2, HfB2 and TiB2[J]. Acta Materialia, 2007, 55(17): 5999-6010. doi: 10.1016/j.actamat.2007.07.027
    [18] MA Y, YAO X, HAO W, et al. Oxidation mechanism of ZrB2/SiC ceramics based on phase-field model[J]. Composites Science and Technology, 2012, 72(10): 1196-1202. doi: 10.1016/j.compscitech.2012.04.003
    [19] CHEN X, SUN Z, CHEN Z, et al. ReaxFF molecular dynamics simulation of oxidation behavior of 3C-SiC in O2 and CO2[J]. Computational Materials Science, 2021, 191: 110341. doi: 10.1016/j.commatsci.2021.110341
    [20] ZHANG P, ZHANG Y, CHEN G, et al. High-temperature oxidation behavior of CVD-SiC ceramic coating in wet oxygen and structural evolution of oxidation product: Experiment and first-principle calculations[J]. Applied Surface Science, 2021, 556: 149808. doi: 10.1016/j.apsusc.2021.149808
    [21] ZUMPICCHIAT G, PASCAL S, TUPIN M, et al. Finite element modelling of the oxidation kinetics of Zircaloy-4 with a controlled metal-oxide interface and the influence of growth stress[J]. Corrosion Science, 2015, 100: 209-221. doi: 10.1016/j.corsci.2015.07.024
    [22] DONG X, FANG X, FENG X, et al. Diffusion and stress coupling effect during oxidation at high temperature[J]. Journal of the American Ceramic Society, 2013, 96(1): 44-46. doi: 10.1111/jace.12105
    [23] LOEFFEL K, ANAND L. A chemo-thermo-mechanically coupled theory for elastic-viscoplastic deformation, diffusion, and volumetric swelling due to a chemical reaction[J]. International Journal of Plasticity, 2011, 27(9): 1409-1431. doi: 10.1016/j.ijplas.2011.04.001
    [24] CHEN L, YUEMING L. A coupled mechanical-chemical model for reflecting the influence of stress on oxidation reactions in thermal barrier coating[J]. Journal of Applied Physics, 2018, 123(21): 215305. doi: 10.1063/1.5019848
    [25] ZHOU Z, PENG X, WEI Z. A thermo-chemo-mechanical model for the oxidation of zirconium diboride[J]. Journal of the American Ceramic Society, 2015, 98(2): 629-636. doi: 10.1111/jace.13333
    [26] ZHAO Y, CHEN Y, HE C, et al. A damage-induced short-circuit diffusion model applied to the oxidation calculation of ceramic matrix composites (CMCs)[J]. Composites Part A: Applied Science and Manufacturing, 2019, 127: 105621. doi: 10.1016/j.compositesa.2019.105621
    [27] WANG H, SHEN S. A chemomechanical coupling model for oxidation and stress evolution in ZrB2-SiC[J]. Journal of Materials Research, 2017, 32(7): 1267-1278. doi: 10.1557/jmr.2016.489
    [28] RULKO T A, PICKARD D N, RADOVITZKY R. Fully-coupled multiphysics simulations of the thermo-mechanical oxidation of ceramics for spacecraft heat shields[C]//AIAA SCITECH 2024 Forum. Reston, VA: American Institute of Aeronautics and Astronautics, 2024: 0029.
    [29] BIANCO G, NISAR A, ZHANG C, et al. Predicting oxidation damage in ultra high-temperature borides: A machine learning approach[J]. Ceramics International, 2022, 48(20): 29763-29769. doi: 10.1016/j.ceramint.2022.06.236
    [30] BIANCO G, NISAR A, ZHANG C, et al. Predicting oxidation damage of ultra high-temperature carbide ceramics in extreme environments using machine learning[J]. Ceramics International, 2023, 49(12): 19974-19981. doi: 10.1016/j.ceramint.2023.03.119
    [31] HALBIG M C, MCGUFFIN-CAWLEY J D, ECKEL A J, et al. Oxidation kinetics and stress effects for the oxidation of continuous carbon fibers within a microcracked C/SiC ceramic matrix composite[J]. Journal of the American ceramic society, 2008, 91(2): 519-526. doi: 10.1111/j.1551-2916.2007.02170.x
    [32] OPILA E J, SERRA J L. Oxidation of carbon fiber-reinforced silicon carbide matrix composites at reduced oxygen partial pressures[J]. Journal of the American Ceramic Society, 2011, 94(7): 2185-2192. doi: 10.1111/j.1551-2916.2010.04376.x
    [33] JACOBSON N S, CURRY D M. Oxidation microstructure studies of reinforced carbon/carbon[J]. Carbon, 2006, 44(7): 1142-1150. doi: 10.1016/j.carbon.2005.11.013
    [34] VINCI A, ZOLI L, SCITI D. Influence of SiC content on the oxidation of carbon fibre reinforced ZrB2/SiC composites at 1500 and 1650°C in air[J]. Journal of the European Ceramic Society, 2018, 38(11): 3767-3776. doi: 10.1016/j.jeurceramsoc.2018.04.064
    [35] VINCI A, ZOLI L, LANDI E, et al. Oxidation behaviour of a continuous carbon fibre reinforced ZrB2-SiC composite[J]. Corrosion Science, 2017, 123: 129-138. doi: 10.1016/j.corsci.2017.04.012
    [36] ZHANG D, HU P, DONG S, et al. Oxidation behavior and ablation mechanism of Cf/ZrB2-SiC composite fabricated by vibration-assisted slurry impregnation combined with low-temperature hot pressing[J]. Corrosion Science, 2019, 161: 108181. doi: 10.1016/j.corsci.2019.108181
    [37] ZOLI L, SCITI D. Efficacy of a ZrB2-SiC matrix in protecting C fibres from oxidation in novel UHTCMC materials[J]. Materials & Design, 2017, 113: 207-213.
    [38] VINCI A, REIMER T, ZOLI L, et al. Influence of pressure on the oxidation resistance of carbon fiber reinforced ZrB2/SiC composites at 2000 and 2200℃[J]. Corrosion Science, 2021, 184: 109377. doi: 10.1016/j.corsci.2021.109377
    [39] ZHAO Z, LI K, LI W. Ablation behavior of ZrC-SiC-ZrB2 and ZrC-SiC inhibited carbon/carbon composites components under ultrahigh temperature conditions[J]. Corrosion Science, 2021, 189: 109598. doi: 10.1016/j.corsci.2021.109598
    [40] KOU S, MA J, MA Y, et al. Microstructure and flexural strength of C/HfC-ZrC-SiC composites prepared by reactive melt infiltration method[J]. Journal of the European Ceramic Society, 2023, 43(5): 1864-1873. doi: 10.1016/j.jeurceramsoc.2022.12.015
    [41] ZHANG Y, ZHANG L, CHENG L, et al. Tensile behavior and microstructural evolution of a carbon/silicon carbide composite in simulated re-entry environments[J]. Materials Science and Engineering: A, 2008, 473(1-2): 111-118. doi: 10.1016/j.msea.2007.05.015
    [42] ZHANG Y, ZHANG L, LIU Y, et al. Oxidation effects on in-plane and interlaminar shear strengths of two-dimensional carbon fiber reinforced silicon carbide composites[J]. Carbon, 2016, 98: 144-156. doi: 10.1016/j.carbon.2015.10.091
    [43] CHENG T, WANG X, ZHANG R, et al. Tensile properties of two-dimensional carbon fiber reinforced silicon carbide composites at temperatures up to 2300°C[J]. Journal of the European Ceramic Society, 2020, 40(3): 630-635. doi: 10.1016/j.jeurceramsoc.2019.10.030
    [44] CHENG T. Insights into fracture mechanisms and strength behaviors of two-dimensional carbon fiber reinforced silicon carbide composites at elevated temperatures[J]. Journal of the European Ceramic Society, 2022, 42(1): 71-86. doi: 10.1016/j.jeurceramsoc.2021.09.028
    [45] LUAN X, CHENG L, ZHANG J, et al. Effects of temperature and stress on the oxidation behavior of a 3D C/SiC composite in a combustion wind tunnel[J]. Composites Science and Technology, 2010, 70(4): 678-684. doi: 10.1016/j.compscitech.2009.12.025
    [46] MORSCHER G N. Stress-dependent matrix cracking in 2D woven SiC-fiber reinforced melt-infiltrated SiC matrix composites[J]. Composites Science and Technology, 2004, 64(9): 1311-1319. doi: 10.1016/j.compscitech.2003.10.022
    [47] SEVEVNER K M, TRACY J M, ZHE C, et al. Crack opening behavior in ceramic matrix composites[J]. Journal of the American Ceramic Society, 2017, 100(10): 4734-4747.
    [48] FENG Y, FENG Z, LI S, et al. Micro-CT characterization on porosity structure of 3D Cf/SiCm composite[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(11): 1645-1650. doi: 10.1016/j.compositesa.2011.07.015
    [49] CHATEAU C, GELEBART L, BORNERT M, et al. In situ X-ray microtomography characterization of damage in SiCf/SiC minicomposites[J]. Composites Science and Technology, 2011, 71(6): 916-924. doi: 10.1016/j.compscitech.2011.02.008
    [50] GOULMY J P, CATY O, REBILLAT F. Characterization of the oxidation of C/C/SiC composites by X-ray micro-tomography[J]. Journal of the European Ceramic Society, 2020, 40(15): 5120-5131.
    [51] AI S, SONG W, CHEN Y. Stress field and damage evolution in C/SiC woven composites: Image-based finite element analysis and in situ X-ray computed tomography tests[J]. Journal of the European Ceramic Society, 2021, 41(4): 2323-2334. doi: 10.1016/j.jeurceramsoc.2020.12.026
    [52] MAZARS V, CATY O, COUEGNAT G, et al. Damage investigation and modeling of 3D woven ceramic matrix composites from X-ray tomography in-situ tensile tests[J]. Acta Materialia, 2017, 140: 130-139. doi: 10.1016/j.actamat.2017.08.034
    [53] BALE H A, HABOUB A, MACDOWELL A A, et al. Real-time quantitative imaging of failure events in materials under load at temperatures above 1600℃[J]. Nature Materials, 2013, 12(1): 40-46. doi: 10.1038/nmat3497
    [54] CHENG T, ZHANG R, PEI Y, et al. Tensile properties of two-dimensional carbon fiber reinforced silicon carbide composites at temperatures up to 1800℃ in air[J]. Extreme Mechanics Letters, 2019, 31: 100546. doi: 10.1016/j.eml.2019.100546
    [55] LEISER D B, CHURCHWARD R, KATVALA V, et al. Advanced porous coating for low-density ceramic insulation materials[J]. Journal of the American Ceramic Society, 1989, 72(6): 1003-1010. doi: 10.1111/j.1151-2916.1989.tb06259.x
    [56] GROSCH D, BERTRAND F. Thermal protection system (TPS) impact experiments[C]//47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Newport, Rhode Island: AIAA, 2006: 1780.
    [57] XUE L, LI K, JIA Y, et al. Effects of hypervelocity impact on ablation behavior of SiC coated C/C composites[J]. Materials & Design, 2016, 108: 151-156.
    [58] YAO L, LYU P, BAI G, et al. Influence of low velocity impact on oxidation performance of SiC coated C/SiC composites[J]. Ceramics International, 2019, 45(16): 20470-20477. doi: 10.1016/j.ceramint.2019.07.025
    [59] SULLIVAN R M. A model for the oxidation of carbon silicon carbide composite structures[J]. Carbon, 2005, 43(2): 275-285. doi: 10.1016/j.carbon.2004.09.010
    [60] HALBIG M C. Stressed oxidation and modeling of C/SiC in oxidizing environments[C]//25th Annual Conference on Composites, Advanced Ceramics, Materials, and Structures: A: Ceramic Engineering and Science Proceedings. Hoboken: John Wiley & Sons, Inc., 2001: 625-632.
    [61] LAMOUROUX F, NASLAIN R, JOUIN J M. Kinetics and mechanisms of oxidation of 2D woven C/SiC composites: II, theoretical approach[J]. Journal of the American Ceramic Society, 1994, 77(8): 2058-2068. doi: 10.1111/j.1151-2916.1994.tb07097.x
    [62] XU Y, ZHANG P, LU H, et al. Numerical modeling of oxidized C/SiC microcomposite in air oxidizing environments below 800℃: Microstructure and mechanical behavior[J]. Journal of the European Ceramic Society, 2015, 35(13): 3401-3409. doi: 10.1016/j.jeurceramsoc.2015.05.039
    [63] SUN Z, NIU X, WANG Z, et al. Verification and prediction of residual strength of C/SiC composites under non-stress oxidation[J]. Journal of Materials Science, 2014, 49(23): 8192-8203. doi: 10.1007/s10853-014-8528-1
    [64] CASAS L, MARTINEZ-ESNAOLA J M. Modelling the effect of oxidation on the creep behaviour of fibre-reinforced ceramic matrix composites[J]. Acta Materialia, 2003, 51(13): 3745-3757. doi: 10.1016/S1359-6454(03)00189-7
    [65] LI L. Modeling matrix cracking of fiber-reinforced ceramic-matrix composites under oxidation environment at elevated temperature[J]. Theoretical and Applied Fracture Mechanics, 2017, 87: 110-119. doi: 10.1016/j.tafmec.2016.11.003
    [66] DENG Y, LI W, MA J, et al. Thermal-mechanical-oxidation coupled first matrix cracking stress model for fiber reinforced ceramic-matrix composites[J]. Journal of the European Ceramic Society, 2021, 41(7): 4016-4024. doi: 10.1016/j.jeurceramsoc.2021.02.033
    [67] LEE S, SUNDARATAGHAVAN V. Multi-scale modeling of moving interface problems with flux and field jumps: Application to oxidative degradation of ceramic matrix composites[J]. International Journal for Numerical Methods in Engineering, 2011, 85(6): 784-804. doi: 10.1002/nme.2996
    [68] MEI H, CHENG L, ZHANG L, et al. Modeling the effects of thermal and mechanical load cycling on a C/SiC composite in oxygen/argon mixtures[J]. Carbon, 2007, 45(11): 2195-2204. doi: 10.1016/j.carbon.2007.06.051
    [69] LUAN X, CHENG L, XIE C. Stressed oxidation life predication of 3D C/SiC composites in a combustion wind tunnel[J]. Composites Science and Technology, 2013, 88: 178-183. doi: 10.1016/j.compscitech.2013.09.001
    [70] CHEN X, SUN Z, LI H, et al. Modeling the effect of oxidation on the residual tensile strength of SiC/C/SiC mini composites in stressed oxidizing environments[J]. Journal of Materials Science, 2020, 55(8): 3388-3407. doi: 10.1007/s10853-019-04255-4
    [71] SANTHOSH U, AHMAD J, OIARD G, et al. A synergistic model of stress and oxidation induced damage and failure in silicon carbide-based ceramic matrix composites[J]. Journal of the American Ceramic Society, 2021, 104: 4163-4182.
  • 加载中
图(12)
计量
  • 文章访问数:  385
  • HTML全文浏览量:  320
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-22
  • 修回日期:  2024-03-20
  • 录用日期:  2024-04-03
  • 网络出版日期:  2024-04-19
  • 刊出日期:  2024-09-15

目录

    /

    返回文章
    返回