留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种具有抑菌性的pH响应新型水凝胶的制备及性能

岳灿灿 赵鸿鹏 刘文森 许娜 张淑华 郗艳丽

岳灿灿, 赵鸿鹏, 刘文森, 等. 一种具有抑菌性的pH响应新型水凝胶的制备及性能[J]. 复合材料学报, 2024, 41(12): 6555-6565.
引用本文: 岳灿灿, 赵鸿鹏, 刘文森, 等. 一种具有抑菌性的pH响应新型水凝胶的制备及性能[J]. 复合材料学报, 2024, 41(12): 6555-6565.
YUE CanCan, ZHAO HongPeng, LIU WenSen, et al. Preparation and characterization of a new pH-responsive hydrogel with bacteriostatic properties[J]. Acta Materiae Compositae Sinica, 2024, 41(12): 6555-6565.
Citation: YUE CanCan, ZHAO HongPeng, LIU WenSen, et al. Preparation and characterization of a new pH-responsive hydrogel with bacteriostatic properties[J]. Acta Materiae Compositae Sinica, 2024, 41(12): 6555-6565.

一种具有抑菌性的pH响应新型水凝胶的制备及性能

基金项目: 吉林省科技厅科技发展计划项目 (20220204127YY);吉林省科技厅重点研发项目 (NOS.20220204035YY)
详细信息
    通讯作者:

    张淑华,博士,教授,硕士生导师,研究方向为生物材料与生物检测 E-mail: zhangsh@cust.edu.cn

    郗艳丽,博士,副教授,硕士生导师,研究方向为毒理学 E-mail: jilin2534126@163.com

  • 中图分类号: TB332

Preparation and characterization of a new pH-responsive hydrogel with bacteriostatic properties

Funds: Jilin Province Science and Technology Development Plan Project (20220204127YY); Jilin Province Science and Technology key research and Development Plan Project (NOS.20220204035YY)
  • 摘要: 为设计一种能够响应pH的、新型多功能创面敷料,使用季铵化壳聚糖(QCS)、接枝了磺胺嘧啶(SD)的氧化葡聚糖(Dex-CHO/SD)和妥布霉素(TOB),通过席夫碱键和氢键反应形成DSTQ水凝胶。对水凝胶的形貌、降解性、抑菌性、细胞相容性、血液相容性等性能进行研究。结果表明:具有三维孔状结构的DSTQ水凝胶可以响应感染造成的pH降低,进而发生降解,释放药物;DSTQ水凝胶对铜绿假单胞菌的抑制率显著高于金黄色葡萄球菌;DSTQ水凝胶毒性低,生物安全性高,与L929细胞共培养3天后,细胞活力高于95%;DSTQ水凝胶具有良好的血液相容性,溶血率远小于5%;细胞在DSTQ水凝胶表面能够快速迁移,有利于伤口愈合;当DSTQ水凝胶负载生长因子后具有良好的抗炎效果。研究结果表明,DSTQ水凝胶可以作为新型创面敷料,有望应用于临床促伤口愈合。

     

  • 图  1  DSTQ水凝胶合成及作用机制图

    Figure  1.  Schematic diagram of the synthesis and action of DSTQ hydrogel

    图  2  (a) Dex, Dex-CHO, Dex-CHO/SD的FT-IR图谱;(b) CS, QCS的FT-IR图谱; (c) DSTQ-1,DSTQ-2,DSTQ-3的FT-IR图谱Fig. 2(a) FT-IR spectra of Dex, Dex-CHO, Dex-CHO/SD; (b) FT-IR spectra of CS, QCS;(c) FT-IR spectra of DSTQ-1, DSTQ-2, DSTQ-3.

    图  3  (a) DSTQ-1, (b) DSTQ-2和(c) DSTQ-3的SEM图像

    Figure  3.  SEM images of (a) DSTQ-1, (b) DSTQ-2, and (c) DSTQ-3

    图  4  (a) DSTQ水凝胶黏附在皮肤、塑料及手套表面图片 (b) DSTQ水凝胶的黏附强度

    Figure  4.  (a) DSTQ hydrogels adhere to skin, plastics, and glove surfaces. (b) Adhesion strength of DSTQ hydrogels

    图  5  DSTQ水凝胶在不同pH下的降解率(a) DSTQ-1(b) DSTQ-2(c) DSTQ-3

    Figure  5.  Degradation rate of DSTQ hydrogels (a) DSTQ-1 (b) DSTQ-2 (c) DSTQ-3

    图  6  (a)DSTQ水凝胶对金黄色葡萄球菌和铜绿假单胞菌的抑菌图像及(b)金黄色葡萄球菌和(c)铜绿假单胞菌的定量统计结果。***代表有显著性差异(P<0.001,n=3)

    Figure  6.  (a) Antibacterial images of Staphylococcus aureus and Pseudomonas aeruginosa and (b) Staphylococcus aureus and (c) Pseudomonas aeruginosa in DSTQ hydrogels. *** The asterisk indicates a significant difference (P<0.001,n=3)

    图  7  DSTQ水凝胶对L929细胞活力的影响

    Figure  7.  Quantitative statistics of L929 cell viability by CCK-8.

    图  8  (a)DSTQ水凝胶的溶血宏观图像及(b)定量结果

    Figure  8.  (a) Representative display pictures and (b) quantitative statistical data for hemolysis ratios of DSTQ hydrogels.

    图  9  DSTQ水凝胶的细胞黏附率

    Figure  9.  Cell adhesion capacity of DSTQ hydrogels.

    图  10  (a)HUVEC细胞迁移宏观图像及(b)定量统计结果。***代表有显著性差异(P<0.001,n=3)

    Figure  10.  (a) Representative display pictures and (b) quantitative statistics of cell migration. *** The asterisk indicates a significant difference (P<0.001,n=3)

    图  11  各组细胞炎症因子(a) IL-1β,(b) IL-6和(c) TNF-α的表达水平。***代表有显著性差异(P<0.001,n=3)

    Figure  11.  Expression levels of inflammatory cytokines (a) IL-1β, (b) IL-6, and (c) TNF-α in each group. *** The asterisk indicates a significant difference(P<0.001,n=3)

  • [1] NGUYEN A V, SOULIKA A M. The Dynamics of the Skin’s Immune System[J]. International Journal of Molecular Sciences, 2019, 20(8): 1811. doi: 10.3390/ijms20081811
    [2] RODRIGUES M, KOSARIC N, BONHAM C A, et al. Wound Healing: A Cellular Perspective[J]. Physiological Reviews, 2019, 99(1): 665-706. doi: 10.1152/physrev.00067.2017
    [3] OLSSON M, JäRBRINK K, DIVAKAR U, et al. The humanistic and economic burden of chronic wounds: A systematic review[J]. Wound Repair and Regeneration, 2018, 27(1): 114-125.
    [4] GARG S S, DUBEY R, SHARMA S, et al. Biological macromolecules-based nanoformulation in improving wound healing and bacterial biofilm-associated infection: A review[J]. International Journal of Biological Macromolecules, 2023, 247: 125636. doi: 10.1016/j.ijbiomac.2023.125636
    [5] YANG H, WANG W-S, TAN Y, et al. Investigation and analysis of the characteristics and drug sensitivity of bacteria in skin ulcer infections[J]. Chinese Journal of Traumatology, 2017, 20(4): 194-7. doi: 10.1016/j.cjtee.2016.09.005
    [6] 李兢思, 李俊欣, 王思炜, 等. 浅析生物医用材料中伤口敷料的研究现状[J]. 生物医学工程与临床: 1-6.

    LI J S, LI J X, WANG S W, et al. Brief analysis on the research status of wound dressing in biomedical materials[J]. Biomedical Engineering and Clinical Medicine, 1-6. (in Chinese)
    [7] HE Y, LI Y, SUN Y, et al. A double-network polysaccharide-based composite hydrogel for skin wound healing[J]. Carbohydrate Polymers, 2021, 261(1): 117870.
    [8] GRAçA M F P, MIGUEL S P, CABRAL C S D, et al. Hyaluronic acid—Based wound dressings: A review[J]. Carbohydrate Polymers, 2020, 241: 116314. doi: 10.1016/j.carbpol.2020.116314
    [9] TAN M, ZENG J, ZHANG F-Z, et al. Double-Layer Hydrogel with Glucose-Activated Two-Stage ROS Regulating Properties for Programmed Diabetic Wound Healing[J]. ACS Applied Materials & Interfaces, 2023, 15(44): 50809-50820.
    [10] KANG D-S, YANG S-Y, LEE C-Y. Fabrication of innocuous hydrogel scaffolds based on modified dextran for biotissues[J]. Carbohydrate Research, 2022, 522: 108699. doi: 10.1016/j.carres.2022.108699
    [11] ZHAO C, ZHOU L, CHIAO M, et al. Antibacterial hydrogel coating: Strategies in surface chemistry[J]. Advances in Colloid and Interface Science, 2020, 285: 102280. doi: 10.1016/j.cis.2020.102280
    [12] CHENG H, SHI Z, YUE K, et al. Sprayable hydrogel dressing accelerates wound healing with combined reactive oxygen species-scavenging and antibacterial abilities[J]. Acta Biomaterialia, 2021, 124: 219-232. doi: 10.1016/j.actbio.2021.02.002
    [13] YANG Z, HUANG R, ZHENG B, et al. Highly Stretchable, Adhesive, Biocompatible, and Antibacterial Hydrogel Dressings for Wound Healing[J]. Advanced Science, 2021, 8(8): 2003627. doi: 10.1002/advs.202003627
    [14] DING Q, SUN T, SU W, et al. Bioinspired Multifunctional Black Phosphorus Hydrogel with Antibacterial and Antioxidant Properties: A Stepwise Countermeasure for Diabetic Skin Wound Healing[J]. Advanced Healthcare Materials, 2022, 11(12): 2102791. doi: 10.1002/adhm.202102791
    [15] WANG Z, ZHANG Y, YIN Y, et al. High-strength and Injectable Supramolecular Hydrogel Self-Assembled by Monomeric Nucleoside for Tooth-Extraction Wound Healing[J]. Advanced Materials, 2022, 34(13): 2108300. doi: 10.1002/adma.202108300
    [16] QIN X H, WANG X, ROTTMAR M, et al. Near-infrared light-sensitive Polyvinyl Alcohol Hydrogel Photoresist for Spatiotemporal Control of Cell-Instructive 3D Microenvironments[J]. Advanced Materials, 2018, 30(10): 1705564. doi: 10.1002/adma.201705564
    [17] HU J, LIU X, GAO Q, et al. Thermosensitive PNIPAM-Based Hydrogel Crosslinked by Composite Nanoparticles as Rapid Wound-Healing Dressings[J]. Biomacromolecules, 2023, 24(3): 1345-1354. doi: 10.1021/acs.biomac.2c01380
    [18] HENDI A, UMAIR HASSAN M, ELSHERIF M, et al. Healthcare Applications of pH-Sensitive Hydrogel-Based Devices: A Review[J]. International Journal of Nanomedicine, 2020, 15: 3887-3901. doi: 10.2147/IJN.S245743
    [19] GUO S, REN Y, CHANG R, et al. Injectable Self-Healing Adhesive Chitosan Hydrogel with Antioxidative, Antibacterial, and Hemostatic Activities for Rapid Hemostasis and Skin Wound Healing[J]. ACS Applied Materials & Interfaces, 2022, 14(30): 34455-34469.
    [20] LIANG Y, LI Z, HUANG Y, et al. Dual-Dynamic-Bond Cross-Linked Antibacterial Adhesive Hydrogel Sealants with On-Demand Removability for Post-Wound-Closure and Infected Wound Healing[J]. ACS Nano, 2021, 15(4): 7078-7093. doi: 10.1021/acsnano.1c00204
    [21] QU J, ZHAO X, LIANG Y, et al. Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing[J]. Biomaterials, 2018, 183: 185-199. doi: 10.1016/j.biomaterials.2018.08.044
    [22] XUE C, XU X, ZHANG L, et al. Self-healing/pH-responsive/inherently antibacterial polysaccharide-based hydrogel for a photothermal strengthened wound dressing[J]. Colloids and Surfaces B: Biointerfaces, 2022, 218: 112738. doi: 10.1016/j.colsurfb.2022.112738
    [23] HILL M, TWIGG M, SHERIDAN E A, et al. Alginate/Chitosan Particle-Based Drug Delivery Systems for Pulmonary Applications[J]. Pharmaceutics, 2019, 11(8): 379. doi: 10.3390/pharmaceutics11080379
    [24] CUI Z-K, KIM S, BALJON J J, et al. Microporous methacrylated glycol chitosan-montmorillonite nanocomposite hydrogel for bone tissue engineering[J]. Nature Communications, 2019, 10(1): 3523. doi: 10.1038/s41467-019-11511-3
    [25] 中国国家标准化管理委员会(标准制定单位). 医疗器械生物学评价: GB/T 16886.5—2022[S]. 北京: 中国标准出版社, 2022.

    Standardization Administration of the People’s Republic of China. Biological evaluation of medical devices: GB/T 16886.4—2022[S]. Beijing: China Standards Press, 2022(in Chinese).
    [26] 中国国家标准化管理委员会(标准制定单位). 医疗器械生物学评价: GB/T 16886.4—2017[S]. 北京: 中国标准出版社, 2017.

    Standardization Administration of the People’s Republic of China. Biological evaluation of medical devices: GB/T 16886.5—2017[S]. Beijing: China Standards Press, 2017(in Chinese).
    [27] TORRES P, CASTRO M, REYES M, et al. Histatins, wound healing, and cell migration[J]. Oral Diseases, 2018, 24(7): 1150-1160. doi: 10.1111/odi.12816
  • 加载中
图(11)
计量
  • 文章访问数:  194
  • HTML全文浏览量:  96
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-16
  • 修回日期:  2024-04-03
  • 录用日期:  2024-04-14
  • 网络出版日期:  2024-05-20
  • 刊出日期:  2024-12-15

目录

    /

    返回文章
    返回