留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米增强蚀刻粉煤灰漂珠混凝土的力学性能与微观结构

张雅婷 朱兴一

张雅婷, 朱兴一. 纳米增强蚀刻粉煤灰漂珠混凝土的力学性能与微观结构[J]. 复合材料学报, 2024, 42(0): 1-11.
引用本文: 张雅婷, 朱兴一. 纳米增强蚀刻粉煤灰漂珠混凝土的力学性能与微观结构[J]. 复合材料学报, 2024, 42(0): 1-11.
ZHANG Yating, ZHU Xingyi. Mechanical properties and microstructure of nano-reinforced concrete containing etched fly ash cenosphere[J]. Acta Materiae Compositae Sinica.
Citation: ZHANG Yating, ZHU Xingyi. Mechanical properties and microstructure of nano-reinforced concrete containing etched fly ash cenosphere[J]. Acta Materiae Compositae Sinica.

纳米增强蚀刻粉煤灰漂珠混凝土的力学性能与微观结构

基金项目: 国家自然科学基金 (52308452; 52278455)
详细信息
    通讯作者:

    朱兴一,博士,教授,博士生导师,研究方向为智能化功能性铺面 E-mail: zhuxingyi66@tongji.edu.cn

  • 中图分类号: TU528.37

Mechanical properties and microstructure of nano-reinforced concrete containing etched fly ash cenosphere

Funds: National Natural Science Foundation of China (52308452; 52278455)
  • 摘要: 粉煤灰漂珠是煤炭燃烧废弃物,用于替代水泥制备混凝土可有效降低环境负荷。本文提出针对粉煤灰漂珠的表面蚀刻工艺,并协同纳米SiO2以增强混凝土性能。通过扫描电子显微镜和X射线衍射仪对比了漂珠蚀刻前后的微观形貌和物相组成,利用热重试验表征蚀刻漂珠对浆体水化特征的影响,确定蚀刻方法的有效性。基于抗压、劈裂抗拉试验和扫描电子显微镜-能谱仪研究了蚀刻漂珠和纳米SiO2对混凝土力学和微观性能的影响规律与改性机制。结果表明,本文采用的蚀刻工艺加速了粉煤灰漂珠中Si和Al元素的释放,蚀刻的细微孔为水分迁移提供了有效路径,使漂珠具有内养护效应的同时提高了其反应活性,因此显著改善了浆体水化,提高了混凝土力学性能,但掺量增至40%时,粉煤灰漂珠中空结构的负面影响更为显著,混凝土强度下降。此外,蚀刻漂珠与纳米SiO2的协同增强效果显著,提高了界面Si/Ca和Al/Ca比率,改善了水化产物组成,优化了界面过渡区,有利于混凝土的致密稳定和强度发展。

     

  • 图  1  粉煤灰漂珠(FAC)的微观形貌

    Figure  1.  SEM image of fly ash cenosphere (FAC)

    图  2  FAC的XRD测试图谱

    Figure  2.  XRD pattern of FAC

    图  3  水泥和FAC的粒径分布

    Figure  3.  Particle size distributions of cement and FAC

    图  4  粉煤灰漂珠的蚀刻流程

    Figure  4.  Surface etching procedure for FAC

    图  5  SEFAC的微观形貌

    Figure  5.  SEM image of SEFAC

    图  6  SEFAC的XRD测试图谱

    Figure  6.  XRD pattern of SEFAC

    图  7  TG试验结果

    Figure  7.  Test results for TG analysis

    图  8  不同SEFAC和NS掺量混凝土的抗压强度

    Figure  8.  Compressive strength of concrete containing different SEFAC and NS contents

    图  9  不同SEFAC和NS掺量混凝土的劈裂抗拉强度

    Figure  9.  Split-tensile strength of concrete containing different SEFAC and NS contents

    图  10  SEFAC和NS的协同增强机制

    Figure  10.  Synergistic reinforcing mechanism of SEFAC and NS

    图  11  不同SEFAC和NS掺量混凝土的微观形貌

    Figure  11.  Microstructure of concrete containing different SEFAC and NS contents

    图  12  SEM-EDS的测试点选取方案

    Figure  12.  Testing points scheme for SEM-EDS characterization

    图  13  20wt%FAC (a)、20wt%SEFAC (b)和 1wt%NS/20wt%SEFAC (c)的元素分布结果

    Figure  13.  Elemental distribution results of 20wt%FAC (a), 20wt%SEFAC (b) and 1wt%NS/20wt%SEFAC (c)

    表  1  纳米SiO2的物理性能

    Table  1.   Physical properties of nano-silica

    Purity/% Particle size/nm Specific surface area/(m2·g) Density/(g·cm−3) Bulk density/(g·cm−3)
    >99.99 20 >240 2.3 0.06
    下载: 导出CSV

    表  2  蚀刻粉煤灰漂珠(SEFAC)的吸水率和释水率

    Table  2.   Water absorption and water desorption of surface etched fly ash cenosphere (SEFAC)

    Time/h Water absorption/% Water desorption/%
    RH=85.1% RH=75.5% RH=43.2%
    1 63.2 12.4 20.8 31.8
    6 66.5 40.5 50.6 63.9
    12 67.4 55.3 73.8 82.5
    24 68.7 66.4 83.5 92.4
    48 70.2 76.2 92.1 98.9
    Note: RH—Relative humidity
    下载: 导出CSV

    表  3  混凝土配合比

    Table  3.   Mix proportions of concrete mixtures

    Mixture ID Water/kg Cement/kg Gravel/kg Sand/kg FAC/kg SEFAC/kg NS/kg
    20wt%FAC 147 310 1119 746 76 - -
    20wt%SEFAC 147 310 1119 746 - 76 -
    40wt%SEFAC 147 234 1119 746 - 152 -
    1wt%NS/20wt%SEFAC 147 306.14 1119 746 - 76 3.86
    2wt%NS/20wt%SEFAC 147 302.28 1119 746 - 76 7.72
    1wt%NS/40wt%SEFAC 147 230.14 1119 746 - 152 3.86
    2wt%NS/40wt%SEFAC 147 226.28 1119 746 - 152 7.72
    Notes: NS—nano-silica; Example: 1wt%NS/20wt%SEFAC is that the concrete mixture was added with 20wt% SEFAC and 1wt% nano-silica.
    下载: 导出CSV

    表  4  Ca(OH)2和结合水含量

    Table  4.   Ca(OH)2 and non-evaporable water contents

    Mixture ID Ca(OH)2 content/% Non-evaporable water content/%
    3 d 28 d 3 d 28 d
    20wt%FAC 7.1 15.2 3.7 5.8
    20wt%SEFAC 10.8 19.8 7.3 8.6
    下载: 导出CSV
  • [1] FERNANDO S, GUNASEKARA C, LAW D W, et al. Long-term mechanical properties of blended fly ash-rice husk ash alkali-activated concrete[J]. ACI Materials Journal, 2022, 119(5): 174-186.
    [2] GU C P, YAO J K, HUANG S L, et al. Study on early-age tensile properties of high volume fly ash concrete[J]. Materials and Structures, 2022, 55(5): 135. doi: 10.1617/s11527-022-01977-x
    [3] MEENA A, SINGH N, SINGH S P. High-volume fly ash self consolidating concrete with coal bottom ash and recycled concrete aggregates: Fresh, mechanical and microstructural properties[J]. Journal of Building Engineering, 2023, 63: 105447. doi: 10.1016/j.jobe.2022.105447
    [4] HASIM A M, SHAHID K A, ARIFFIN N F, et al. Coal bottom ash concrete: Mechanical properties and cracking mechanism of concrete subjected to cyclic load test[J]. Construction and Building Materials, 2022, 346: 128464. doi: 10.1016/j.conbuildmat.2022.128464
    [5] ZHANG Y T, FAN Z W, SUN X W, et al. Utilization of surface-modified fly ash cenosphere waste as an internal curing material to intensify concrete performance[J]. Journal of Cleaner Production, 2022, 358: 132042. doi: 10.1016/j.jclepro.2022.132042
    [6] RHEINHEIMER V, WU Y P, WU T, et al. Multi-scale study of high-strength low-thermal-conductivity cement composites containing cenospheres[J] Cement and Concrete Composites, 2017, 80: 91-103.
    [7] BROOKS A L, SHEN Z L, ZHOU H Y. Development of a high-temperature inorganic synthetic foam with recycled fly-ash cenospheres for thermal insulation brick manufacturing[J]. Journal of Cleaner Production, 2020, 246: 118748. doi: 10.1016/j.jclepro.2019.118748
    [8] HUANG X Y, RANADE R, ZHANG Q, et al. Mechanical and thermal properties of green lightweight engineered cementitious composites[J]. Construction and Building Materials, 2013, 48: 954-960. doi: 10.1016/j.conbuildmat.2013.07.104
    [9] ZHOU Y W, XI B, SUI L L, et al. Development of high strain-hardening lightweight engineered cementitious composites: Design and performance[J]. Cement and Concrete Composites, 2019, 104: 103370. doi: 10.1016/j.cemconcomp.2019.103370
    [10] HANIF A, LU Z Y, LI Z J. Utilization of fly ash cenosphere as lightweight filler in cement-based composites - a review[J]. Construction and Building Materials, 2017, 144: 373-384. doi: 10.1016/j.conbuildmat.2017.03.188
    [11] WANG J Y, ZHANG M H, LI W, et al. Stability of cenospheres in lightweight cement composites in terms of alkali-silica reaction[J]. Cement and Concrete Research, 2012, 42(5): 721-727. doi: 10.1016/j.cemconres.2012.02.010
    [12] LIU F J, WANG J L, QIAN X, et al. Internal curing of high performance concrete using cenospheres[J]. Cement and Concrete Research, 2017, 95: 39-46. doi: 10.1016/j.cemconres.2017.02.023
    [13] ZHANG Y T, SUN X W, ZHU X Y, et al. Multi-criteria optimization of concrete mixes incorporating cenosphere waste and multi-minerals[J]. Journal of Cleaner Production, 2022, 367: 133102. doi: 10.1016/j.jclepro.2022.133102
    [14] CHEN P Y, TAN W B, QIAN X, et al. Improving the pore structure of perforated cenospheres for better internal curing performance[J]. Materials and Design, 2022, 222: 111047. doi: 10.1016/j.matdes.2022.111047
    [15] 梁圣, 崔宏志, 徐丹玥. 纳米SiO2改性轻骨料混凝土性能[J]. 复合材料学报, 2019, 36(2): 498-505.

    LIANG Sheng, CUI Hongzhi, XU Danyue. Properties of nano-SiO2 modified lightweight aggregate concrete[J]. Acta Materiae Compositae Sinica, 2019, 36(2): 498-505.
    [16] WEI Y, KONG W K, WANG Y Q. Strengthening mechanism of fracture properties by nano materials for cementitious materials subject to early-age frost attack[J]. Cement and Concrete Composites, 2021, 119: 104025. doi: 10.1016/j.cemconcomp.2021.104025
    [17] WANG X Y, DONG S F, ASHOUR A, et al. Effect and mechanisms of nanomaterials on interface between aggregates and cement mortars[J]. Construction and Building Materials, 2020, 240: 117942. doi: 10.1016/j.conbuildmat.2019.117942
    [18] YAZDI M A, GRUYAERT E, TITTELBOOM K V, et al. Treatment with nano-silica and bacteria to restore the reduced bond strength between concrete and repair mortar caused by aggressive removal techniques[J]. Cement and Concrete Composites, 2021, 120: 104064. doi: 10.1016/j.cemconcomp.2021.104064
    [19] LI L, XUAN D X, CHU S H, et al. Efficiency and mechanism of nano-silica pre-spraying treatment in performance enhancement of recycled aggregate concrete[J]. Construction and Building Materials, 2021, 301: 124093. doi: 10.1016/j.conbuildmat.2021.124093
    [20] 姚贤华, 郭晓宁, 韩瑞聪, 等. 纳米SiO2和聚丙烯纤维对全煤矸石骨料混凝土力学性能与微观结构的影响[J]. 复合材料学报, 2024, 41(3): 1402-1419.

    YAO Xianhua, GUO Xiaoning, HAN Ruicong, et al. Effect of nano-SiO2 and popypropylene fibers on the mechanical properties and microscopic properties of all coal gangue aggregate concrete[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1402-1419.
    [21] ZHANG P Y, XIE N, CHENG X, et al. Low dosage nano-silica modification on lightweight aggregate concrete[J]. Nanomaterials and Nanotechnology, 2018, 8: 1847980418761283.
    [22] SONG X B, LI C Z, CHEN D D, et al. Interfacial mechanical properties of recycled aggregate concrete reinforced by nano-materials[J]. Construction and Building Materials, 2021, 270: 121446. doi: 10.1016/j.conbuildmat.2020.121446
    [23] SAFIUDDIN M, GONZALEZ M, CAO J W, et al. State-of-the-art report on use of nano-materials in concrete[J]. International Journal of Pavement Engineering, 2014, 15(10): 940-949. doi: 10.1080/10298436.2014.893327
    [24] ZHAO Z F, QI T Q, ZHOU W, et al. A review on the properties, reinforcing effects, and commercialization of nanomaterials for cement-based materials[J]. Nanotechnology Reviews, 2020, 9(1): 303-322. doi: 10.1515/ntrev-2020-0023
    [25] ZHANG Y T, ZHU X Y. Effect of nano-silica on the mechanical performance and microstructure of silicon-aluminum-based internal-cured concrete[J]. Journal of Building Engineering, 2023, 65: 105735. doi: 10.1016/j.jobe.2022.105735
    [26] ZHANG Y T, SUN X W. Synergistic effects of nano-silica and fly ash on the mechanical properties and durability of internal-cured concrete incorporating artificial shale ceramsite[J]. Journal of Building Engineering, 2023, 66: 105905. doi: 10.1016/j.jobe.2023.105905
    [27] 中华人民共和国交通运输部. 公路工程水泥及水泥混凝土试验规程: JTG 3420-2020 [S]. 北京: 人民交通出版社, 2020.

    Ministry of Transport of the People’s Republic of China. Testing Methods of Cement and Concrete for Highway Engineering: JTG 3420-2020 [S]. Beijing: China Communications Press, 2020 (in Chinese).
    [28] LI X S, SHUI Z H, YU R, et al. Magnesium induced hydration kinetics of ultra-high performance concrete (UHPC) served in marine environment: Experiments and modelling[J]. Construction and Building Materials, 2019, 224: 1056-1068. doi: 10.1016/j.conbuildmat.2019.07.273
    [29] MISHRA G, WARDA A, SHAH S P. Carbon sequestration in graphene oxide modified cementitious system[J]. Journal of Building Engineering, 2022, 62: 105356. doi: 10.1016/j.jobe.2022.105356
    [30] 王冲, 张聪, 刘俊超, 等. CaCO3对硅酸盐水泥水化特性的影响[J]. 硅酸盐通报, 2016, 35(3): 824-830.

    WANG Chong, ZHANG Cong, LIU Junchao, et al. Influence of Nano-CaCO3 on hydration characteristic of portland cement[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(3): 824-830(in Chinese).
    [31] MEHDIZADEH H, JIA X X, MO KH, et al. Effect of water-to cement ratio induced hydration on the accelerated carbonation of cement pastes[J]. Environmental Pollution, 2021, 280: 116914. doi: 10.1016/j.envpol.2021.116914
    [32] BAI S, GUAN X C, LI G Y. Early-age hydration heat evolution and kinetics of Portland cement containing nano-silica at different temperatures[J]. Construction and Building Materials, 2022, 334: 127363. doi: 10.1016/j.conbuildmat.2022.127363
    [33] YANG L, SHI C J, LIU J H, et al. Factors affecting the effectiveness of internal curing: A review[J]. Construction and Building Materials, 2021, 267: 121017. doi: 10.1016/j.conbuildmat.2020.121017
    [34] ZHANG Y T, SUN X W. A comprehensive assessment of nanomaterials reinforced lightweight aggregate concrete containing high-volume artificial shale ceramsite[J]. Journal of Building Engineering, 2024, 84: 108696. doi: 10.1016/j.jobe.2024.108696
    [35] 肖杰, 龙晨杰, 何建刚, 等. 大掺量激活钢渣微粉-水泥稳定碎石性能及围观特性[J]. 中国公路学报, 2021, 34(10): 204-215. doi: 10.3969/j.issn.1001-7372.2021.10.017

    XIAO Jie, LONG Chenjie, HE Jiangang, et al. Performance and micro characteristics of cement stabilized macadam with a large amount of activated steel slag powder[J]. China Journal of Highway and Transport, 2021, 34(10): 204-215(in Chinese). doi: 10.3969/j.issn.1001-7372.2021.10.017
    [36] NIE S, HU S G, WANG F Z, et al. Pozzolanic reaction of lightweight fine aggregate and its influence on the hydration of cement[J]. Construction and Building Materials, 2017, 153: 165-173. doi: 10.1016/j.conbuildmat.2017.07.111
  • 加载中
计量
  • 文章访问数:  51
  • HTML全文浏览量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-11
  • 修回日期:  2024-06-08
  • 录用日期:  2024-06-30
  • 网络出版日期:  2024-07-18

目录

    /

    返回文章
    返回