留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

静载作用下复合岩体损伤演化与渐进破坏机制

吉东亮 朱永全 李晓斌 贾康杰 马怡琛 盖少鹏 岳祖润

吉东亮, 朱永全, 李晓斌, 等. 静载作用下复合岩体损伤演化与渐进破坏机制[J]. 复合材料学报, 2024, 43(0): 1-11.
引用本文: 吉东亮, 朱永全, 李晓斌, 等. 静载作用下复合岩体损伤演化与渐进破坏机制[J]. 复合材料学报, 2024, 43(0): 1-11.
JI Dongliang, ZHU Yongquan, LI Xiaobin, et al. Damage evolution and progressive failure mechanism of composite rock mass under static loading[J]. Acta Materiae Compositae Sinica.
Citation: JI Dongliang, ZHU Yongquan, LI Xiaobin, et al. Damage evolution and progressive failure mechanism of composite rock mass under static loading[J]. Acta Materiae Compositae Sinica.

静载作用下复合岩体损伤演化与渐进破坏机制

基金项目: 河北省教育厅青年基金(50199990574);河北省省级科技计划资助(23567602H);国家自然科学基金(52404109)
详细信息
    通讯作者:

    岳祖润,博士,博士生导师,研究方向为岩土基础力学 E-mail: yzr1898@qq.com

  • 中图分类号: TU528;TB332

Damage evolution and progressive failure mechanism of composite rock mass under static loading

Funds: Science and Technology Project of Hebei Education Department (50199990574); S&T Program of Hebei (23567602H); National Natural Science Foundation of China (52404109)
  • 摘要: 为研究静载作用下复合岩体的力学特性,利用伺服压力试验机进行不同节理角度复合岩体的静力加载试验,对比分析了静力加载后复合岩体的抗压强度、裂纹扩展规律。考虑到岩石材料的非均匀性建立了弹性损伤本构模型,再现不同节理角度复合岩体的渐进损伤演化过程,并给出加载过程中复合岩体的能量耗散特征。结果表明:随着节理倾角增加,复合岩体的抗压强度逐渐减小,在45°时达到最小值为18.0 MPa,随后开始明显增加,在90°时达到最大值为43.0 MPa,复合岩体强度随节理倾角增加整体表现出明显倒U型变化;基于Weibull分布构建了弹性损伤本构模型,通过单轴压缩和巴西劈裂试验结果与模拟计算结果对照验证了开发本构模型的正确性;对于不同节理角度复合岩体,损伤区在煤体侧开始萌生并沿着节理扩大直至破坏,模拟结果与试验结果吻合较好,实现了静载作用下岩石损伤过程的表征;加载过程中应变能在煤体侧开始集中并沿着节理扩大从而形成失稳,展示了能量集中的时空分布特征。

     

  • 图  1  复合岩体试样

    Figure  1.  Composite rock sample

    图  2  试验设备

    Figure  2.  Experimental equipment

    图  3  静载下复合岩体力学特性

    Figure  3.  Mechanical properties of composite rock mass under static loading

    图  4  静载下复合岩体破坏模式

    Figure  4.  Failure mode of composite rock mass under static loading

    图  5  复合岩体节理面力学分析

    Figure  5.  Mechanical analysis of composite rock mass at joint surface

    $ \sigma $is normal stress, $ {\sigma _1} $ is maximum principal stress, $ {\sigma _3} $ is minimum principal stress, $ \alpha < {\alpha _1} $is tangential stress, $ {c_{\text{j}}} $ is cohesion, $ {\varphi _{\text{j}}} $ is friction angle, $ {\alpha _1} $,$ {\alpha _3} $ is joint angle

    图  6  岩石(煤)弹性模量Weibull分布

    Figure  6.  Weibull distribution of Young’s modulus of rock (coal)

    图  7  岩石(煤)本构关系示意图

    Figure  7.  Constitutive law of rock (coal)

    图  8  岩石(煤)本构关系计算流程

    Figure  8.  Calculation flow of constitutive law of rock (coal)

    图  9  岩石单轴压缩和巴西劈裂

    Figure  9.  Uniaxial compression and Brazilian splitting of rock

    图  10  静载下岩石损伤演化

    Figure  10.  Damage evolution of rock under static loading

    图  11  静载下岩石应变能密度分布

    Figure  11.  Strain energy density of rock under static loading

    图  12  复合岩体弹性模量分布

    Figure  12.  Distribution of elastic modulus of composite rock mass

    图  13  静载下复合岩体水平位移

    Figure  13.  Horizontal displacement of composite rock mass under static loading

    图  14  静载下复合岩体损伤演化过程

    Figure  14.  Damage evolution processes of composite rock mass under static loading

    图  15  静载下复合岩体应变能密度分布

    Figure  15.  Strain energy density of composite rock mass under static loading

    表  1  静力加载不同节理角度试样方案

    Table  1.   Testing results of samples under static loading

    Sample Group Angle/(°)
    R 5 -
    C 5 -
    B 5 -
    R-C1 5 0
    R-C2 5 30
    R-C3 5 45
    R-C4 5 60
    R-C5 5 90
    Notes: R is rock, C is coal, B is disk specimen, and R-C is composite rock mass.
    下载: 导出CSV

    表  2  静力作用下不同节理角度复合岩体试样的试验结果

    Table  2.   Testing results of composite rock mass at different angles under static loading

    Sample Group Angle/(°) σ/MPa
    R 5 - 40.0
    C 5 - 20.0
    R-C1 5 0 30.0
    R-C2 5 30 25.0
    R-C3 5 45 17.0
    R-C4 5 60 22.0
    R-C5 5 90 42.0
    Note: σ is uniaxial compression strength.
    下载: 导出CSV

    表  3  模拟岩石试样主要参数

    Table  3.   Main parameters of rock in numerical simulation

    Symbol Parameter Potassium feldspar Chlorite Quartz Other
    Minimum radius Rmin/mm 0.18 0.18 0.18 0.18
    Particle size ratio Rrat 1.52 1.52 1.52 1.52
    Density ρ/(kg·m−3) 2600 2500 2750 2700
    Fraction factor (Particle) μ 0.67 0.4 0.48 0.32
    Stiffness ratio kn/ks 1.3 1.5 1.1 2.7
    Contact modulus Ec/GPa 9 8 11 7
    Cohesive strength (pb) pbcoh/MPa 70 60 80 40
    Tensile strength (pb) pbten/MPa 12 10 14 8
    Fraction /(°) 35 30 32 33
    Normal Stiffness (sj) sjkn 0.9 0.9 0.9 0.9
    Shear Stiffness (sj) sjks 0.3 0.3 0.3 0.3
    Tensile strength (sj) sjten/MPa 15 17 22 16
    Cohesive strength (sj) sjcoh/MPa 65 72 80 60
    Fraction (sj) sjθ/(°) 20 20 20 20
    Fraction factor (sj) sjμ 0.3 0.3 0.3 0.3
    下载: 导出CSV

    表  4  煤样数值模型参数

    Table  4.   Micro-parameters of coal in model

    Parameter Amorphous Clay and others
    Radiusmin/mm 0.18 0.18
    Particle size ratio 1.52 1.52
    Density ρ/(kg·m−3) 1650 2200
    Fraction factor μ 0.3 0.32
    Stiffness ratio (kn/ks) 2.82 2.7
    Contact modulus Ec (GPa) 8.0 6.0
    Cohesive (pb) (pb)
    strengthpb_coh (MPa)
    43 33
    Tensile strength (pb)
    pb_ten (MPa)
    27 8
    Fraction factor (pb) 1 1
    sjkn 0.9 0.9
    sjks 0.3 0.3
    sjten/MPa 17 16
    sjcoh/MPa 60 60
    sjθ/(°) 20 20
    sjμ 0.4 0.3
    下载: 导出CSV
  • [1] PAN Y S, WANG A W. Disturbance response instability theory of rock bursts in coal mines and its application[J]. Geohazard Mechanics, 2023, 1(1): 1-17. doi: 10.1016/j.ghm.2022.12.002
    [2] 赵洪宝, 吉东亮, 刘绍强, 等. 冲击荷载下复合岩体动力响应力学特性及本构模型研究岩石力学与工程学报, 2023, 42(1): 88-99.

    ZHAO Hongbao, JI Dongliang, LIU Shaoqiang, et al. Study on dynamic response and constitutive model of composite rock under impact loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(1): 88-99. (in Chinese).
    [3] GONG F Q, WANG Y L, WANG Q. Peak-strength strain energy storage index for evaluating coal burst liability based on the linear energy storage law[J]. Geohazard Mechanics, 2023, 1(2): 153-161. doi: 10.1016/j.ghm.2023.03.003
    [4] ZHAO Y S, FENG Z J. A brief introduction to disaster rock mass mechanics[J]. Geohazard Mechanics, 2023, 1(1): 53-57. doi: 10.1016/j.ghm.2023.01.001
    [5] 腾俊洋, 唐建新, 王进博, 等. 层状复合岩体损伤演化规律及分形特征[J]. 岩石力学与工程学报, 2018, 37(S1): 3263-3278.

    TENG Junyang, TANG Jianxin, WANG Jinbo, et al. The evolution law of the damage of bedded composite rock and its fractal characteristics[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(S1): 3263-3278(in Chinese).
    [6] 刘晓云, 叶义成, 王其虎, 等. 单轴压缩下不同强度组合复合岩体相似材料试件力学特性研究[J]. 岩土力学, 2017, 38(S2): 183-190.

    LIU Xiaoyun, YE Yicheng, WANG Qihu, et al. Mechanical properties of similar material specimens of composite rock masses with different strengths under uniaxial compression[J]. Rock and Soil Mechanics, 2017, 38(S2): 183-190(in Chinese).
    [7] 黄锋, 周洋, 李天勇, 等. 软硬互层岩体力学特性及破坏形态的室内试验研究[J]. 煤炭学报, 2020, 45(S1): 230-238.

    HUANG Feng, ZHOU Yang, LI Tianyong, et al. Laboratory experimental study on mechanical properties and failure modes of soft and hard interbedded rock mass[J]. Journal of China Coal Society, 2020, 45(S1): 230-238(in Chinese).
    [8] 杨科, 刘文杰, 窦礼同, 等. 煤岩组合体界面效应与渐进失稳特征试验[J]. 煤炭学报, 2020, 45(5): 1691-1700.

    YANG Ke, LIU Wenjie, DOU Litong, et al. Experiment on interface effect and progressive instability characteristics of coal-rock assembly[J]. Journal of China Coal Society, 2020, 45(5): 1691-1700(in Chinese).
    [9] 李成杰, 徐颖, 张宇婷, 等. 冲击荷载下裂隙类煤岩组合体能量演化与分形特征研究[J]. 岩石力学与工程学报, 2019, 38(11): 2231-2241.

    LI Chengjie, XU Ying, ZHANG Yuting, et al. Study on energy evolution and fractal characteristics of cracked coal-rock-like combined body under impact loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(11): 2231-2241(in Chinese).
    [10] 李成杰, 徐颖, 叶洲元. 冲击荷载下类煤岩组合体能量耗散与破碎特性分析[J]. 岩土工程学报, 2020, 42(5): 981-988. doi: 10.11779/CJGE202005022

    LI Chengjie, XU Ying, YE Zhouyuan. Energy dissipation and crushing characteristics of coal-rock-like combined body under impact loading[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 981-988(in Chinese). doi: 10.11779/CJGE202005022
    [11] 李成杰, 徐颖, 冯明明, 等. 单轴荷载下类煤岩组合体变形规律及破坏机理[J]. 煤炭学报, 2020, 45(5): 1773-1782.

    LI Chengjie, XU Ying, FENG Mingming, et al. Deformation law and failure mechanism of coal-rock-like combined body under uniaxial loading[J]. Journal of China Coal Society, 2020, 45(5): 1773-1782(in Chinese).
    [12] 周辉, 宋明, 张传庆, 等. 水平层状复合岩体变形破坏特征的围压效应研究[J]. 岩土力学, 2019, 40(2): 465-473.

    ZHOU Hui, SONG Ming, ZHANG Chuan-qing, et al. Effect of confining pressure on mechanical properties of horizontal layered composite rock[J]. Rock and Soil Mechanics, 2019, 40(2): 465-473(in Chinese).
    [13] 闫长斌. 含层间剪切带复合岩体失稳机制的突变理论分析[J]. 中南大学学报(自然科学版), 2013, 44(10): 4281-4286.

    YAN Changbin. Analysis of instability mechanism of composite rock mass with interlayer shear zone by catastrophe theory[J]. Journal of central South University(Science and Technology), 2013, 44(10): 4281-4286(in Chinese).
    [14] 李地元, 韩震宇, 孙小磊, 等. 含预制裂隙大理岩SHPB 动态力学破坏特性试验研究[J]. 岩石力学与工程学报, 2017, 36(12): 2872-2883.

    LI Diyuan, HAN Zhenyu, SUN Xiaolei, et al. Characteristics of dynamic failure of marble with artificial flaws under split Hopkinson pressure bar tests[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(12): 2872-2883(in Chinese).
    [15] 李昂, 邵国建, 范华林, 等. 基于细观层次的软硬互层状复合岩体力学特性研究[J]. 岩石力学与工程学报, 2014, 33(S1): 3042-3049.

    LI Ang, SHAO Guo-jian, FAN Hua-lin, et al. Investigation of mechanical properties of soft and hard interbedded composite rock mass based on meso-level heterogeneity[J]. Journal of Structural Geology, 2014, 33(S1): 3042-3049(in Chinese).
    [16] 黄书岭, 徐劲松, 丁秀丽, 等. 考虑结构面特性的层状岩体复合材料模型与应用研究[J]. 岩石力学与工程学报, 2010, 29(4): 743-756.

    HUANG Shuling, XU Jinsong, DING Xiuli, et al. Study of layered rock mass composite model based on characteristics of structural plane and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(4): 743-756(in Chinese).
    [17] 殷鹏飞, 杨圣奇, 高峰, 等. 不同节理模型在层状复合岩石离散元模拟中的应用[J]. 采矿与安全工程学报, 2023, 40(1): 164-173+183.

    YIN Pengfei, YANG Shengqi, GAO Feng, et al. Application of different joint models in stratified composite rock DEM simulation composite rock DEM simulation[J]. Journal of Mining & Safety Engineering, 2023, 40(1): 164-173+183(in Chinese).
    [18] 李昂, 纪丙楠, 牟谦, 等. 深部煤岩层复合结构底板破坏机制及应用研究[J]. 岩石力学与工程学报, 2022, 41(3): 559-572.

    Ll Ang, JI Bingnan, MOU Qian, et al. Failure mecha-nism of composite structure floors of deep coal and rockstrata and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(3): 559-572(in Chinese).
    [19] 左建平, 宋洪强. 煤岩组合体的能量演化规律及差能失稳模型[J]. 煤炭学报, 2022, 47(8): 3037-3051.

    ZUO Jianping, SONG Hongqiang. Study on energy evolution law and differential energy instability model of coal-rock combined body[J]. Journal of China Coal Society, 2022, 47(8): 3037-3051(in Chinese).
    [20] 左建平, 谢和平, 吴爱民, 等. 深部煤岩单体及组合体的破坏机制与力学特性研究[J]. 岩石力学与工程学报, 2011, 30(1): 84-92.

    ZUO Jianping, XIE Heping, WU Aimin, et al. Investigation on failure mechanisms and mechanical behaviors of deep coal-rock single body and combined body[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(1): 84-92(in Chinese).
    [21] 左建平, 陈岩, 崔凡. 不同煤岩组合体力学特性差异及冲击倾向性分析[J]. 中国矿业大学学报, 2018, 47(1): 81-87.

    ZUO Jianping, CHEN Yan, CUI Fan. Investigation on mechanical properties and rock burst tendency of different coal-rock combined bodies[J]. Journal of China University of Mining and Technology, 2018, 47(1): 81-87(in Chinese).
    [22] 谢和平, 周宏伟, 刘建锋, 等. 不同开采条件下采动力学行为研究[J]. 煤炭学报, 2011, 36(7): 1 067-1 074.

    XIE Heping, ZHOU Hongwei, LIU Jianfeng, et al. Mining-induced mechanical behavior in coal seams under different mining layouts[J]. Journal of China Coal Society, 2011, 36(7): 1067-1074. (in Chinese)
    [23] 杨磊, 高富强, 王晓卿, 等. 煤岩组合体的能量演化规律与破坏机制[J]. 煤炭学报, 2019, 44(12): 3894-3902.

    YANG Lei, GAO Fuqian, WANG Xiaoqing, et al. Energy evolution law and failure mechanism of coal-rock combined specimen[J]. Journal of China Coal Society, 2019, 44(12): 3894-3902(in Chinese).
    [24] 刘少虹. 动静加载下组合煤岩破坏失稳的突变模型和混沌机制[J]. 煤炭学报, 2014, 39(2): 292-300.

    Liu Shaohong. Nonlinear catastrophy model and chaotic dynamic mechanism of compound coal-rock unstable failure under coupled staticdynamic loading[J]. Journal of China Coal Society, 2014, 39(2): 292-300(in Chinese).
    [25] 蔡美峰, 何满朝, 刘东燕. 岩石力学与工程[M]. 北京: 科学出版社, 2013: 120-125.

    CAI Meifeng, HE Manchao, LIU Dongyan. Rock mechanics and engineering[M]. Beijing: Science Press, 2013: 120-125. (in Chinese)
    [26] ZHU W C, TANG, C A, HUANG Z P, et al. A numerical study of the effect of loading conditions on the dynamic failure of rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(S1): 348-353.
    [27] ZHU W C, TANG C A. Micromechanical model for simulating the fracture process of rock[J]. Rock Mechanics and Rock Engineering, 2004, 37(1): 25-56. doi: 10.1007/s00603-003-0014-z
    [28] JI D L, ZHAO H B, VANAPALLI S. Damage evolution and failure mechanism of coal sample induced by impact loading under different constraints[J]. Natural Resources Research, 2023, 1: 1-29.
    [29] 吉东亮, 程辉, 赵洪宝, 等. 冲击扰动下岩石蠕变损伤演化与失稳诱发机制[J]. 煤炭学报, 2024, 49(S1): 197-207.

    JI Dongliang, CHENG Hui, ZHAO Hongbao, et al. Creep damage evolution and instability induction mechanism of rock under impact disturbance[J]. Journal of China Coal Society, 2024, 49(S1): 197-207(in Chinese).
    [30] JI, D L, CHENG, H, ZHAO, H B. A Voronoi tessellated model considering damage evolution for modeling meso-mechanical mechanism of the sandstone[J]. Engineering Analysis with Boundary Elements, 2024, 158: 446-467. doi: 10.1016/j.enganabound.2023.11.013
  • 加载中
计量
  • 文章访问数:  17
  • HTML全文浏览量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-20
  • 修回日期:  2024-10-01
  • 录用日期:  2024-10-24
  • 网络出版日期:  2024-11-06

目录

    /

    返回文章
    返回