留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米羟基磷灰石的微观形貌对木材表面超疏水层性能及稳定性的影响

苏嘉赟 罗丽娟 沈杨裕 余雁 杨日龙

苏嘉赟, 罗丽娟, 沈杨裕, 等. 纳米羟基磷灰石的微观形貌对木材表面超疏水层性能及稳定性的影响[J]. 复合材料学报, 2024, 42(0): 1-12.
引用本文: 苏嘉赟, 罗丽娟, 沈杨裕, 等. 纳米羟基磷灰石的微观形貌对木材表面超疏水层性能及稳定性的影响[J]. 复合材料学报, 2024, 42(0): 1-12.
SU Jiayun, LUO Lijuan, SHEN Yangyu, et al. Effect of nano-hydroxyapatite micromorphology on the properties and stability of superhydrophobic layers of wood[J]. Acta Materiae Compositae Sinica.
Citation: SU Jiayun, LUO Lijuan, SHEN Yangyu, et al. Effect of nano-hydroxyapatite micromorphology on the properties and stability of superhydrophobic layers of wood[J]. Acta Materiae Compositae Sinica.

纳米羟基磷灰石的微观形貌对木材表面超疏水层性能及稳定性的影响

基金项目: 国家自然科学基金 (22305039);福建省自然科学基金项目 (2021J05027)
详细信息
    通讯作者:

    杨日龙,博士,讲师,硕士生导师,研究方向为木质功能材料 E-mail: rilongyang@foxmail.com

  • 中图分类号: TB332

Effect of nano-hydroxyapatite micromorphology on the properties and stability of superhydrophobic layers of wood

Funds: National Natural Science Foundation of China (22305039); Natural Science Foundation of Fujian Province (2021J05027)
  • 摘要: 对木材表面进行超疏水改性是降低木材干缩湿胀,延长木制品使用寿命的一种有效手段,但木材表面超疏水改性的实际应用受限于涂层较差的稳定性。木材表面超疏水层中无机纳米粒子的微观形貌是影响其稳定性的重要因素,然而鲜有文章对此进行系统探讨。本文以纳米球、纳米棒及纳米线三种形貌的羟基磷灰石为原料,通过与聚二甲基硅氧烷复合并喷涂到木材表面的方法对木材表面进行超疏水改性,通过砂纸磨损、胶带剥离及化学腐蚀等破坏涂层的方法来探究羟基磷灰石的形貌对木材表面超疏水层稳定性的影响规律。结果表明,由于羟基磷灰石纳米球有着更小的长径比及尺寸,可更有效地进入到木材的细胞壁及细胞腔中,因而由羟基磷灰石纳米球制备而成的木材超疏水层具有更优异的疏水性及稳定性,在砂纸磨损和胶带剥离循环15次后,仍能保持超疏水性。这些研究结果可为高性能且长效稳定木材超疏水涂层的研制提供理论基础。

     

  • 图  1  木材表面超疏水层的制备示意图

    Figure  1.  Schematic of the preparation of superhydrophobic coating on wood surface

    图  2  三种羟基磷灰石纳米材料的微观形貌:(a1和a2)羟基磷灰石纳米线;(b1和b2)羟基磷灰石纳米棒;(c1和c2)羟基磷灰石纳米球

    Figure  2.  Microstructure of three kinds of hydroxyapatite materials: (a1 and a2) hydroxyapatite nanowires; (b1 and b2) hydroxyapatite nanorods; (c1 and c2) hydroxyapatite nanospheres

    图  3  (a)不同形貌HAP的XRD衍射图谱;(b)修饰不同疏水层后木材样品的FTIR谱图

    Figure  3.  (a) XRD pattern of HAP materials with different morphologies; (b) FTIR spectra of natural wood and different samples after modified with different hydrophobic coatings

    图  4  (a, b)修饰不同表面涂层前后木材样品的外观及表面润湿性;(c-f)修饰不同表面涂层后木材样品的静态水接触角图像:(c) W-P-W;(d) R-P-W; (e) S-P-W; (f) P-W

    Figure  4.  (a, b) The appearance and wettability of wood samples before and after modified with different surface coatings; (c-f) The water contact angle pictures of different samples after modified with different surface coatings: (c) W-P-W; (d) R-P-W; (e) S-P-W; (f) P-W

    图  5  表面润湿性的基本模型:(a)杨氏方程模型;(b) Wenzel状态;(c) Cassie-Baxter状态

    Figure  5.  Model of Surface wettability: (a) Young’s model; (b) Wenzel state; (c) Cassie-Baxter state

    图  6  修饰相应涂层后木材样品表面的三维轮廓图:(a) W-P-W;(b) R-P-W;(c) S-P-W

    Figure  6.  3 D outline diagram of different wood samples after modified with different coatings: (a) W-P-W; (b) R-P-W; (c) S-P-W

    图  7  修饰相应涂层后木材样品表面的SEM图像:(a) P-W; (b) W-P-W; (c) R-P-W; (d) S-P-W

    Figure  7.  The SEM pictures of different wood samples after modified with different coatings: (a) P-W; (b) W-P-W; (c) R-P-W; (d) S-P-W

    图  8  (a, b)木材表面超疏水层在砂纸磨损过程中的水接触角变化及变化率;(c-f)不同木材超疏水层在经砂纸磨损后的微观形貌:(c) W-P-W;(d) R-P-W;(e) S-P-W;(f) P-W

    Figure  8.  (a, b) Change and change rate of water contact angle of wood coating after sandpaper wear tests; (c-f) The morphologies of different superhydrophobic layers of wood after being worn by sandpaper: (c) W-P-W; (d) R-P-W; (e) S-P-W; (f) P-W

    图  9  (a, b)木材表面超疏水层在胶带剥离过程中的水接触角变化及变化率;(c-f)不同木材超疏水层在经胶带剥离后的微观形貌:(c) W-P-W;(d) R-P-W;(e) S-P-W;(f) P-W

    Figure  9.  (a, b) Change and change rate of water contact angle of wood coating after tape peeling tests; (c-f) The morphologies of different superhydrophobic layers of wood after being worn by tape peeling: (c) W-P-W; (d) R-P-W; (e) S-P-W; (f) P-W

    图  10  S-P-W样品遭受不同损伤后的FTIR谱图:(a)砂纸磨损;(b)化学腐蚀

    Figure  10.  The FTIR spectra of S-P-W after different kinds of damage: (a) Sandpaper; (b) Chemical corrosion

    图  11  腐蚀性液滴在木材涂层上的接触角随时间的变化情况及其变化率:(a, d) pH=1的盐酸溶液;(b, e) pH=13的氢氧化钠溶液;(c, f) 3.5wt%的氯化钠溶液

    Figure  11.  Change and change rate of contact angle of corrosive droplets on different superhydrophobic layers of wood: (a, d) HCl solution with pH value of 1; (b, e) NaOH solution with pH value of 13; (c, f) 3.5wt% NaCl solution

    图  12  木材超疏水涂层的水接触角在高湿度条件下的变化情况

    Figure  12.  The water contact angle changes of wood with different superhydrophobic coating under high-humidity condition

    表  1  不同样品的名称缩写

    Table  1.   Abbreviations of the names of different samples

    Abbreviation Sample
    W-P-W Hydroxyapatite nanowire
    R-P-W Hydroxyapatite nanorod
    S-P-W Hydroxyapatite nanosphere
    P-W Without hydroxyapatite
    N-W Natural wood
    下载: 导出CSV
  • [1] GAO X, WANG M, HE Z. Superhydropho-bic wood surfaces: recent developments and future perspectives[J]. Coatings, 2023, 13(5): 877. doi: 10.3390/coatings13050877
    [2] WANG Y, GE-ZHANG S, MU P, et al. Advances in sol-gel-based superhydroph-obic coatings for wood: a review[J]. International Journal of Molecular Sciences, 2023, 24(11): 9675. doi: 10.3390/ijms24119675
    [3] 易泽德, 廖木荣, 康帆等. 甲基硅酸钠刻蚀聚多巴胺涂层构建超疏水木材及表征[J]. 复合材料学报, 2021, 38(9): 3027-3035.

    YI Zede, LIAO Murong, KANG Fan et al. Fabrication and characterization of superhydrophobic wood by etching polydopamine coating with sodium methylsilicate industry[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 3027-3035(in Chinese).
    [4] 刘峰, 王成毓. 木材仿生超疏水功能化制备方法[J]. 科技导报, 2016, 34(19): 120-126.

    LIU Feng, WANG Chengyu. Research progress and preparation methods of biomimetic functional superhydrophobic wood surfaces[J]. Science & Technology Review, 2016, 34(19): 120-126(in Chinese).
    [5] 吴新宇, 吴燕, 孔璋倩等. 超疏水木材的功能化修饰及应用途径[J]. 林产工业, 2020, 57(11): 51-55.

    WU Xinyu, WU Yan, KONG Zhangqian et al. Functional modification and application of superhydrophobic wood[J]. China Forest Products Industry, 2020, 57(11): 51-55(in Chinese).
    [6] 孙庆丰, 杨玉山, 党宝康等. 仿生超疏水木材表面微纳结构制备研究进展[J]. 林业工程学报, 2021, (2): 1-11.

    SONG Qingfeng, YANG Yushan, DANG Baokang, et al. Progress in the preparation of micro-nanostructures on biomimetic super-hydrophobic wood surfaces[J]. Journal of Forestry Engineering, 2021, (2): 1-11(in Chinese).
    [7] WEI X, NIU X. Recent advances in superhydrophobic surfaces and applications on wood[J]. Polymers, 2023, 15(7): 1682. doi: 10.3390/polym15071682
    [8] LI X, GAO L, WANG M, et al. Recent development and emerging applications of robust biomimetic superhydrophobic wood[J]. Journal of Materials Chemistry A, 2023, 11(13): 6772-6795. doi: 10.1039/D2TA09828H
    [9] KONG L, TU K, GUAN H, et al. Growth of high-density ZnO nanorods on wood with enhanced photostability, flame retardancy and water repellency[J]. Applied Surface Science, 2017, 407: 479-484. doi: 10.1016/j.apsusc.2017.02.252
    [10] CHEN X, HUANG Y, ZHANG L, et al. Cellulose nanofiber assisted dispersion of hydrophobic SiO2 nanoparticles in water and its superhydrophobic coating[J]. Carbohydrate Polymers, 2022, 290: 119504. doi: 10.1016/j.carbpol.2022.119504
    [11] JIA S, LIU M, WU Y, et al. Facile and scalable preparation of highly wear-resistance superhydrophobic surface on wood substrates using silica nanoparticles modified by VTES[J]. Applied Surface Science, 2016, 386: 115-124. doi: 10.1016/j.apsusc.2016.06.004
    [12] WANG S, LIU C, LIU G, et al. Fabrication of superhydrophobic wood surface by a sol-gel process[J]. Applied Surface Science, 2011, 258(2): 806-810. doi: 10.1016/j.apsusc.2011.08.100
    [13] KONG L, KONG X, JI Z, et al. Large-Scale fabrication of a robust superhydrophobic thermal energy storage sprayable coating based on polymer nanotubes[J]. ACS Applied Materials & Interfaces, 2020, 12(44): 49694-49704.
    [14] TAN Y, WANG K, DONG Y, et al. Bulk superhydrophobility of wood via in-situ deposition of ZnO rods in wood structure[J]. Surface and Coatings Technology, 2020, 383: 125240. doi: 10.1016/j.surfcoat.2019.125240
    [15] LIU S, ZHU M, HUANG Y, et al. A nature-inspired strategy towards superhydrophobic wood[J]. Journal of Materials Chemistry A, 2023, 11(47): 25875-25886. doi: 10.1039/D3TA05013K
    [16] SHEN X, HAN S, XIANG Z, et al. Universal strategy for constructing antibioadhesive and robust coatings for wood[J]. Industrial Crops and Products, 2023, 202: 117068. doi: 10.1016/j.indcrop.2023.117068
    [17] MA B, XIONG F, WANG H, et al. Tailorable and scalable production of eco-friendly lignin micro-nanospheres and their application in functional superhydrophobic coating[J]. Chemical Engineering Journal, 2023, 457: 141309. doi: 10.1016/j.cej.2023.141309
    [18] 吕栋, 李晓君, 王敏等. 木材表面耐久性超疏水涂层的制备及性能研究[J]. 木材科学与技术, 2023, 37(5): 38-46. doi: 10.12326/j.2096-9694.2023054

    LV Dong, LI Xiaojun, WANG Ming, et al. Preparation and properties of durable superhydrophobic coatings for wood surfaces[J]. Chinese Journal of Wood Science and Technology, 2023, 37(5): 38-46(in Chinese). doi: 10.12326/j.2096-9694.2023054
    [19] JIA S, CHEN H, LUO S, et al. One-step approach to prepare superhydrophobic wood with enhanced mechanical and chemical durability: driving of alkali[J]. Applied Surface Science, 2018, 455: 115-122. doi: 10.1016/j.apsusc.2018.05.169
    [20] CHEN F F, DAI Z H, FENG Y N, et al. Customized cellulose fiber paper enabled by an in situ growth of ultralong hydroxyapatite nanowires[J]. ACS Nano, 2021, 15(3): 5355-5365. doi: 10.1021/acsnano.0c10903
    [21] LI Q, BAO X, SUN J E, et al. Fabrication of superhydrophobic composite coating of hydroxyapatite/stearic acid on magnesium alloy and its corrosion resistance, antibacterial adhesion[J]. Journal of Materials Science, 2020, 56(8): 5233-5249.
    [22] ZHANG Y, LU J. A simple method to tailor spherical nanocrystal hydroxyapatite at low temperature[J]. Journal of Nanoparticle Research, 2006, 9(4): 589-594.
    [23] GAO J H, GUAN S K, CHEN J, et al. Fabrication and characterization of rod-like nano-hydroxyapatite on MAO coating supported on Mg–Zn–Ca alloy[J]. Applied Surface Science, 2011, 257(6): 2231-2237. doi: 10.1016/j.apsusc.2010.09.080
    [24] LIU W, QIAN G, ZHANG B, et al. Facile synthesis of spherical nano hydroxyapatite and its application in photocatalytic degradation of methyl orange dye under UV irradiation[J]. Materials Letters, 2016, 178: 15-17. doi: 10.1016/j.matlet.2016.04.175
    [25] SUN T W, ZHU Y J, CHEN F. Highly flexible multifunctional biopaper comprising chitosan reinforced by ultralong hydroxy-apatite nanowires[J]. Chemistry – A European Journal, 2017, 23(16): 3850-3862. doi: 10.1002/chem.201605165
    [26] YANG R-L, ZHU Y-J, CHEN F-F, et al. Bioinspired macroscopic ribbon fibers with a nacre-mimetic architecture based on highly ordered alignment of ultralong hydroxy-apatite nanowires[J]. ACS Nano, 2018, 12(12): 12284-12295. doi: 10.1021/acsnano.8b06096
    [27] PAPATHANASIOU K E, VASSAKI M, SPINTHAKI A, et al. Phosphorus chemistry: from small molecules, to polymers, to pharmaceutical and industrial applications[J]. Pure and Applied Chemistry, 2019, 91(3): 421-441. doi: 10.1515/pac-2018-1012
    [28] MAKKONEN L. Young’s equation revisited[J]. Journal of Physics: Condensed Matter, 2016, 28(13): 135001. doi: 10.1088/0953-8984/28/13/135001
    [29] ZHANG S, XU S, LIU Y, et al. The effect of surface-free energy and microstructure on the condensation mechanism of water vapor[J]. Progress in Natural Science: Materials International, 2023, 33(1): 37-46. doi: 10.1016/j.pnsc.2023.02.002
    [30] XIANG B, SUN Q, ZHONG Q, et al. Current research situation and future prospect of superwetting smart oil/water separation materials[J]. Journal of Materials Chemistry A, 2022, 10(38): 20190-20217. doi: 10.1039/D2TA04469B
    [31] TANG Z, XU B, MAN X, et al. Bioinspired superhydrophobic fibrous materials[J]. Small Methods, 2023, 8(4): 2300270.
    [32] 刘静, 雷西萍, 于婷等. 纳米SiO2@超支化PDMS复合超疏水涂层的制备与性能调控[J]. 复合材料学报, 2023, 40(2): 872-883.

    LIU Jing, LEI Xiping, YU Ting et al. Construction and property regulation of nano-SiO2@hyperbranched PDMS com-posite superhydrophobic coating[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 872-883(in Chinese).
    [33] ELZAABALAWY A, MEGUID S A. Development of novel superhydrophobic coatings using siloxane-modified epoxy nanocomposites[J]. Chemical Engineering Journal, 2020, 398: 125403. doi: 10.1016/j.cej.2020.125403
    [34] WANG D, SUN Q, HOKKANEN M J, et al. Design of robust superhydrophobic surfaces[J]. Nature, 2020, 582(7810): 55-59. doi: 10.1038/s41586-020-2331-8
    [35] JIANG H, TANG L, WANG L, et al. Blackberry morphology inspired super-hydrophobic poplar scrimber with superstrong uv-resistant, self-healing and reversible properties[J]. Applied Surface Science, 2023, 639: 158211. doi: 10.1016/j.apsusc.2023.158211
    [36] LIU Q, WANG B, JIANG H, et al. Optimization of durable superhydrophobic wood with superstrong ultraviolet resistance and chemical stability[J]. Chemical Engineering Journal, 2024, 480: 148164. doi: 10.1016/j.cej.2023.148164
    [37] SHAO C, MA X, JIANG M, et al. In-situ growth of hexaconazole/polydopam-ine/hexadecyltrimethoxysilane in multi-scale structured wood to prepare superhy-drophobic wooden materials with decay resistance[J]. Chemical Engineering Journal, 2023, 476: 146396. doi: 10.1016/j.cej.2023.146396
    [38] WU X, LIAN H, LI X. An ultraviolet shielding material based on lignin nanoparticles engineered with deep eutectic solvents for long-term outdoor application[J]. Journal of Cleaner Production, 2023, 430: 139694. doi: 10.1016/j.jclepro.2023.139694
    [39] GU W, LI W, ZHANG Y, et al. Ultra-durable superhydrophobic cellular coatings[J]. Nature Communications, 2023, 14(1): 5953. doi: 10.1038/s41467-023-41675-y
  • 加载中
计量
  • 文章访问数:  47
  • HTML全文浏览量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-16
  • 修回日期:  2024-06-30
  • 录用日期:  2024-07-05
  • 网络出版日期:  2024-07-24

目录

    /

    返回文章
    返回