留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超浸润木基生物质多孔材料用于油水分离研究进展

丁一 冯树 梅泽楷 孔凡功 戴红旗 杨伟胜

丁一, 冯树, 梅泽楷, 等. 超浸润木基生物质多孔材料用于油水分离研究进展[J]. 复合材料学报, 2024, 41(10): 5124-5136. doi: 10.13801/j.cnki.fhclxb.20240418.003
引用本文: 丁一, 冯树, 梅泽楷, 等. 超浸润木基生物质多孔材料用于油水分离研究进展[J]. 复合材料学报, 2024, 41(10): 5124-5136. doi: 10.13801/j.cnki.fhclxb.20240418.003
DING Yi, FENG Shu, MEI Zekai, et al. Supersaturated wood-based biomass porous materials for oil/water separation[J]. Acta Materiae Compositae Sinica, 2024, 41(10): 5124-5136. doi: 10.13801/j.cnki.fhclxb.20240418.003
Citation: DING Yi, FENG Shu, MEI Zekai, et al. Supersaturated wood-based biomass porous materials for oil/water separation[J]. Acta Materiae Compositae Sinica, 2024, 41(10): 5124-5136. doi: 10.13801/j.cnki.fhclxb.20240418.003

超浸润木基生物质多孔材料用于油水分离研究进展

doi: 10.13801/j.cnki.fhclxb.20240418.003
基金项目: 生物基材料与绿色造纸国家重点实验室开放基金资助项目(GZKF202220);2022年大学生实践创新训练计划项目(202210298006Z)
详细信息
    通讯作者:

    杨伟胜,博士,讲师,硕士生导师,研究方向为木材功能化应用 E-mail: wys123@njfu.edu.cn

  • 中图分类号: X52;TB332

Supersaturated wood-based biomass porous materials for oil/water separation

Funds: Foundation of State Key Laboratory of Biobased Material and Green Papermaking (GZKF202220); 2022 Training Program of Innovation and Entrepreneurship for Undergraduates (202210298006Z)
  • 摘要: 餐厨垃圾和工业废水中油和水的高效分离仍具挑战性。传统的油水分离技术主要包括重力沉降、离心、吸附、浮选和电化学等,存在着分离效率低、分离不彻底等问题。如何高效且低成本地实现油水分离已成为当前研究的热点。木材是一种可持续发展的生物材料,并且自身具有多级孔隙结构和丰富羟基官能团,其衍生物具备超浸润特性,因此其有望成为一种新型的油水分离材料。通过优化木材内部细胞孔径,对其进行超疏水或超亲水表面润湿性改性,进而促进木质基复合材料对油水混合乳液的物理化学过滤和吸附,最终实现废水中油污的有效去除。本文对油水混合物及含油废水的特性及危害进行了概述,并系统综述了具有超浸润特性(超亲水/水下超疏油、超疏水/超亲油)的木基多孔过滤膜和吸附材料用于分离含油废水的构建策略,概述了近年来具有超浸润特性的木基生物质多孔材料在油水分离领域的研究进展,并展望了这种材料存在的问题和未来潜在的研究方向。

     

  • 图  1  (a) 水包油乳液;(b) 油包水乳液[14]

    Figure  1.  (a) Oil-in-water emulsion; (b) Water-in-oil emulsion[14]

    图  2  (a) 木材细胞壁的分层结构[25];(b) 英国橡木(栎)阔叶木的SEM图像;(c) 苏格兰松(樟子松)针叶木的SEM图像[15];(d) 吸附法油水分离原理图[26];(e) 过滤法油水分离原理图[27]

    M, P, S1, S2, S3—; W/O—Water-in-oil; PSP—; θ

    Figure  2.  (a) Hierarchical structure of wood cell wall[25]; (b) SEM image of English oak (Quercus serrata) broadleaf wood; (c) SEM image of Scots pine (Cinnamomum camphora) coniferous wood [15]; (d) Schematic diagram of the adsorption method of oil-water separation [26]; (e) Schematic diagram of the filtration method of oil-water separation[27]

    图  3  天然木材(a)和木膜(b)的实物和SEM图像(径向切向面和纵向切向面);(c) 使用木基过滤膜分离乳化油图片;(d) 乳化油分离前后效果图[2];(e) Ag/木材过滤膜从水中去除有机染料亚甲基蓝(MB);(f) 过滤有机染料MB后的木基材料横切面图片;(g) 银纳米颗粒(AgNPs)在木材管孔内对MB的催化降解示意图[30];(h) 原巴尔沙木和Ag@Wood反复过滤MB溶液前后的照片[6]

    Figure  3.  Physical and SEM images (radial tangential plane and longitudinal tangential plane) of natural wood (a) and wood membranes (b); (c) Pictures of emulsified oil separation using wood-based filtration membranes; (d) Before and after effect of emulsified oil separation[2]; (e) Removal of organic dyes methylene blue (MB) from water by Ag/wood filtration membranes; (f) Pictures of cross-sections of the wood-based materials after filtration of organic dyes MB; (g) Schematic diagram of the Ag nanoparticles (AgNPs) in the catalytic degradation of MB within the pores of wood tubes[30]; (h) Photographs of raw balsa wood and Ag@wood before and after repeated filtration of MB solution[6]

    图  4  (a) 真空浸渍和表面改性后的超疏水木片制备工艺和油水乳液分离示意图;(b) 超疏水木材切片的表面FE-SEM图像[31];(c) 聚二乙烯基苯(PDVB)木膜对酸、碱、盐、水、可乐、咖啡、油等的润湿效果图;(d) PDVB木膜和天然木片的柔韧性对比图[40];(e) 聚二甲基硅氧烷(PDMS)@TiO2木材的制备过程和对油水混合物的分离效率统计图[34]

    Figure  4.  (a) Schematic diagram of the preparation process and oil-water emulsion separation of superhydrophobic wood slices after vacuum impregnation and surface modification; (b) Surface FE-SEM images of the superhydrophobic wood slices[31]; (c) Wetting effect diagram of PDVB-wood membranes on acids, alkalis, salts, water, cola, coffee, and oils, etc.; (d) Comparison of flexibility between the PDVB-wood membranes and natural wood slices[40]; ( e) Statistical graph of the preparation process and separation efficiency of PDMS@TiO2 wood for oil-water mixtures[34]

    图  5  (a) BW/聚螺吡喃(PSP)膜的油/水分离工艺[27];(b) Janus木膜(JW)对油水混合物的选择性分离;(c) Janus木膜疏水(HO)表面和亲水(HI)表面实物图片;(d) Janus木膜HO表面分别对油和水的接触角;(e) Janus木膜HI表面的水下超疏油图片[36]

    Figure  5.  (a) Oil/water separation process with BW/poly(spiropyran) (PSP) membranes[27]; (b) Selective separation of oil-water mixtures by Janus wood (JW) membranes; (c) Physical pictures of the hydrophobic (HO) surface and the hydrophilic (HI) surface of Janus wood membranes; (d) Contact angle of the HO surface of Janus wood membranes for oil and water, respectively; (e) Picture of the underwater super-hydrophobicity of the HI surface of Janus wood membranes[36]

    SPAM—

    图  6  (a) 木基海绵(WS)和硅烷化木基海绵(SWS)润湿性对比图;(b) 不同木材样品及WS的红外图谱;(c) 通过化学成分分析获得的不同木材样品及纤维素WS中纤维素、半纤维素和木质素的相对含量[43];(d) Wood/共价有机框架(COF)的制造工艺示意图[26];(e) 25℃ 和70℃下原油的黏度及聚二甲基硅氧烷@还原氧化石墨烯(PDMS@GSH)木基材料对高黏度原油的吸附图片[45]

    Figure  6.  (a) Comparison of the wettability of wood-based sponges (WS) and silanised wood-based sponges (SWS); (b) Infrared spectra of different wood samples and WS; (c) Relative contents of cellulose, hemicellulose, and lignin in different wood samples and cellulose-based WS obtained by chemical composition analysis[43]; (d) Schematic diagram of the fabrication process of wood/COF [26]; (e) Viscosity of crude oil and adsorption pictures of PDMS@GSH wood-based materials on high viscosity crude oil at 25℃ and 70℃ [45]

    APTES—; DI—

    表  1  过滤型木基油水分离材料性能对比

    Table  1.   Comparison of the performance of filtered wood-based oil-water separation materials

    Oil-water separation method Separation efficiency/% Flux/(L·m−2·h−1) Cycle Ref.
    Cetane/water mixture 99.90 3500 Not mentioned [29]
    Oil/water mixtures 99.42 462 10/efficiency maintained at 99% [2]
    Oil/water mixtures 99.00 2600 Not mentioned [30]
    Oil/water mixtures 98.89 4776 Not mentioned [6]
    Oil/water mixtures 98.00 11 6/efficiency maintained at 98% [31]
    Chloroform/water mixture 99.20 460 10/efficiency maintained at 98.7% [32]
    Hexane/water mixture 99.98 8829 20/efficiency maintained at 99.98% [33]
    Toluene/water mixture 93.40 4889 Not mentioned [34]
    Oil/water mixtures 97.50 Not mentioned Not mentioned [35]
    Toluene/water mixture 99.00 470 Not mentioned [36]
    下载: 导出CSV

    表  2  吸附型木基油水分离材料性能对比

    Table  2.   Comparison of performance of adsorbent wood-based oil-water separation materials

    Oil-water separation method Water/oil absorption /(g·g−1) Cycle Ref.
    Crude oil/water mixtures 15.0 12 [42]
    Silicone oil/water mixture 41.0 Not mentioned [43]
    Dichloromethane/water mixture 5.2 11-14 [44]
    Cyclohexane/water mixture 930.0 20 [26]
    Crude oil/water mixtures 1.8 Not mentioned [45]
    Crude oil/water mixtures 11.2 10 [46]
    下载: 导出CSV
  • [1] 姚团威. 含油废水性质及其处理技术[J]. 化工设计通讯, 2018, 44(12): 214.

    YAO Tuanwei. Properties of oily wastewater and its treatment technology[J]. Chemical Engineering Design Communications, 2018, 44(12): 214(in Chinese).
    [2] KIM S, KIM K, JUN G, et al. Wood-nanotechnology-based membrane for the efficient purification of oil-in-water emulsions[J]. ACS Nano, 2020, 14(12): 17233-17240. doi: 10.1021/acsnano.0c07206
    [3] FENG L, ZHANG Z, MAI Z, et al. A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water[J]. Angewandte Chemie, 2004, 116(15): 2046-2048. doi: 10.1002/ange.200353381
    [4] BI H, XIE X, YIN K, et al. Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents[J]. Advanced Functional Materials, 2012, 22(21): 4421-4425.
    [5] SOBSEY M D, STAUBER C E, CASANOVA L M, et al. Point of use household drinking water filtration: A practical, effective solution for providing sustained access to safe drinking water in the developing world[J]. Environmental Science & Technology, 2008, 42(12): 4261-4267.
    [6] DU X, SHI L, PANG J, et al. Fabrication of superwetting and antimicrobial wood-based mesoporous composite decorated with silver nanoparticles for purifying the polluted-water with oils, dyes and bacteria[J]. Journal of Environmental Chemical Engineering, 2022, 10(2): 107152. doi: 10.1016/j.jece.2022.107152
    [7] 金枝, 李伯涛, 尹江苹, 等. 木材孔隙连通性评价研究进展[J]. 林业科学, 2022, 58(5): 177-186.

    JIN Zhi, LI Botao, YIN Jiangping, et al. Research progress for the evaluation of wood pore connectivity[J]. Scientia Silvae Sinicae, 2022, 58(5): 177-186(in Chinese).
    [8] JIANG Y, JIANG L, PANG Y, et al. Surface migration of fluorinated-siloxane copolymer with unusual liquid crystal behavior for highly efficient oil/water separation[J]. ACS Applied Polymer Materials, 2020, 2(8): 3612-3620. doi: 10.1021/acsapm.0c00615
    [9] ZHU Z, WANG W, QI D, et al. Calcinable polymer membrane with revivability for efficient oily-water remediation[J]. Advanced Materials, 2018, 30(30): 1801870. doi: 10.1002/adma.201801870
    [10] ZHANG W, LIU N, CAO Y, et al. Superwetting porous materials for wastewater treatment: From immiscible oil/water mixture to emulsion separation[J]. Advanced Materials Interfaces, 2017, 4(10): 1600029. doi: 10.1002/admi.201700029
    [11] 肖莹. 铁路场站含油废水调查及处理工艺研究[D]. 西安: 长安大学, 2010.

    XIAO Ying. Actualities investigation and experimental study on treatment for railway oily wastewater[D]. Xi'an: Chang'an University, 2010(in Chinese).
    [12] 黄俊. 聚丙烯腈基复合纤维膜的制备及其对油水分离的应用研究[D]. 长春: 吉林大学, 2022.

    HUANG Jun. The preparation of polyacrylonitrile-based composite fiber membrane and its application in oil-water separation[D]. Changchun: Jilin University, 2022(in Chinese).
    [13] 陈方明. 餐厨废弃物油脂分离技术[D]. 南京: 南京理工大学, 2015.

    CHEN Fangming. Kitchen waste grease separation technology[D]. Nanjing: Nanjing University of Science and Technology, 2015(in Chinese).
    [14] LUO N, WANG M, LI H, et al. Visible-light-driven self-hydrogen transfer hydrogenolysis of lignin models and extracts into phenolic products[J]. ACS Catalysis, 2017, 7(7): 4571-4580. doi: 10.1021/acscatal.7b01043
    [15] ANSELL M P. Wood microstructure—A cellular composite[M]//Wood Composites. Elsevier, 2015: 3-26.
    [16] 刘淑玲, 郭平平, 申艳梅, 等. 白桦树干导管特征的轴向和径向变化[J]. 辽宁林业科技, 2014(4): 6-8, 62.

    LIU Shuling, GUO Pingping, SHEN Yanmei, et al. Axial and radial changes of vessel in Betula platyphylla's stem[J]. Liaoning Forestry Science and Technology, 2014(4): 6-8, 62(in Chinese).
    [17] 张秀梅. 木质纳米纤维素可视化建模与分子动力学研究[D]. 哈尔滨: 东北林业大学, 2013.

    ZHANG Xiumei. Visualization modeling and molecular dynamics simulations of wood nano cellulose[D]. Harbin: Northeast Forestry University, 2013(in Chinese).
    [18] GREIL P, LIFKA T, KAINDL A. Biomorphic cellular silicon carbide ceramics from wood: I. Processing and microstructure[J]. Journal of the European Ceramic Society, 1998, 18(14): 1961-1973. doi: 10.1016/S0955-2219(98)00156-3
    [19] GREIL P, LIFKA T, KAINDL A. Biomorphic cellular silicon carbide ceramics from wood: II. Mechanical properties[J]. Journal of the European Ceramic Society, 1998, 18(14): 1975-1983. doi: 10.1016/S0955-2219(98)00155-1
    [20] 刘兆婷. 木材结构分级多孔氧化物制备、表征及其功能特性研究[D]. 上海: 上海交通大学, 2008.

    LIU Zhaoting. Synthesis, characterization and properties of hierarchical porous oxides derived from wood templates[D]. Shanghai: Shanghai Jiao Tong University, 2008(in Chinese).
    [21] 姜晓峰, 于维钊, 王继乾. 油水分离用天然材料表面化学研究进展[J]. 化学通报, 2021, 84(4): 290-304, 321.

    JIANG Xiaofeng, YU Weizhao, WANG Jiqian. The surface chemistry of natural materials for oil-water separation chemistry[J]. Chemistry, 2021, 84(4): 290-304, 321(in Chinese).
    [22] Pharmaceutical compounding and dispensing[J]. Journal of the American Medical Association, 1950, 143(9): 853-853.
    [23] HASSEGAWA M, VAN BRUSSELEN J, CRAMM M, et al. Wood-based products in the circular bioeconomy: Status and opportunities towards environmental sustainability[J]. Land, 2022, 11(12): 2131. doi: 10.3390/land11122131
    [24] BOVEA M D, VIDAL R. Materials selection for sustainable product design: A case study of wood based furniture eco-design[J]. Materials & Design, 2004, 25(2): 111-116.
    [25] JIN K, QIN Z, BUEHLER M J. Molecular deformation mechanisms of the wood cell wall material[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 42: 198-206.
    [26] XU Y, WU T, CUI Z, et al. In situ growth of COFs within wood microchannels for wastewater treatment and oil-water separation[J]. Separation and Purification Technology, 2022, 303: 122275. doi: 10.1016/j.seppur.2022.122275
    [27] WU J, CUI Z, YU Y, et al. A 3D smart wood membrane with high flux and efficiency for separation of stabilized oil/water emulsions[J]. Journal of Hazardous Materials, 2023, 441: 129900. doi: 10.1016/j.jhazmat.2022.129900
    [28] FANG Y, JING C, LI G, et al. Wood-derived systems for sustainable oil/water separation[J]. Advanced Sustainable Systems, 2021, 5(7): 2100039.
    [29] VIDIELLA DEL BLANCO M, FISCHER E J, CABANCE E. Underwater superoleophobic wood cross sections for efficient oil/water separation[J]. Advanced Materials Interfaces, 2017, 4(21): 1700584. doi: 10.1002/admi.201700584
    [30] CHENG Z, GUAN H, MENG J, et al. Dual-functional porous wood filter for simultaneous oil/water separation and organic pollutant removal[J]. ACS Omega, 2020, 5(23): 14096-14103. doi: 10.1021/acsomega.0c01606
    [31] BAI X, SHEN Y, TIAN H, et al. Facile fabrication of superhydrophobic wood slice for effective water-in-oil emulsion separation[J]. Separation and Purification Technology, 2019, 210: 402-408. doi: 10.1016/j.seppur.2018.08.010
    [32] ZHOU Y, QU K, LUO X, et al. Different machined wood slices for separation of both oil/water mixtures and emulsions[J]. Journal of Coatings Technology and Research, 2021, 18: 1431-1443. doi: 10.1007/s11998-021-00511-y
    [33] CAI Y, YU Y, WU J, et al. Durable, flexible, and super-hydrophobic wood membrane with nanopore by molecular cross-linking for efficient separation of stabilized water/oil emulsions[J]. EcoMat, 2022, 4(6): e12255.
    [34] CHEN Z, SU X, WU W, et al. Superhydrophobic PDMS@ TiO2 wood for photocatalytic degradation and rapid oil-water separation[J]. Surface and Coatings Technology, 2022, 434: 128182. doi: 10.1016/j.surfcoat.2022.128182
    [35] MA T, LI L, MEI C, et al. Construction of sustainable, fireproof and superhydrophobic wood template for efficient oil/water separation[J]. Journal of Materials Science, 2021, 56: 5624-5636. doi: 10.1007/s10853-020-05615-1
    [36] CHE W, ZHOU L, ZHOU Q, et al. Flexible Janus wood membrane with asymmetric wettability for high-efficient switchable oil/water emulsion separation[J]. Journal of Colloid and Interface Science, 2023, 629: 719-727. doi: 10.1016/j.jcis.2022.09.109
    [37] 戴国琛, 张泽天, 高文伟, 等. 油水乳液分离吸附材料的分离原理、构建方法和分离性能[J]. 化工进展, 2019, 38(4): 1785-1793.

    DAI Guochen, ZHANG Zetian, GAO Wenwei, et al. Separation principle, fabrication strategies and performance of sorbents for oil-water emulsions[J]. Chemical Industry and Engineering Progress, 2019, 38(4): 1785-1793(in Chinese).
    [38] 管浩, 戴鑫建, 王鑫, 等. 木基多孔油水分离材料研究进展[J]. 木材科学与技术, 2022, 36(1): 1-8.

    GUAN Hao, DAI Xinjian, WANG Xin, et al. Research review of wood-based porous materials for oil/water separation[J]. Chinese Journal of Wood Science and Technology, 2022, 36(1): 1-8(in Chinese).
    [39] ZHOU Y B, QU K G, LUO X Q, et al. Different machined wood slices for separation of both oil/water mixtures and emulsions[J]. Journal of Coatings Technology and Research, 2021, 18: 1431-1443. doi: 10.1007/s11998-021-00511-y
    [40] CAI Y, YU Y, WU J, et al. Durable, flexible, and super-hydrophobic wood membrane with nanopore by molecular cross-linking for efficient separation of stabilized water/oil emulsions[J]. EcoMat, 2022, 4(6): e12255. doi: 10.1002/eom2.12255
    [41] FANG Y, JING C, LI G, et al. Wood-derived systems for sustainable oil/water separation[J]. Advanced Sustainable Systems, 2021, 5(7): 2100039.
    [42] WU M B, HUANG S, LIU C, et al. Carboxylated wood-based sponges with underoil superhydrophilicity for deep dehydration of crude oil[J]. Journal of Materials Chemistry A, 2020, 8(22): 11354-11361. doi: 10.1039/D0TA03844J
    [43] GUAN H, CHENG Z, WANG X. Highly compressible wood sponges with a spring-like lamellar structure as effective and reusable oil absorbents[J]. ACS Nano, 2018, 12(10): 10365-10373. doi: 10.1021/acsnano.8b05763
    [44] CHENG R, YANG Y, LIU Q, et al. In-situ growth strategy to fabricate superhydrophobic wood by Na3(Cu2(CO3)3OH)∙4H2O for oil/water separation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 656: 130338. doi: 10.1016/j.colsurfa.2022.130338
    [45] CHEN Z, SU X, WU W, et al. Superhydrophobic PDMS@ GSH wood with Joule heat and photothermal effect for viscous crude oil removal[J]. Carbon, 2023, 201: 577-586. doi: 10.1016/j.carbon.2022.09.014
    [46] WANG P L, MA C, YUAN Q, et al. Novel Ti3C2T x MXene wrapped wood sponges for fast cleanup of crude oil spills by outstanding Joule heating and photothermal effect[J]. Journal of Colloid and Interface Science, 2022, 606: 971-982. doi: 10.1016/j.jcis.2021.08.092
    [47] FU Q, ANSARI F, ZHOU Q, et al. Wood nanotechnology for strong, mesoporous, and hydrophobic biocomposites for selective separation of oil/water mixtures[J]. ACS Nano, 2018, 12(3): 2222-2230. doi: 10.1021/acsnano.8b00005
    [48] ZHAO M, TAO Y, WANG J, et al. Facile preparation of superhydrophobic porous wood for continuous oil-water separation[J]. Journal of Water Process Engineering, 2020, 36: 101279.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  156
  • HTML全文浏览量:  46
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-30
  • 修回日期:  2024-03-26
  • 录用日期:  2024-04-04
  • 网络出版日期:  2024-04-19
  • 刊出日期:  2024-10-15

目录

    /

    返回文章
    返回