留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CeO2/CdxZn1-xS光催化剂的制备及其可见光催化产氢性能

胡雅楠 刘洁 徐凯旋 袁中强 高晓明

胡雅楠, 刘洁, 徐凯旋, 等. CeO2/CdxZn1-xS光催化剂的制备及其可见光催化产氢性能[J]. 复合材料学报, 2024, 42(0): 1-10.
引用本文: 胡雅楠, 刘洁, 徐凯旋, 等. CeO2/CdxZn1-xS光催化剂的制备及其可见光催化产氢性能[J]. 复合材料学报, 2024, 42(0): 1-10.
HU Yanan, LIU Jie, XU Kaixuan, et al. Preparation of CeO2/CdxZn1-xS Photocatalyst and its High-Performance Photocatalytic Hydrogen Production[J]. Acta Materiae Compositae Sinica.
Citation: HU Yanan, LIU Jie, XU Kaixuan, et al. Preparation of CeO2/CdxZn1-xS Photocatalyst and its High-Performance Photocatalytic Hydrogen Production[J]. Acta Materiae Compositae Sinica.

CeO2/CdxZn1-xS光催化剂的制备及其可见光催化产氢性能

基金项目: 国家自然科学基金 (22369022);陕西省创新能力支撑计划项目 (2024RS-CXTD-36);陕西省技术创新引导计划项目(2022QFY07-03)
详细信息
    通讯作者:

    高晓明,博士,教授,硕士生导师,研究方向为多相催化 E-mail: dawn1026@163.com

  • 中图分类号: X75; TB333

Preparation of CeO2/CdxZn1-xS Photocatalyst and its High-Performance Photocatalytic Hydrogen Production

Funds: National Natural Science Foundation of China (No. 22369022); Project of Innovation Capability Support Program of Shaanxi Province(No. 2024RS-CXTD-36); Technology Innovation Leading Program of Shaanxi (2022QFY07-03)
  • 摘要: 采用溶剂热法制备了CdxZn1-xS固溶体、CeO2/CdxZn1-xS异质结,并利用XRD、SEM、XPS等表征手段对其样品的晶型、形貌、结构、元素组成等进行了表征。可见光照射下,研究了CdxZn1-xS固溶体、CeO2/CdxZn1-xS异质结产氢性能。Cd0.3Zn0.7S异质结的产氢速率为3.86 mmol·g−1·h−1,分别是CdS、ZnS的4.85、11.03倍。当CeO2负载比例为10%时,CeO2/Cd0.3Zn0.7S异质结具有最佳的光催化性能,产氢速率为7.89 mmol·g−1·h−1,分别是CeO2、Cd0.3Zn0.7S固溶体的40.25、2.04倍。光照下,CeO2的电子迁移到CdxZn1-xS,使得靠近CeO2的异质结界面部分带正电,而靠近CdxZn1-xS的异质结界面部分带负电,形成内电场,增强了载流子分离与迁移性能。

     

  • 图  1  催化剂合成示意图

    Figure  1.  Diagram of catalyst synthesis

    图  2  CdxZn1-xS(CZS-X)的XRD图谱

    Figure  2.  XRD pattern of CdxZn1-xS (CZS-X)

    图  3  y%CCZS-0.3的XRD图谱

    Figure  3.  XRD pattern of y% CCZS-0.3

    图  4  (a) CZS-0.3的SEM图,(b) CeO2的SEM图,(c) 10% CCZS-0.3的SEM图

    Figure  4.  (a) SEM image of CZS-0.3, (b) SEM image of CeO2, (c) SEM image of 10% CCZS-0.3

    图  5  (a-c) 10%CCZS-0.3的的HR-TEM图,(d) 210%CCZS-0.3的EDS mapping,分别为Zn、Cd、S、Ce、O

    Figure  5.  ((a-c) HR-TEM image of 10%CCZS-0.3, (d) EDS mapping of 10%CCZS-0.3

    图  6  (a)样品的XPS全谱,样品的XPS,(b) S 2p,(c) Zn 2p,(d) Cd 3d,(e) O1s,(f) Ce3d

    Figure  6.  (a) XPS full spectrum of the sample, XPS of the sample, (b) S 2p,(c) Zn 2p,(d) Cd 3d,(e) O1s,(f) Ce3d

    图  7  CeO2、CZS-0.3、10% CCZS-0.3的EPR光谱

    Figure  7.  EPR spectrum of CeO2, CZS-0.3, 10% CCZS-0.

    图  8  (a) CZS-X的UV-Vis DRS谱图,(b) CeO2、CZS-0.3、10% CCZS-0.3的UV-Vis DRS谱图,(c) CeO2的带隙

    Figure  8.  (a) UV-Vis DRS of CZS-X, (b) The UV-Vis DRS of CeO2, CZS-0.3 and 10% CCZS-0.3, (c) Band gap of CeO2

    图  9  (a) CZS-0.3的带隙,(b) CeO2的XPS价带谱,(c) CZS-0.3的XPS价带谱

    Figure  9.  (a) Band gap of CZS-0.3, (b) Valence-band spectrum of CeO2, (cf) Valence-band spectrum of CZS-0.3

    图  10  (a)CeO2的能带结构,(b)CeO2的态密度,(c)CZS-0.3的能带结构,(d)CZS-0.3的态密度

    Figure  10.  (a)Band structure of CeO2, (b)Density of states for CeO2, (c)Band structure of CZS-0.3, (d) States density of CZS-0.3

    图  11  (a) CZS-X的光催化产氢性能,(b) CeO2、y%CCZS-0.3的光催化产氢性能,(c) y%CCZS-0.3的光催化产氢性能,(d) 10%CCZS-0.3的产氢稳定性试验,(e) 10%CCZS-0.3反应前后XRD谱图,(f) 10%CCZS-0.3的量子效率

    Figure  11.  (a) Photocatalytic hydrogen production of CZS-X, (b) Photocatalytic hydrogen production of CeO2 and y%CCZS-0.3, (c) Photocatalytic hydrogen production of y%CCZS-0.3, (d) Hydrogen production stability of 10%CCZS-0.3, (e) XRD patters of before and after five cycles of 10%CCZS-0.3, (f) Apparent quantum efficiency(AEQ) of 10%CCZS-0.3

    图  12  CeO2、CZS-0.3、10% CCZS-0.3的(a)瞬态光电流谱,(b)电化学阻抗谱,(c)光致发光光谱,(d-e)CZS-0.3和CeO2的Mott-Schottky曲线,(i)CZS-0.3和CeO2的能带结构示意图

    Figure  12.  (a) Transient photocurrent responses, (b) EIS spectra, (c) PL spectra of CeO2, CZS-0.3 and 10% CCZS-0.3, (d-e) Mott schottky curve CZS-0.3 and CeO2, (i) Band structure of CZS-0.3 and CeO2

    图  13  功函数(a)CeO2,(b)CZS-0.3

    Figure  13.  Work function calculation (a) CeO2, (b) CZS-0.3

    图  14  光催化产氢机制示意图(a)CeO2与CZS-0.3接触前,(b)CeO2与CZS-0.3形成异质结后,(c)光照下10%CCZS-0.3异质结光生电荷转移途径。Ef:费米能级;CB:导带;VB:价带

    Figure  14.  Schematic diagram of photocatalytic hydrogen production mechanism. (a) Before forming heterojunction, (b) After forming heterojunction, (c) Photogenerated charge transfer pathway of 10%CCZS-0.3 heterojunction under light. Ef: Fermi level; CB: Conduction band; VB: Valence band

  • [1] ZENG R, CHENG C, XING F, et al. Dual vacancies induced local polarization electric field for high-performance photocatalytic H2 production[J]. Applied Catalysis B: Environmental, 2022, 316: 121680. doi: 10.1016/j.apcatb.2022.121680
    [2] JIANG K B, HUANG W Q, SONG T T, et al. Photobreeding heterojunction on semiconductor materials for enhanced photocatalysis[J]. Advanced Functional Materials, 2023, 33(43): 2304351. doi: 10.1002/adfm.202304351
    [3] LUAN X, YU Z, ZI J, et al. Photogenerated defect-transit dual S-scheme charge separation for highly efficient hydrogen production[J]. Advanced Functional Materials, 2023, 33(42): 2304259. doi: 10.1002/adfm.202304259
    [4] JADHAV S R, MOHITE S V, LEE C, et al. In-situ synthesized oxygen vacancy filled ZnS/Vo-ZnO heterojunction photocatalysts for efficient H2 production[J]. Sustainable Materials and Technologies, 2023, 38: e00731. doi: 10.1016/j.susmat.2023.e00731
    [5] YU L, LI X, DUAN L, et al. Oxygen vacancies-induced dendritic SrTiO3/CdS p–n heterostructures photocatalyst for ultrahigh hydrogen evolution[J]. Solar RRL, 2023, 7(14): 2300259. doi: 10.1002/solr.202300259
    [6] AN S, ZHANG L, DING X, et al. A general strategy for the enhanced H2 production performance of CdS/noble metal sulfide nanorods photocatalysts by cation exchange[J]. Journal of Colloid and Interface Science, 2024, 664: 848-56. doi: 10.1016/j.jcis.2024.03.087
    [7] SONG Y, ZHENG X, YANG Y, et al. Heterojunction engineering of multinary metal sulfide-based photocatalysts for efficient photocatalytic hydrogen evolution[J]. Advanced Materials, 2024, 36(11): 2305835. doi: 10.1002/adma.202305835
    [8] WU P, LIU H, XIE Z, et al. Excellent charge separation of NCQDs/ZnS nanocomposites for the promotion of photocatalytic H2 evolution[J]. ACS Applied Materials & Interfaces, 2024, 16(13): 16601-11.
    [9] XING J, WANG Y, SHI G, et al. Defective Cd0.3Zn0.7S / 1 T-2 H MoS2 Z-scheme heterojunctions: Rational design with efficient charge transfer for enhanced photocatalytic H2 generation[J]. Journal of Alloys and Compounds, 2024, 988: 174302. doi: 10.1016/j.jallcom.2024.174302
    [10] MING Y, CHENG Z, SHI S, et al. Nanoarchitectonics toward full coverage of CdZnS nanospheres by layered double hydroxides for enhanced visible-light-driven H2 evolution[J]. Small, 2024, 2309750.
    [11] YANG L, TIAN Q, WANG X, et al. Interfacial-engineered Co3S4/MnCdS heterostructure for efficient photocatalytic hydrogen evolution[J]. Solar RRL, 2023, 7(17): 2300403. doi: 10.1002/solr.202300403
    [12] ZHANG W, HUANG Z, ZHANG L, et al. Construction of zinc-oxygen double vacancies BiOCl/ZnS Z-scheme heterojunction and photocatalytic degradation of norfloxacin[J]. Journal of Environmental Chemical Engineering, 2023, 11(3): 109979. doi: 10.1016/j.jece.2023.109979
    [13] ZHENG Y, WANG Y, MANSOOR S, et al. Tuning electrons migration of dual S defects mediated MoS2-x/ZnIn2S4-x toward highly efficient photocatalytic hydrogen production[J]. Small, 2024, 2311725.
    [14] YAN Y Q, WU Y Z, WU Y H, et al. Recent advances of CeO2-Based composite materials for photocatalytic applications[J]. ChemSusChem, 2024, e202301778.
    [15] GAO X, HE H, ZHU W, et al. Continuously flow photothermal catalysis efficiently CO2 reduction over S-scheme 2D/0D Bi5O7I-OVs/Cd0.5Zn0.5S heterojunction with strong interfacial electric field[J]. 2023, 19(12): 2206225.
    [16] ZOU X, SUN B, WANG L, et al. Enhanced photocatalytic degradation of tetracycline by SnS2/Bi2MoO6-x heterojunction: Multi-electric field modulation through oxygen vacancies and Z-scheme charge transfer[J]. Chemical Engineering Journal, 2024, 482: 148818. doi: 10.1016/j.cej.2024.148818
    [17] CHEN C, LI Q, WANG F, et al. Dual-vacancies modulation of 1T/2H heterostructured MoS2-CdS nanoflowers via radiolytic radical chemistry for efficient photocatalytic H2 evolution[J]. Journal of Colloid and Interface Science, 2024, 661: 345-357. doi: 10.1016/j.jcis.2024.01.200
    [18] ZHANG C, WANG Y, ZHANG X, et al. Self-nitrogen-doped carbon spheres assisted CeO2 composites as a bifunctional adsorbent/photocatalyst for CO2 photoreduction[J]. Fuel, 2024, 362: 130848. doi: 10.1016/j.fuel.2023.130848
    [19] SHEN C-H, CHEN Y, XU X-J, et al. Efficient photocatalytic H2 evolution and Cr(VI) reduction under visible light using a novel Z-scheme SnIn4S8/CeO2 heterojunction photocatalysts[J]. Journal of Hazardous Materials, 2021, 416: 126217. doi: 10.1016/j.jhazmat.2021.126217
    [20] GAO Z, SHI L, YAN F, et al. Two-dimensional supramolecular polymers based on selectively recognized aromatic cation-π and donor-acceptor motifs for photocatalytic hydrogen evolution[J]. Angewandte Chemie International Edition, 2023, 62(21): e202302274. doi: 10.1002/anie.202302274
    [21] LI Y, WAN S, LIANG W, et al. D–A conjugated polymer/CdS S-scheme heterojunction with enhanced interfacial charge transfer for efficient photocatalytic hydrogen generation[J]. Small, 2024, 2312104.
    [22] ZHANG X L, YUAN N, LI Y, et al. Fabrication of new MIL-53(Fe)@TiO2 visible-light responsive adsorptive photocatalysts for efficient elimination of tetracycline[J]. Chemical Engineering Journal, 2022, 428: 131077 doi: 10.1016/j.cej.2021.131077
  • 加载中
计量
  • 文章访问数:  115
  • HTML全文浏览量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-11
  • 修回日期:  2024-05-27
  • 录用日期:  2024-05-31
  • 网络出版日期:  2024-06-22

目录

    /

    返回文章
    返回