Preparation of CeO2/CdxZn1-xS Photocatalyst and its High-Performance Photocatalytic Hydrogen Production
-
摘要: 采用溶剂热法制备了CdxZn1-xS固溶体、CeO2/CdxZn1-xS异质结,并利用XRD、SEM、XPS等表征手段对其样品的晶型、形貌、结构、元素组成等进行了表征。可见光照射下,研究了CdxZn1-xS固溶体、CeO2/CdxZn1-xS异质结产氢性能。Cd0.3Zn0.7S异质结的产氢速率为3.86 mmol·g−1·h−1,分别是CdS、ZnS的4.85、11.03倍。当CeO2负载比例为10%时,CeO2/Cd0.3Zn0.7S异质结具有最佳的光催化性能,产氢速率为7.89 mmol·g−1·h−1,分别是CeO2、Cd0.3Zn0.7S固溶体的40.25、2.04倍。光照下,CeO2的电子迁移到CdxZn1-xS,使得靠近CeO2的异质结界面部分带正电,而靠近CdxZn1-xS的异质结界面部分带负电,形成内电场,增强了载流子分离与迁移性能。
-
关键词:
- CeO2/CdxZn1-xS /
- 固溶体 /
- 异质结 /
- 内电场 /
- 光催化产氢
Abstract: : CdxZn1-xS solid solution and CeO2/CdxZn1-xS heterojunction were prepared by solvothermal method, and the crystal shape, morphology, structure and elemental composition were characterized by XRD, SEM and XPS. The hydrogen production properties of CdxZn1-xS solid solution and CeO2/CdxZn1-xS heterojunction were studied under visible light irradiation. The hydrogen production rate of Cd0.3Zn0.7S heterojunction was 3.86 mmol·g−1·h−1, which was 4.85 and 11.03 times that of CdS and ZnS, respectively. When the CeO2 loading ratio was 10%, the CeO2/Cd0.3Zn0.7S heterojunction had the best photocatalytic performance, and the hydrogen production rate was 7.89 mmol·g−1·h−1, which was 40.25 and 2.04 times of that of CeO2 and Cd0.3Zn0.7S solid solutions, respectively. Under light, the electrons of CeO2 migrate to CdxZn1-xS, making the part of the heterojunction interface near CeO2 positively charged, while the part of the heterojunction interface near CdxZn1-xS negatively charged, forming an internal electric field, which enhanced the carrier separation and migration performance. -
图 11 (a) CZS-X的光催化产氢性能,(b) CeO2、y%CCZS-0.3的光催化产氢性能,(c) y%CCZS-0.3的光催化产氢性能,(d) 10%CCZS-0.3的产氢稳定性试验,(e) 10%CCZS-0.3反应前后XRD谱图,(f) 10%CCZS-0.3的量子效率
Figure 11. (a) Photocatalytic hydrogen production of CZS-X, (b) Photocatalytic hydrogen production of CeO2 and y%CCZS-0.3, (c) Photocatalytic hydrogen production of y%CCZS-0.3, (d) Hydrogen production stability of 10%CCZS-0.3, (e) XRD patters of before and after five cycles of 10%CCZS-0.3, (f) Apparent quantum efficiency(AEQ) of 10%CCZS-0.3
图 12 CeO2、CZS-0.3、10% CCZS-0.3的(a)瞬态光电流谱,(b)电化学阻抗谱,(c)光致发光光谱,(d-e)CZS-0.3和CeO2的Mott-Schottky曲线,(i)CZS-0.3和CeO2的能带结构示意图
Figure 12. (a) Transient photocurrent responses, (b) EIS spectra, (c) PL spectra of CeO2, CZS-0.3 and 10% CCZS-0.3, (d-e) Mott schottky curve CZS-0.3 and CeO2, (i) Band structure of CZS-0.3 and CeO2
图 14 光催化产氢机制示意图(a)CeO2与CZS-0.3接触前,(b)CeO2与CZS-0.3形成异质结后,(c)光照下10%CCZS-0.3异质结光生电荷转移途径。Ef:费米能级;CB:导带;VB:价带
Figure 14. Schematic diagram of photocatalytic hydrogen production mechanism. (a) Before forming heterojunction, (b) After forming heterojunction, (c) Photogenerated charge transfer pathway of 10%CCZS-0.3 heterojunction under light. Ef: Fermi level; CB: Conduction band; VB: Valence band
-
[1] ZENG R, CHENG C, XING F, et al. Dual vacancies induced local polarization electric field for high-performance photocatalytic H2 production[J]. Applied Catalysis B: Environmental, 2022, 316: 121680. doi: 10.1016/j.apcatb.2022.121680 [2] JIANG K B, HUANG W Q, SONG T T, et al. Photobreeding heterojunction on semiconductor materials for enhanced photocatalysis[J]. Advanced Functional Materials, 2023, 33(43): 2304351. doi: 10.1002/adfm.202304351 [3] LUAN X, YU Z, ZI J, et al. Photogenerated defect-transit dual S-scheme charge separation for highly efficient hydrogen production[J]. Advanced Functional Materials, 2023, 33(42): 2304259. doi: 10.1002/adfm.202304259 [4] JADHAV S R, MOHITE S V, LEE C, et al. In-situ synthesized oxygen vacancy filled ZnS/Vo-ZnO heterojunction photocatalysts for efficient H2 production[J]. Sustainable Materials and Technologies, 2023, 38: e00731. doi: 10.1016/j.susmat.2023.e00731 [5] YU L, LI X, DUAN L, et al. Oxygen vacancies-induced dendritic SrTiO3/CdS p–n heterostructures photocatalyst for ultrahigh hydrogen evolution[J]. Solar RRL, 2023, 7(14): 2300259. doi: 10.1002/solr.202300259 [6] AN S, ZHANG L, DING X, et al. A general strategy for the enhanced H2 production performance of CdS/noble metal sulfide nanorods photocatalysts by cation exchange[J]. Journal of Colloid and Interface Science, 2024, 664: 848-56. doi: 10.1016/j.jcis.2024.03.087 [7] SONG Y, ZHENG X, YANG Y, et al. Heterojunction engineering of multinary metal sulfide-based photocatalysts for efficient photocatalytic hydrogen evolution[J]. Advanced Materials, 2024, 36(11): 2305835. doi: 10.1002/adma.202305835 [8] WU P, LIU H, XIE Z, et al. Excellent charge separation of NCQDs/ZnS nanocomposites for the promotion of photocatalytic H2 evolution[J]. ACS Applied Materials & Interfaces, 2024, 16(13): 16601-11. [9] XING J, WANG Y, SHI G, et al. Defective Cd0.3Zn0.7S / 1 T-2 H MoS2 Z-scheme heterojunctions: Rational design with efficient charge transfer for enhanced photocatalytic H2 generation[J]. Journal of Alloys and Compounds, 2024, 988: 174302. doi: 10.1016/j.jallcom.2024.174302 [10] MING Y, CHENG Z, SHI S, et al. Nanoarchitectonics toward full coverage of CdZnS nanospheres by layered double hydroxides for enhanced visible-light-driven H2 evolution[J]. Small, 2024, 2309750. [11] YANG L, TIAN Q, WANG X, et al. Interfacial-engineered Co3S4/MnCdS heterostructure for efficient photocatalytic hydrogen evolution[J]. Solar RRL, 2023, 7(17): 2300403. doi: 10.1002/solr.202300403 [12] ZHANG W, HUANG Z, ZHANG L, et al. Construction of zinc-oxygen double vacancies BiOCl/ZnS Z-scheme heterojunction and photocatalytic degradation of norfloxacin[J]. Journal of Environmental Chemical Engineering, 2023, 11(3): 109979. doi: 10.1016/j.jece.2023.109979 [13] ZHENG Y, WANG Y, MANSOOR S, et al. Tuning electrons migration of dual S defects mediated MoS2-x/ZnIn2S4-x toward highly efficient photocatalytic hydrogen production[J]. Small, 2024, 2311725. [14] YAN Y Q, WU Y Z, WU Y H, et al. Recent advances of CeO2-Based composite materials for photocatalytic applications[J]. ChemSusChem, 2024, e202301778. [15] GAO X, HE H, ZHU W, et al. Continuously flow photothermal catalysis efficiently CO2 reduction over S-scheme 2D/0D Bi5O7I-OVs/Cd0.5Zn0.5S heterojunction with strong interfacial electric field[J]. 2023, 19(12): 2206225. [16] ZOU X, SUN B, WANG L, et al. Enhanced photocatalytic degradation of tetracycline by SnS2/Bi2MoO6-x heterojunction: Multi-electric field modulation through oxygen vacancies and Z-scheme charge transfer[J]. Chemical Engineering Journal, 2024, 482: 148818. doi: 10.1016/j.cej.2024.148818 [17] CHEN C, LI Q, WANG F, et al. Dual-vacancies modulation of 1T/2H heterostructured MoS2-CdS nanoflowers via radiolytic radical chemistry for efficient photocatalytic H2 evolution[J]. Journal of Colloid and Interface Science, 2024, 661: 345-357. doi: 10.1016/j.jcis.2024.01.200 [18] ZHANG C, WANG Y, ZHANG X, et al. Self-nitrogen-doped carbon spheres assisted CeO2 composites as a bifunctional adsorbent/photocatalyst for CO2 photoreduction[J]. Fuel, 2024, 362: 130848. doi: 10.1016/j.fuel.2023.130848 [19] SHEN C-H, CHEN Y, XU X-J, et al. Efficient photocatalytic H2 evolution and Cr(VI) reduction under visible light using a novel Z-scheme SnIn4S8/CeO2 heterojunction photocatalysts[J]. Journal of Hazardous Materials, 2021, 416: 126217. doi: 10.1016/j.jhazmat.2021.126217 [20] GAO Z, SHI L, YAN F, et al. Two-dimensional supramolecular polymers based on selectively recognized aromatic cation-π and donor-acceptor motifs for photocatalytic hydrogen evolution[J]. Angewandte Chemie International Edition, 2023, 62(21): e202302274. doi: 10.1002/anie.202302274 [21] LI Y, WAN S, LIANG W, et al. D–A conjugated polymer/CdS S-scheme heterojunction with enhanced interfacial charge transfer for efficient photocatalytic hydrogen generation[J]. Small, 2024, 2312104. [22] ZHANG X L, YUAN N, LI Y, et al. Fabrication of new MIL-53(Fe)@TiO2 visible-light responsive adsorptive photocatalysts for efficient elimination of tetracycline[J]. Chemical Engineering Journal, 2022, 428: 131077 doi: 10.1016/j.cej.2021.131077
计量
- 文章访问数: 115
- HTML全文浏览量: 74
- 被引次数: 0