留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有高导电性的PVDF/MWCNTs-AgNWs@MXene双层三维网络的电磁屏蔽复合薄膜

施鸥玲 谭妍妍 武晓 龙雪彬 秦舒浩

施鸥玲, 谭妍妍, 武晓, 等. 具有高导电性的PVDF/MWCNTs-AgNWs@MXene双层三维网络的电磁屏蔽复合薄膜[J]. 复合材料学报, 2023, 42(0): 1-11.
引用本文: 施鸥玲, 谭妍妍, 武晓, 等. 具有高导电性的PVDF/MWCNTs-AgNWs@MXene双层三维网络的电磁屏蔽复合薄膜[J]. 复合材料学报, 2023, 42(0): 1-11.
SHI Ouling, TAN Yanyan, WU Xiao, et al. PVDF/MWCNTs-AgNWs@MXene bilayer 3 D networks electromagnetic shielding composite films with highly conductive[J]. Acta Materiae Compositae Sinica.
Citation: SHI Ouling, TAN Yanyan, WU Xiao, et al. PVDF/MWCNTs-AgNWs@MXene bilayer 3 D networks electromagnetic shielding composite films with highly conductive[J]. Acta Materiae Compositae Sinica.

具有高导电性的PVDF/MWCNTs-AgNWs@MXene双层三维网络的电磁屏蔽复合薄膜

基金项目: 黔科合服企〔2023〕001;黔科合中引地〔2023〕035;观科合同〔2022〕02
详细信息
    通讯作者:

    秦舒浩,男,博士,研究员;主要从事聚合物材料的共混改性、聚合物材料的聚集态结构与性能。 E-mail:qinshuhao@126.com

  • 中图分类号: TB332

PVDF/MWCNTs-AgNWs@MXene bilayer 3 D networks electromagnetic shielding composite films with highly conductive

Funds: Qiankehe Service Enterprises [2023] 001; Qiankehezhongyindi[2023]035; Guanke Contract [2022] 02
  • 摘要: 随着通信网络、无线设备以及航空航天的快速发展,电磁波危害日益加剧,因而急需电磁屏蔽性能更优异的复合材料。本文采用MXene (Ti3C2Tx)、银纳米线(AgNWs)和多壁碳纳米管(MWCNTs)构建了双层的高导电三维(导电率最高为1.4×104 S·m−1)网络电磁屏蔽复合薄膜(Ti3C2Tx MXene基功能复合薄膜)。特别是采取真空辅助抽滤法(VAF)将10 mL AgNWs以及15 mL Ti3C2Tx MXene的水溶液吸附于聚偏氟乙烯(PVDF)/MWCNTs复合薄膜之上,制备出的Ti3C2Tx MXene基功能复合薄膜的总电磁干扰屏蔽效能(EMI SET)高达69.0 dB,比商用标准(20 dB)高出245%,其中吸收损耗效能(SEA)占比85.1%。说明Ti3C2Tx MXene基功能复合薄膜主要的电磁损耗机制为吸收损耗,比电磁屏蔽效能(SSEt)最高可达2719.8 dB/(cm−2·g)。这项工作为新型MXene材料在电磁屏蔽复合材料中的应用提供了结构设计和研究思路。

     

  • 图  1  PVDF/MWCNTs-3 wt%-AgNWs@MXene-X(M3-Ag@MX-X)双层复合薄膜的制备流程图

    Figure  1.  Flow chart for the preparation of PVDF/MWCNTs-3 wt%-AgNWs@MXene-X (M3-Ag@MX-X) bilayer composite films

    PVDF—poly(vinylidene fluoride); MWCNTs—multi-walled carbon nanotubes; AgNWs—silver nanowires

    图  2  Ti3C2Tx MXene的SEM图片 (a)和EDS(b)以及Ti3AlC2(刻蚀前)和Ti3C2Tx MXene(刻蚀后)的XRD谱图(c)AgNWs的SEM形貌分析(d)和XRD谱图(e)以及Ti3C2Tx MXene、AgNWs和AgNWs@MXene的FTIR谱图(f)

    Figure  2.  SEM images of Ti3C2Tx MXene (a) and EDS (b) and XRD spectra of Ti3AlC2 (before etching) and Ti3C2Tx MXene (after etching) (c) SEM morphology analysis (d) and XRD spectra of AgNWs (e) and FTIR spectra ofTi3C2Tx MXene, AgNWs and AgNWs@MXene (f)

    图  3  PVDF/MWCNTs-3 wt%-MXene-X双层复合薄膜的形貌表征(a、b、c分别代表M3-MX-0、M3-MX-10、M3-MX-20;1:表观形貌;2:底层局部放大形貌;3:断面形貌;4:抽滤层局部放大形貌)

    Figure  3.  Morphological characterisation of PVDF/MWCNTs-3 wt%-MXene-X bilayer composite films(a, b, c represent M3-MX-0, M3-MX-10, M3-MX-20, respectively; 1: apparent appearance; 2: local enlargement of the bottom layer; 3: cross-section appearance; 4: local enlargement of the extraction layer)

    图  4  PVDF/MWCNTs-3 wt%-AgNWs@MXene-X双层复合薄膜的形貌表征(A、B、C分别代表M3-Ag@MX-0、M3-Ag@MX-10、M3-Ag@MX-20;1:表观形貌;2:底层局部放大形貌;3:断面形貌;4:抽滤层局部放大形貌)

    Figure  4.  Morphological characterisation of PVDF/MWCNTs-3 wt%/AgNWs@MXene-X bilayer composite films (A, B, C represent M3-Ag@MX-0, M3-Ag@MX-10, M3-Ag@MX-20, respectively; 1: apparent appearance; 2: local enlargement of the bottom layer; 3: cross-section appearance; 4: local enlargement of the extraction layer)

    图  5  (a)PVDF/MWCNTs-3 wt%-MXene-X双层复合薄膜导电率曲线;(b)PVDF/MWCNTs-3 wt%-AgNWs@MXene-X双层复合薄膜的导电率曲线

    Figure  5.  Electrical conductivity curve: (a)PVDF/MWCNTs-3 wt%-MXene-X bilayer composite films; (b)PVDF/MWCNTs-3 wt%-AgNWs@MXene-X bilayer composite films

    图  6  PVDF/MWCNTs-3 wt%-MXene-X双层复合薄膜(a、b、e和f)和PVDF/MWCNTs-3 wt%-AgNWs@MXene-X(c、d、g和h)双层复合薄膜的电磁屏蔽性能

    Figure  6.  Electromagnetic shielding properties of PVDF/MWCNTs-3 wt%-MXene-X bilayer composite film (a、b、e and f)) and PVDF/MWCNTs-3 wt%-AgNWs@MXene-X (c、d、g and h) bilayer composite film

    图  7  PVDF/MWCNTs-AgNWs@MXene双层复合薄膜的电磁屏蔽机制分析图

    Figure  7.  Analysis of electromagnetic shielding mechanism of PVDF/MWCNTs-AgNWs@MXene bilayer composite film

    表  1  不同Ti3C2Tx MXene含量的双层复合薄膜的导电性能数据

    Table  1.   Conductivities of bilayer composite films with different Ti3C2Tx MXene contents

    Sample items Thickness/
    mm
    Electrical conductivity/(S·m−1) Conductivity
    growth rate/%
    M3-MX-0 0.57 2.5×100
    M3-MX-5 0.46 5.9×100 57.6
    M3-MX-10 0.42 7.9×100 25.3
    M3-MX-15 0.39 8.7×100 9.2
    M3-MX-20 0.50 7.5×100 −16.0
    M3-MX-25 0.44 5.5×100 −36.4
    M3-Ag@MX-0 0.51 4.1×103 99.9
    M3-Ag@MX-5 0.46 5.1×103 19.6
    M3-Ag@MX-10 0.6 8.5×103 40.0
    M3-Ag@MX-15 0.47 1.4×104 39.3
    M3-Ag@MX-20 0.43 1.3×104 −7.7
    M3-Ag@MX-25 0.46 1.2×104 −8.3
    下载: 导出CSV

    表  2  不同Ti3C2Tx MXene含量的双层复合薄膜的电磁屏蔽效能数据

    Table  2.   Electromagnetic shielding effectiveness data of bilayer composite films with different Ti3C2Tx MXene contents

    Sample items SET/dB SER/dB SEA/dB SEA/SER/% SSEtdB/(cm−2·g)
    M3-MX-0 5.0 0.9 4.0 4.3 87.6
    M3-MX-5 6.8 1.5 5.3 3.5 147.5
    M3-MX-10 7.2 1.7 5.5 3.2 171.0
    M3-MX-15 7.0 1.7 5.3 3.0 180.2
    M3-MX-20 6.9 1.8 5.0 2.8 137.1
    M3-MX-25 6.9 1.6 5.4 3.5 157.7
    M3-Ag@MX-0 60.2 9.5 50.8 4.6 2487.7
    M3-Ag@MX-5 60.4 10.7 49.5 5.3 2102.2
    M3-Ag@MX-10 61.5 9.5 52.0 5.5 2068.3
    M3-Ag@MX-15 69.0 10.3 58.7 5.7 2356.6
    M3-Ag@MX-20 68.2 10.3 57.8 5.6 2719.8
    M3-Ag@MX-25 67.9 10.0 57.9 5.8 2439.4
    Notes: The values of SET (dB), SEA (dB), and SER (dB) in the table are the average values obtained at 8.2-12.4 GHz. SEA/SER is the ratio of absorption loss SEA to reflection loss SER. SSEt denotes the ratio of EMI SE.
    下载: 导出CSV
  • [1] SHARMA R, CLOWER W, RADADIA A D, et al. Development of geopolymer composites for EMI shielding from steel industry waste[J]. Journal of Materials Science:Materials in Electronics, 2022, 33(8): 1-15.
    [2] BATOOL S, BIBI A, F FREZZA, et al. Benefits and hazards of electromagnetic waves, telecommunication, physical and biomedical: a review[J]. European review for medical and pharmacological sciences, 2019, 23(7): 3121-3128.
    [3] LI Y M, LI Y R, HU WJ, et al. Designing of an rGO-based heterostructure for highly efficient microwave absorption performance and flame retardancy[J]. Ceramics International, 2023, 49(20): 32600-32610. doi: 10.1016/j.ceramint.2023.07.227
    [4] ZHANG WM, ZHAO B, NI N, et al. High entropy rare earth hexaborides/tetraborides (HE REB6/HE REB4) composite powders with enhanced electromagnetic wave absorption performance[J]. Journal of Materials Science & Technology, 2021, 87: 155-166.
    [5] TENG R, SUN JM, NIE YX, et al. An ultra-thin and highly efficient electromagnetic interference shielding composite paper with hydrophobic and antibacterial properties[J]. International journal of biological macromolecules, 2023: 127510-127510.
    [6] LI J T, LI JZ, LI T, et al. Flexible and excellent electromagnetic interference shielding film with porous alternating PVA-derived carbon and graphene layers[J]. iScience, 2023, 26(10): 107975-107975. doi: 10.1016/j.isci.2023.107975
    [7] DU C L, WAN G P, WU LH, et al. Iron-doped nickel-cobalt bimetallic phosphide nanowire hybrids for solid-state supercapacitors with excellent electromagnetic interference shielding[J]. Journal of colloid and interface science, 2023, 654(Pt A): 486-494.
    [8] ZAHID M, ANUM R, SIDDIQUE S, et al. Polyaniline-based nanocomposites for electromagnetic interference shielding applications: A review[J]. Journal of Thermoplastic Composite Materials, 2023, 36(4): 1717-1761. doi: 10.1177/08927057211022408
    [9] WANG Z, FAN J, GUO X, et al. Enhanced permittivity of negative permittivity middle-layer sandwich polymer matrix composites through conductive filling with flake MAX phase ceramics[J]. RSC Advances, 2020, 10(45): 27025-27032. doi: 10.1039/D0RA03493B
    [10] FARD K H A, GHASEMI R, MOHAMMADI B. Study of EMI-Based Damage Type Identification in a Cracked Metallic Specimen Repaired by a Composite Patch[J]. Russian Journal of Nondestructive Testing, 2020, 56(6): 540-548. doi: 10.1134/S1061830920060054
    [11] XIA Y X, GAO W W, GAO C. A Review on Graphene-Based Electromagnetic Functional Materials: Electromagnetic Wave Shielding and Absorption[J]. Advanced Functional Materials, 2022, 32(42): 1-36.
    [12] LUO W, JIANG X, LIU Y, et al. Entropy-Driven Morphology Regulation of MAX Phase Solid Solutions with Enhanced Microwave Absorption and Thermal Insulation Performance[J]. Small (Weinheim an der Bergstrasse, Germany), 2023: e2305453-e2305453.
    [13] YAO Y Y, JIN S H, ZOU H M, et al. Polymer-based lightweight materials for electromagnetic interference shielding: a review[J]. Journal of Materials Science, 2021, 56(11): 1-32.
    [14] YANG L, CHEN Y H, WANG M, et al. Fused Deposition Modeling 3D Printing of Novel Poly(vinyl alcohol)/Graphene Nanocomposite with Enhanced Mechanical and Electromagnetic Interference Shielding Properties[J]. Industrial & Engineering Chemistry Research, 2020, 59(16): 8066-8077.
    [15] JIANG D W, MURUGADOSS V, WANG Y, et al. Electromagnetic Interference Shielding Polymers and Nanocomposites - A Review[J]. Polymer Reviews, 2019, 59(2): 280-337. doi: 10.1080/15583724.2018.1546737
    [16] HSIAO S, MA C M , LIAO W. Lightweight and Flexible Reduced Graphene Oxide/Water-Borne Polyurethane Composites with High Electrical Conductivity and Excellent Electromagnetic Interference Shielding Performance[J]. ACS applied materials & interfaces, 2014, 6(13): 10667-10678.
    [17] HUANG X, TUERSUN Y, LUO P, et al. In-situ reduction of AgNPs on MXene surfaces for synthesis of efficient thermally conductive composites with powerful electromagnetic shielding capabilities[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2023, 677(PB): 132444.
    [18] XIONG C Y, WANG T X, ZHOU L F, et al. Fabrication of dual-function conductive cellulose-based composites with layered conductive network structures for supercapacitors and electromagnetic shielding[J]. Chemical Engineering Journal, 2023, 472: 144958. doi: 10.1016/j.cej.2023.144958
    [19] GAO Q, Yu Z, ZHANG S, et al. Hierarchical structured epoxy/reduced graphene oxide/Ni-chains microcellular composite foam for high-performance electromagnetic interference shielding[J]. Composites Part A, 2023, 170: 107536. doi: 10.1016/j.compositesa.2023.107536
    [20] MA Z L, KANG S L, MA J Z, et al. Military and Defense; Studies from Shaanxi University of Science and Technology Update Current Data on Military and Defense (Ultraflexible and Mechanically Strong Double-layered Aramid Nanofiber-Ti3C2Tx Mxene/silver Nanowire Nanocomposite Papers for High-performance )[J]. Defense & Aerospace Week, 2020, 14(7): 8368-8382.
    [21] QU Y F, LI X, WANG X, et al. Multifunctional AgNWs@MXene/AgNFs electromagnetic shielding composites for flexible and highly integrated advanced electronics[J]. Composites Science and Technology, 2022, 230: 109753. doi: 10.1016/j.compscitech.2022.109753
    [22] IQBAL A, HASSAN T, GAO Z G, et al. MXene-incorporated 1D/2D nano-carbons for electromagnetic shielding: A review[J]. Carbon, 2023, 203(25): 542-560.
    [23] CHU Q D, LIN H, MA M, et al. Cellulose Nanofiber/Graphene Nanoplatelet/MXene Nanocomposites for Enhanced Electromagnetic Shielding and High In-Plane Thermal Conductivity[J]. ACS Applied Nano Materials, 2022, 5(5): 7217-7227. doi: 10.1021/acsanm.2c01126
    [24] ZHU L L, MO R, YIN C G, et al. Synergistically Constructed Electromagnetic Network of Magnetic Particle-Decorated Carbon Nanotubes and MXene for Efficient Electromagnetic Shielding[J]. ACS Appl. Mater. Interfaces, 2022, 14(50): 56120-56131. doi: 10.1021/acsami.2c17696
    [25] SHAHZAD F, ALHABEB M, HATTER B C, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes)[J]. Science, 2016, 353(6304): 1137-1140. doi: 10.1126/science.aag2421
    [26] XIN W, XI G, CAO W, ET AL. Lightweight and flexible MXene/CNF/silver composite membranes with a brick-like structure and high-performance electromagnetic-interference shielding[J]. RSC Advances, 2019: 2046-2069.
    [27] CHARD K, ZHANG X, CHEN Y J. Recent progress in MXene and graphene based nanocomposites for microwave absorption and electromagnetic interference shielding[J]. Arabian Journal of Chemistry, 2022, 15(10): 104143. doi: 10.1016/j.arabjc.2022.104143
    [28] HAN Y X, RUAN K P, GU J W, et al. Janus (BNNS/ANF)-(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and Joule heating performances[J]. Nano Research, 2022, 15(5): 1-9.
    [29] TAN Y Y, XUE Y, LI K T, et al. PVDF/MWCNTs/RGO@Fe3O4/AgNWs composite film with a bilayer structure for high EMI shielding and electrical conductivity[J]. Polymer Composites, 2023: 1-16.
    [30] 谭东宸. 基于银纳米管网络的柔性透明电磁屏蔽薄膜 [D]; 大连理工大学, 2022.

    TAN D C. Flexible and transparent electromagnetic shielding films based on silver nanotube networks [D]; Dalian University of Technology, 2022(in Chinese).
    [31] JIANG Z Y, ZHAO S Q, CHEN L S, et al. Freestanding "core-shell" AgNWs/metallic hybrid mesh electrodes for a highly efficient transparent electromagnetic interference shielding film[J]. Optics express, 2021, 29(12): 18760-18768. doi: 10.1364/OE.423369
    [32] KHOT A C, DONGALE T D, PARK J H, et al. Ti3C2-Based MXene Oxide Nanosheets for Resistive Memory and Synaptic Learning Applications[J]. ACS Applied Materials & Interfaces, 2021, 13(4): 5216-5227.
    [33] 李亚萍. 缝型及缝迹对电磁屏蔽服装屏蔽效能的影响 [D]; 中原工学院, 2018.

    Li Y P. Effect of sewing type and stitching on shielding effectiveness of electromagnetic shielding garments [D]; Zhongyuan Institute of Technology, 2018(in Chinese).
    [34] CHENG C B, JIANG Y L, SUN X, et al. Tunable negative permittivity behavior and electromagnetic shielding performance of silver/silicon nitride metacomposites[J]. Composites Part A, 2020, 130: 105753-105753. doi: 10.1016/j.compositesa.2019.105753
  • 加载中
计量
  • 文章访问数:  218
  • HTML全文浏览量:  121
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-02
  • 修回日期:  2023-11-20
  • 录用日期:  2023-11-23
  • 网络出版日期:  2023-12-12

目录

    /

    返回文章
    返回