留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高导电性PVDF/MWCNTs-AgNWs@MXene双层三维网络的电磁屏蔽复合薄膜的构建

施鸥玲 谭妍妍 武晓 龙雪彬 秦舒浩

施鸥玲, 谭妍妍, 武晓, 等. 高导电性PVDF/MWCNTs-AgNWs@MXene双层三维网络的电磁屏蔽复合薄膜的构建[J]. 复合材料学报, 2024, 41(8): 4200-4210. doi: 10.13801/j.cnki.fhclxb.20231205.004
引用本文: 施鸥玲, 谭妍妍, 武晓, 等. 高导电性PVDF/MWCNTs-AgNWs@MXene双层三维网络的电磁屏蔽复合薄膜的构建[J]. 复合材料学报, 2024, 41(8): 4200-4210. doi: 10.13801/j.cnki.fhclxb.20231205.004
SHI Ouling, TAN Yanyan, WU Xiao, et al. Construction of high conductive PVDF/MWCNTs-AgNWs@MXene bilayer 3D networks electromagnetic shielding composite films[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 4200-4210. doi: 10.13801/j.cnki.fhclxb.20231205.004
Citation: SHI Ouling, TAN Yanyan, WU Xiao, et al. Construction of high conductive PVDF/MWCNTs-AgNWs@MXene bilayer 3D networks electromagnetic shielding composite films[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 4200-4210. doi: 10.13801/j.cnki.fhclxb.20231205.004

高导电性PVDF/MWCNTs-AgNWs@MXene双层三维网络的电磁屏蔽复合薄膜的构建

doi: 10.13801/j.cnki.fhclxb.20231205.004
基金项目: 黔科合服企〔2023〕001;黔科合中引地〔2023〕035;观科合同〔2022〕02
详细信息
    通讯作者:

    秦舒浩,博士,研究员,研究方向为聚合物材料的共混改性、聚合物材料的聚集态结构与性能 E-mail: qinshuhao@126.com

  • 中图分类号: TB332

Construction of high conductive PVDF/MWCNTs-AgNWs@MXene bilayer 3D networks electromagnetic shielding composite films

Funds: Qiankehe Service Enterprises [2023] 001; Qiankehe Zhongyindi[2023]035; Guanke Contract [2022] 02
  • 摘要: 随着通信网络、无线设备及航空航天的快速发展,电磁波危害日益加剧,因而亟需电磁屏蔽性能更优异的复合材料。本文采用MXene (Ti3C2Tx)、银纳米线(AgNWs)和多壁碳纳米管(MWCNTs)构建了双层的高导电三维(导电率最高为1.4×104 S·m−1)网络电磁屏蔽复合薄膜(Ti3C2Tx MXene基功能复合薄膜)。特别是采取真空辅助抽滤法(VAF)将10 mL AgNWs及15 mL Ti3C2Tx MXene的水溶液吸附于聚偏氟乙烯(PVDF)/MWCNTs复合薄膜之上,制备出的Ti3C2Tx MXene基功能复合薄膜的总电磁干扰屏蔽效能(EMI SET)高达69.0 dB,比商用标准(20 dB)高出245%,其中吸收损耗效能(SEA)占比85.1%。说明Ti3C2Tx MXene基功能复合薄膜主要的电磁损耗机制为吸收损耗,比电磁屏蔽效能(SSE/t)最高可达2719.8 dB/(cm−2·g)。这项工作为新型MXene材料在电磁屏蔽复合材料中的应用提供了结构设计和研究思路。

     

  • 图  1  PVDF/MWCNTs-3wt%-AgNWs@MXene-X (M3-Ag@MX-X)双层复合薄膜的制备流程图

    Figure  1.  Flow chart for the preparation of PVDF/MWCNTs-3wt%-AgNWs@MXene-X (M3-Ag@MX-X) bilayer composite films

    PVDF—Poly(vinylidene fluoride); MWCNTs—Multi-walled carbon nanotubes; AgNWs—Silver nanowires; PVP K30—Polyvinylpyrrolidone

    图  2  Ti3C2Tx MXene的SEM图像 (a)和EDS (b)及Ti3AlC2 (刻蚀前)和Ti3C2Tx MXene (刻蚀后)的XRD图谱(c);AgNWs的SEM图像(d)和XRD图谱(e)及Ti3C2Tx MXene、AgNWs和AgNWs@MXene的FTIR图谱(f)

    Figure  2.  SEM image (a) and EDS mapping (b) of Ti3C2Tx MXene and XRD pattern of Ti3AlC2 (before etching) and Ti3C2Tx MXene (after etching) (c); SEM image (d) and XRD pattern (e) of AgNWs and FTIR spectra of Ti3C2Tx MXene, AgNWs and AgNWs@MXene (f)

    图  3  PVDF/MWCNTs-3wt%-MXene-X双层复合薄膜的SEM图像(a、b、c分别代表M3-MX-0、M3-MX-10、M3-MX-20;1:表观形貌;2:底层局部放大形貌;3:断面形貌;4:抽滤层局部放大形貌)

    Figure  3.  SEM images of PVDF/MWCNTs-3wt%-MXene-X bilayer composite films (a, b, c represent M3-MX-0, M3-MX-10, M3-MX-20, respectively; 1: Apparent appearance; 2: Local enlargement of the bottom layer; 3: Cross-section appearance; 4: Local enlargement of the extraction layer)

    图  4  PVDF/MWCNTs-3wt%-AgNWs@MXene-X双层复合薄膜的SEM图像(A、B、C分别代表M3-Ag@MX-0、M3-Ag@MX-10、M3-Ag@MX-20;1:表观形貌;2:底层局部放大形貌;3:断面形貌;4:抽滤层局部放大形貌)

    Figure  4.  SEM images of PVDF/MWCNTs-3wt%-AgNWs@MXene-X bilayer composite films (A, B, C represent M3-Ag@MX-0, M3-Ag@MX-10, M3-Ag@MX-20, respectively; 1: Apparent appearance; 2: Local enlargement of the bottom layer; 3: Cross-section appearance; 4: Local enlargement of the extraction layer)

    图  5  (a) PVDF/MWCNTs-3wt%-MXene-X双层复合薄膜导电率曲线;(b) PVDF/MWCNTs-3wt%-AgNWs@MXene-X双层复合薄膜的导电率曲线

    Figure  5.  Electrical conductivity curves: (a) PVDF/MWCNTs-3wt%-MXene-X bilayer composite films; (b) PVDF/MWCNTs-3wt%-AgNWs@MXene-X bilayer composite films

    图  6  PVDF/MWCNTs-3wt%-MXene-X双层复合薄膜((a), (b), (e), (f))和PVDF/MWCNTs-3wt%-AgNWs@MXene-X ((c), (d), (g), (h))双层复合薄膜的电磁屏蔽性能

    EMI—Electromagnetic interference; SET, SEA, SER—Total electromagnetic shielding efficiency, electromagnetic absorption efficiency, electromagnetic reflection efficiency; SSEt—The ratio of total electromagnetic shielding efficiency

    Figure  6.  Electromagnetic shielding properties of PVDF/MWCNTs-3wt%-MXene-X bilayer composite film ((a), (b), (e), (f)) and PVDF/MWCNTs-3wt%-AgNWs@MXene-X ((c), (d), (g), (h)) bilayer composite film

    图  7  PVDF/MWCNTs-AgNWs@MXene双层复合薄膜的电磁屏蔽机制分析图

    Figure  7.  Analysis of electromagnetic shielding mechanism of PVDF/MWCNTs-AgNWs@MXene bilayer composite film

    表  1  聚偏氟乙烯/多壁碳纳米管-3wt%-银纳米线@MXene-X (PVDF/MWCNTs-3wt%-AgNWs@MXene-X)各层铸膜液配方

    Table  1.   Poly(vinylidene fluoride)/multi-walled carbon nanotubes-3wt%-silver nanowires@MXene-X (PVDF/MWCNTs-3wt%-AgNWs@MXene-X) formulations for each layer of cast film solution

    Sample The bottom layer The top layer
    PVDF/wt% MWCNTs/wt% PVP K30/wt% DMAC/wt% RGO@Fe3O4/mL PVP K30/g AgNWs/mL
    M3-MX-0 13 3 0.5 83.5 0 0.5 0
    M3-MX-5 13 3 0.5 83.5 5 0.5 0
    M3-MX-10 13 3 0.5 83.5 10 0.5 0
    M3-MX-15 13 3 0.5 83.5 15 0.5 0
    M3-MX-20 13 3 0.5 83.5 20 0.5 0
    M3-MX-25 13 3 0.5 83.5 25 0.5 0
    M3-Ag@MX-0 13 3 0.5 83.5 10 0.5 0
    M3-Ag@MX-5 13 3 0.5 83.5 10 0.5 5
    M3-Ag@MX-10 13 3 0.5 83.5 10 0.5 10
    M3-Ag@MX-15 13 3 0.5 83.5 10 0.5 15
    M3-Ag@MX-20 13 3 0.5 83.5 10 0.5 20
    M3-Ag@MX-25 13 3 0.5 83.5 10 0.5 25
    Notes: PVP K30—Polyvinyl pyrrolidone; DMAC—Dimethylacetamide; RGO—Reduced graphene oxide.
    下载: 导出CSV

    表  2  不同Ti3C2Tx MXene含量的双层复合薄膜的导电性能数据

    Table  2.   Conductivities of bilayer composite films with different Ti3C2Tx MXene contents

    Sample Thickness/
    mm
    Electrical conductivity/(S·m−1) Conductivity
    growth rate/%
    M3-MX-0 0.57 2.5
    M3-MX-5 0.46 5.9 57.6
    M3-MX-10 0.42 7.9 25.3
    M3-MX-15 0.39 8.7 9.2
    M3-MX-20 0.50 7.5 −16.0
    M3-MX-25 0.44 5.5 −36.4
    M3-Ag@MX-0 0.51 4.1×103 99.9
    M3-Ag@MX-5 0.46 5.1×103 19.6
    M3-Ag@MX-10 0.60 8.5×103 40.0
    M3-Ag@MX-15 0.47 1.4×104 39.3
    M3-Ag@MX-20 0.43 1.3×104 −7.7
    M3-Ag@MX-25 0.46 1.2×104 −8.3
    下载: 导出CSV

    表  3  不同Ti3C2Tx MXene含量的双层复合薄膜的电磁屏蔽效能数据

    Table  3.   Electromagnetic shielding effectiveness data of bilayer composite films with different Ti3C2Tx MXene contents

    Sample SET/dB SER/dB SEA/dB SEA/SER/% SSEt/(dB·(cm−2·g)−1)
    M3-MX-0 5.0 0.9 4.0 4.3 87.6
    M3-MX-5 6.8 1.5 5.3 3.5 147.5
    M3-MX-10 7.2 1.7 5.5 3.2 171.0
    M3-MX-15 7.0 1.7 5.3 3.0 180.2
    M3-MX-20 6.9 1.8 5.0 2.8 137.1
    M3-MX-25 6.9 1.6 5.4 3.5 157.7
    M3-Ag@MX-0 60.2 9.5 50.8 4.6 2487.7
    M3-Ag@MX-5 60.4 10.7 49.5 5.3 2102.2
    M3-Ag@MX-10 61.5 9.5 52.0 5.5 2068.3
    M3-Ag@MX-15 69.0 10.3 58.7 5.7 2356.6
    M3-Ag@MX-20 68.2 10.3 57.8 5.6 2719.8
    M3-Ag@MX-25 67.9 10.0 57.9 5.8 2439.4
    Notes: The values of SET (dB), SEA (dB), and SER (dB) in the table are the average values obtained at 8.2-12.4 GHz; SEA/SER is the ratio of absorption loss SEA to reflection loss SER; SSEt denotes the ratio of EMI SE.
    下载: 导出CSV
  • [1] SHARMA R, CLOWER W, RADADIA A D, et al. Development of geopolymer composites for EMI shielding from steel industry waste[J]. Journal of Materials Science:Materials in Electronics, 2022, 33(8): 1-15.
    [2] BATOOL S, BIBI A, FREZZA F, et al. Benefits and hazards of electromagnetic waves, telecommunication, physical and biomedical: A review[J]. European Review for Medical and Pharmacological Sciences, 2019, 23(7): 3121-3128.
    [3] LI Y M, LI Y R, HU W J, et al. Designing of an rGO-based heterostructure for highly efficient microwave absorption performance and flame retardancy[J]. Ceramics International, 2023, 49(20): 32600-32610. doi: 10.1016/j.ceramint.2023.07.227
    [4] ZHANG W M, ZHAO B, NI N, et al. High entropy rare earth hexaborides/tetraborides (HE REB6/HE REB4) composite powders with enhanced electromagnetic wave absorption performance[J]. Journal of Materials Science & Technology, 2021, 87: 155-166.
    [5] TENG R, SUN J M, NIE Y X, et al. An ultra-thin and highly efficient electromagnetic interference shielding composite paper with hydrophobic and antibacterial properties[J]. International Journal of Biological Macromolecules, 2023, 253(31): 127510.
    [6] LI J T, LI J Z, LI T, et al. Flexible and excellent electromagnetic interference shielding film with porous alternating PVA-derived carbon and graphene layers[J]. iScience, 2023, 26(10): 107975. doi: 10.1016/j.isci.2023.107975
    [7] DU C L, WAN G P, WU L H, et al. Iron-doped nickel-cobalt bimetallic phosphide nanowire hybrids for solid-state supercapacitors with excellent electromagnetic interference shielding[J]. Journal of Colloid and Interface Science, 2023, 654(Pt A): 486-494.
    [8] ZAHID M, ANUM R, SIDDIQUE S, et al. Polyaniline-based nanocomposites for electromagnetic interference shielding applications: A review[J]. Journal of Thermoplastic Composite Materials, 2023, 36(4): 1717-1761. doi: 10.1177/08927057211022408
    [9] WANG Z, FAN J, GUO X, et al. Enhanced permittivity of negative permittivity middle-layer sandwich polymer matrix composites through conductive filling with flake MAX phase ceramics[J]. RSC Advances, 2020, 10(45): 27025-27032. doi: 10.1039/D0RA03493B
    [10] FARD K H A, GHASEMI R, MOHAMMADI B. Study of EMI-based damage type identification in a cracked metallic specimen repaired by a composite patch[J]. Russian Journal of Nondestructive Testing, 2020, 56(6): 540-548. doi: 10.1134/S1061830920060054
    [11] XIA Y X, GAO W W, GAO C. A review on graphene-based electromagnetic functional materials: Electromagnetic wave shielding and absorption[J]. Advanced Functional Materials, 2022, 32(42): 1-36.
    [12] LUO W, JIANG X, LIU Y, et al. Entropy-driven morphology regulation of max phase solid solutions with enhanced microwave absorption and thermal insulation performance[J]. Small, 2023, 20(8): e2305453.
    [13] YAO Y Y, JIN S H, ZOU H M, et al. Polymer-based lightweight materials for electromagnetic interference shielding: A review[J]. Journal of Materials Science, 2021, 56(11): 1-32.
    [14] YANG L, CHEN Y H, WANG M, et al. Fused deposition modeling 3D printing of novel poly(vinyl alcohol)/graphene nanocomposite with enhanced mechanical and electromagnetic interference shielding properties[J]. Industrial & Engineering Chemistry Research, 2020, 59(16): 8066-8077.
    [15] JIANG D W, MURUGADOSS V, WANG Y, et al. Electromagnetic interference shielding polymers and nanocomposites—A review[J]. Polymer Reviews, 2019, 59(2): 280-337. doi: 10.1080/15583724.2018.1546737
    [16] HSIAO S, MA C M, LIAO W. Lightweight and flexible reduced graphene oxide/water-borne polyurethane composites with high electrical conductivity and excellent electromagnetic interference shielding performance[J]. ACS Applied Materials & Interfaces, 2014, 6(13): 10667-10678.
    [17] HUANG X, TUERSUN Y, LUO P, et al. In-situ reduction of AgNPs on MXene surfaces for synthesis of efficient thermally conductive composites with powerful electromagnetic shielding capabilities[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 677(PB): 132444.
    [18] XIONG C Y, WANG T X, ZHOU L F, et al. Fabrication of dual-function conductive cellulose-based composites with layered conductive network structures for supercapacitors and electromagnetic shielding[J]. Chemical Engineering Journal, 2023, 472: 144958. doi: 10.1016/j.cej.2023.144958
    [19] GAO Q, YU Z, ZHANG S, et al. Hierarchical structured epoxy/reduced graphene oxide/Ni-chains microcellular composite foam for high-performance electromagnetic interference shielding[J]. Composites Part A: Applied Science and Manufacturing, 2023, 170: 107536. doi: 10.1016/j.compositesa.2023.107536
    [20] MA Z L, KANG S L, MA J Z, et al. Ultraflexible and mechanically strong double-layered aramid nanofiber-Ti3C2Tx Mxene/silver nanowire nanocomposite papers for high-performance[J]. Defense & Aerospace Week, 2020, 14(7): 8368-8382.
    [21] QU Y F, LI X, WANG X, et al. Multifunctional AgNWs@MXene/AgNFs electromagnetic shielding composites for flexible and highly integrated advanced electronics[J]. Composites Science and Technology, 2022, 230: 109753. doi: 10.1016/j.compscitech.2022.109753
    [22] CHU Q D, LIN H, MA M, et al. Cellulose nanofiber/graphene nanoplatelet/MXene nanocomposites for enhanced electromagnetic shielding and high in-plane thermal conductivity[J]. ACS Applied Nano Materials, 2022, 5(5): 7217-7227. doi: 10.1021/acsanm.2c01126
    [23] ZHU L L, MO R, YIN C G, et al. Synergistically constructed electromagnetic network of magnetic particle-decorated carbon nanotubes and MXene for efficient electromagnetic shielding[J]. ACS Applied Materials & Interfaces, 2022, 14(50): 56120-56131. doi: 10.1021/acsami.2c17696
    [24] IQBAL A, HASSAN T, GAO Z G, et al. MXene-incorporated 1D/2D nano-carbons for electromagnetic shielding: A review[J]. Carbon, 2023, 203(25): 542-560.
    [25] SHAHZAD F, ALHABEB M, HATTER B C, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes)[J]. Science, 2016, 353(6304): 1137-1140. doi: 10.1126/science.aag2421
    [26] XIN W, XI G, CAO W, et al. Lightweight and flexible MXene/CNF/silver composite membranes with a brick-like structure and high-performance electromagnetic-interference shielding[J]. RSC Advances, 2019, 9(51): 2046-2069.
    [27] CHARD K, ZHANG X, CHEN Y J. Recent progress in MXene and graphene based nanocomposites for microwave absorption and electromagnetic interference shielding[J]. Arabian Journal of Chemistry, 2022, 15(10): 104143. doi: 10.1016/j.arabjc.2022.104143
    [28] HAN Y X, RUAN K P, GU J W, et al. Janus (BNNS/ANF)-(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and Joule heating performances[J]. Nano Research, 2022, 15(5): 1-9.
    [29] TAN Y Y, XUE Y, LI K T, et al. PVDF/MWCNTs/RGO@Fe3O4/AgNWs composite film with a bilayer structure for high EMI shielding and electrical conductivity[J]. Polymer Composites, 2023: 1-16.
    [30] 中国国家标准化管理委员会. 平面型电磁屏蔽材料屏蔽效能测量方法: GB/T 30142—2013[S]. 北京: 中国标准出版社, 2013.

    Standardization Administration of the People's Republic of China. Measurement of shielding efficiency of planar electromagnetic shielding materials quantitative method: GB/T 30142—2013[S]. Beijing: China Standard Press, 2013(in Chinese).
    [31] JIANG Z Y, ZHAO S Q, CHEN L S, et al. Freestanding "core-shell" AgNWs/metallic hybrid mesh electrodes for a highly efficient transparent electromagnetic interference shielding film[J]. Optics Express, 2021, 29(12): 18760-18768. doi: 10.1364/OE.423369
    [32] KHOT A C, DONGALE T D, PARK J H, et al. Ti3C2-based MXene oxide nanosheets for resistive memory and synaptic learning applications[J]. ACS Applied Materials & Interfaces, 2021, 13(4): 5216-5227.
    [33] 李亚萍. 缝型及缝迹对电磁屏蔽服装屏蔽效能的影响 [D]. 郑州: 中原工学院, 2018.

    LI Yaping. Effect of sewing type and stitching on shielding effectiveness of electromagnetic shielding garments [D]. Zhengzhou: Zhongyuan Institute of Technology, 2018(in Chinese).
    [34] CHENG C B, JIANG Y L, SUN X, et al. Tunable negative permittivity behavior and electromagnetic shielding performance of silver/silicon nitride metacomposites[J]. Composites Part A: Applied Science and Manufacturing, 2020, 130: 105753. doi: 10.1016/j.compositesa.2019.105753
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  446
  • HTML全文浏览量:  210
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-02
  • 修回日期:  2023-11-20
  • 录用日期:  2023-11-23
  • 网络出版日期:  2023-12-06
  • 刊出日期:  2024-08-01

目录

    /

    返回文章
    返回